Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

Band: 1 (1932)

Artikel: Freie Diskussion

Autor: Brunner, J.

DOI: https://doi.org/10.5169/seals-510

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 15.10.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

doivent présenter une section suffisanté pour pouvoir supporter les 2/3 du

cisaillement vertical qui s'exerce à leur point d'assemblage.

Ces prescriptions, de même que les Spécifications américaines qui sont mentionnées dans le rapport, sont basées sur une longue expérience et donnent généralement des résultats satisfaisants. Les règles plus exactes établies par le Professeur Timoshenko permettent de réaliser une économie très appréciable de matière première ; elles doivent recevoir un chaleureux accueil et il faut espérer qu'elles seront légitimées par l'expérience pratique.

Dr. sc. techn. J. BRUNNER,

Wissenschaftlicher Mitarbeiter an der Eidgenössischen Materialprüfungsanstalt, Zürich.

Zur Abhandlung von Prof. Dr. Karner möchte ich bemerken, dass mir seine Definition des Knickens zu eng gefasst erscheint.

Prof. Karner sagt: « Wird ein gelenkig gelagerter Stab zentrisch belastet, so bleibt er infolge Belastungen unterhalb der kritischen Knicklast (Euler'sche Knicklast) gerade. Wird die Stabachse durch hinzutreten von äusseren Momenten gebogen (und tritt keine Randspannung über der Proportionalitätsgrenze auf), so kehrt der Stab nach Wegfall der Ausbiegungsursachen wieder in die gerade Lage zurück.

"Der Stab bleibt auch bei weiterer Steigerung der Last gerade, er ist im stabilen Gleichgewicht, bis die kritische Last, die Knicklast, erreicht ist. Der Stab ist bisher nur durch eine Normalkraft beansprucht. Wird nunmehr die Last um einen noch so kleinen Teil gesteigert, so tritt eine Ausbiegung auf, es wird ein Zusatzmoment wirksam. Nur diesen Vorgang sprechen wir als Knickvorgang an.»

Diese Definition erscheint mir, wie gesagt, zu eng, sie ist darauf eingestellt, nur elastiche Baustoffe rechnerisch zu erfassen.

Baustoffe, die keine Proportionalitätsgrenze, resp. Elastizitätsgrenze kennen, wie z. B. Kupfer, auch Gusseisen, würden nicht unter den Knickbegriff eingereiht werden können.

Unsere Stäbe der Praxis sind auch immer exzentrisch gedrückt. Auch da würde man nicht von Knicken sprechen können.

Geeigneter scheint es mir, das exzentrische Knicken als Typus zu wählen und das zentrische Knicken als Spezialfall zu bezeichnen.

Gewiss kann man den Begriff « Knicken » so einengen, doch deckt sich dies weder mit der Praxis, noch ist wissenschaftlich damit etwas gewonnen.

Traduction.

Au sujet du Rapport présenté par le Professeur Dr. Karner, je me permettrai de faire cette remarque que sa définition du flambage me semble trop étroite.

Le Professeur dit : Lorsqu'une barre articulée à ses extrémités est soumise à un effort axial centré, elle reste rectiligne si la charge est inférieure à la charge critique de flambage (charge de flambage d'Euler). Si l'axe de la barre subit une flexion sous l'influence de moments extérieurs (et si aucune contrainte périphérique n'arrive à dépasser la limite de proportionalité), la barre revient à sa