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IVal
Theory of Thin Curved Shells not Subjected to Bending.

Einführung in die allgemeine Theorie der biegungsfreien Schalen.

Etude des voiles minces courbes ne subissant pas de
flexion.

Dr. es siences F. Aimond,
Ingenieur des Ponts et Ghauss6es detache au Ministere de l'Air, Paris.

1) Review of the general equations for statical equilibrium in rectilinear
coordinates.

Let z f (x,y) be the equation for the surface in rectilinear coordinates
not necessarily rectangular. The conditions of stresses at a point m of the
surface are determined by knowledge of the stresses n1? — n2, — ® acting on
the elements mmx and mm2 respectively, parallel to planes zox and zoy. The
stress n± acts on mm2 parallel to plane zox, and n2 stresses mmx parallel to
plane zoy and © acts at the same time on mmx parallel to zox and on mm2
parallel to zoy (fig. 1). Let av o, yx and o, ß2, Y2 be the coefficients governing
the directions of the tangents to elements mmx and mm2, in other words, the
projections of the unit vector upon ox, oy, oz, for each of the tangents.

Let us assume that the surface is loaded in some way, and that Xdxdy, Ydxdy
and Zdxdy are the components parallel to ox, oy, oz of this load for the
element mmx m'm2, defined by parallels mmx and m'm2 to plane zox and by
parallels mm2 and n^m' to plane zoy. The investigation of the conditions of
equilibrium of these elements leads to the following equations:
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2) Geometrical interpretation of the quantities contained in the general equation*
for equilibrium.
The term £, contained on the right side of equation (3) is nothing more than

the projection of vector (X, Y, Z) on oz, this vector being projected parallel
to the tangential plane of the surface. In order to interpret the quantities
Vj — v2 and ©, which are the unknown quantities of the equations of
equilibrium, we must give a general definition of what we shall call "reduced stress".

By definition, the reduced stress acting on an element of the surface is the

projection on the xy plane of the elastic force which acts on this element,
divided by the length of the projection of this element.

It can easily be realized that the distribution of reduced stresses around a given
point follows the same laws as the real stresses and in particular the theory
of Mohr can be applied. The quantities vv v2, © are, in fact, the reduced
stresses in relation to elements which are projected along parallels to axis
of x and y. It will be noticed that the shear stresses © are maintained in
projection, whereas this is not the case for the other stresses nv n2.

3) Geometrical interpretation of the general equations for equilibrium.
Equations (1) and (2) evidently express the conditions of equilibrium, in

projection on the tangential plane. Equation (3), on the contrary, expresses the

equilibrium of forces normally applied on the surface. For a geometrical
translation, let us take the origin 0 of the trihedron oxyz on the surface itself
and direct ox and oy along the directions of two optional elements. We are then
able to complete the definition of trihedron oxyz# by taking arbitrarily the
direction oz. Equation (3) determines a linear relation between the stresses

acting on the optional elements ox and oy and the projection £ on oz, parallel
to the tangential plane, of the density of the stress applied. If we change the

direction oz without any modification to ox and oy, each term of the preceding
linear relation is only multiplied by the same coefficient.

We can take advantage of the indetermination of the direction of elements ox
and oy to simplify the equation (3). If these elements in particular are directed
according to two conjugated directions of the surface, that is, according to two
directions conjugated in relation to the indicator, the coefficient of © becomes

null and equation (3) is reduced to a .linear relation between the longitudinal
stresses vx and v2. We can wonder whether it is not possible to direct the
elements ox and oy in such a manner that they are eliminated from equation (3),
leaving only one stress. We can at once realize that this is not possible if the
surface is convex, that is, if the pnincipal radii of curvaturie are in the same
direction, and that on the contrary it is possible if the surface is not convex.

Let us consider the latter hypothesis and discriminate between two cases,

according to whether the stress which remains in the equation (3) is an axial
stress or is the shearing stress ©. The first case is not possible unless the surface

is developable, i. e. if we can consider it as being the envelope of a family
of tangential planes relating to a parameter. If we consider the element ox with
respect to the direction of the linear generatrix which passes through 0, the

equation (3) is reduced to:
rv, X, (4)
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The second case applies to surfaces of opposite curvatures. If we consider ox
and 0) with respect to the asymptotical directions, the equation (3) is reduced to:

2s 0 £ (5)

Equations (4) and (5) can be immediately interpreted. Let us first examine
the equation (4). It is obvious that the only stresses acting on an infinitely small
element of the surface and admitting a component which is not located in the

tangential plane to the surface, are the stresses projected along v1 and equation
(4) simply expresses the identity between the projections of the stresses nx on
oz parallelly to the tangential plane and the projection of the applied load, in
the same conditions.

Let us now examine equation (5): it suffices here to consider an elementary
quadrangle, two consecutive sides of which are formed by asymptotical arcs
transecting at 0. The longitudinal stresses nx and n2 applied to this quadrangle
admit a resultant in the tangential plane owing to the fact that this resultant is

the geometrical summation of the resultant of the stresses nx and of the resultant

of the stresses n2 and that each of these two latter resultants is necessarily
in the osculatory plane of an asymptotical are, such osculatory plane coneurring
with the tangential plane, being given the very definition of asymptotical lines.
Therefore, component £ of the stresses applied to the surface, outside the

tangential plane, depends only on shear ©, to which it is, in fact, proportional.
The coefficient of proportion, the value of which is 2 s, admits a very simple
geometrical significance: it is the quotient of twice the distance from the vertex
opposed to 0, in the quadrangle, to the tangential plane at 0, this distance being
evaluated parallelly to the direction oz, by the product of the lengths of the

asymptotical arcs which form the sides of the quadrangle.

4) Classification of thin shells with respect to their mechanical properties.
The above considerations lead to a Classification of the thin shells into three

groups. The first group covers developable surfaces, such as cylinders, cones:
the second group comprises the convex surfaces, such as spheres, elliptical
paraboloid, ellipsoids, polar-symmetrical hyperboloids and, generally speaking,
all surfaces of double curvature, which are generated by a curve the coneavity
of which is directed downwards and which rest on a curved directrix, the
coneavity of which is also directed downwards. In the third group, we find the
surfaces characterized by opposed curvatures, such as hyperbolical paraboloid,
hyperboloids, conoids, all undevelopable ruled surfaces and, generally speaking,
all surfaces which can be generated from a curve, the coneavity of which is
directed upwards and which rests on a directrix whose coneavity is directed
downwards.

This Classification has been suggested to us by the geometrical interpretation
of equation (3). Shells of the first group are those for which equation (3) can
take the form (4); shells of the second group are those for which equation (3)
can take the form:

rv, + tv2 l (6)

r and t being preceded by the same sign; shells of the third group are those

for which equation (3) can take the form (5).
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It should be noted that for shells of the third group, the equation (3) can also
take the form (6), but r and t are then of opposite signs. It should also be
noted that for shells of the second group, equation (3) can also take the form
(5), where © represents the shear on the asymptotical lines but equation (5) is
then no longer an equation with real terms, as s and t are purely imaginary
expressions.

Shells of the first group are characterized by the fact that the normal
component of the stress on the rectilineal generatrices is, at each point, proportional
to the normal component of the density of the applied load. Shells of the second

group are characterized by the fact that the purely imaginary shear stress acting
on the imaginary elements of asymptotical lines is, at each point, proportional
to the normal component of the density of the applied load. Shells of the third
group are characterized by the fact that the shear stress acting on the elements
of asymptotical hnes is, at each point, proportional to the normal component of
the density of the applied load.

The following difference should also be noted between shells of the second
and of the third group. If we consider at a given point, the longitudinal stresses

acting on two conjugated elements, then the normal component of the applied
load, which can itself be considered as the bulging produced by these longitudinal
stresses, is a linear form of these stresses. The related coefficients are of the
same sign for surfaces of the second group, and of opposite signs for shells of
the third group. It therefore follows that the carrying capacity of a shell of the
second group can be considered as a result of the action of longitudinal stresses
of same direction, acting on two conjugated elements, and that the carrying
capacity of a shell of the third group can, in a similar way, be considered as

produced by longitudinal stresses of opposite senses, acting on two conjugated
elements.

As regards shells of the second group, the conjugated elements can always be
chosen so that the coefficients of the corresponding stresses are equal, in the
hnear form which represents the normal component of the density of the applied
load. Such elements will be called canonical. It can then be said that in shells
of the second group, the normal component of the density of the applied load
is proportional to the summation of the longitudinal stresses acting according
to the directions of canonical elements.

These differences in properties just mentioned above and which distinguishing
the three groups of shell from one another, are of the utmost importance as

regards the kinds of supports which can be considered for the periphery of such
shells, in order to achieve their equilibrium, and as regards the actual method
of calculation for the stresses in the shells as functions of the conditions on the

periphery.

5) Shells of the first group.
The study of shells of the first group is a generalization of the study of

cylinders. Equation (4) gives, for each point of the shell, the normal component
relating to the rectilinear generatrix passing through this point, of the stress

acting on an element of this generatrix. Consequently, if we draw on the surface
a family of geodesic lines intersecting the rectilinear generatrices at a constant
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angle, we shall know the value of the longitudinal stress which acts parallelly to
these geodesic lines on the elements of the rectilinear generatrices. Equation (2)
gives then, by immediate integration, the value of shear on the generatrices and

geodesic lines and a second integration from formula (1) gives the longitudinal
stresses acting on the elements of the geodesic lines parallelly to the generatrices.

Such a determination of the stresses is not complete unless we assume to be

given, on a given curve intersecting only once each generatrix, the values of the
stresses acting on the elements of the said curve. In the same way, we can also

assume to be given, on two curves, each of them intersecting each generatrix only
once a relation between the components of the stress acting on any element of
the two curves.

6) Shells of the second group.

Let us consider a thin shell of the second group. We have seen that the
normal component of the density of the applied load is, at each point,
proportional to the summation of the longitudinal stresses acting on canonical
elements. We shall now suppose that these longitudinal stresses are equal.
Their value is therefore clearly determined, at each point, by the value of
the normal component of the density of the load. Thus equation (3) is
fulfilled. Equations (1) and (2), which express equilibrium in the tangential
plane, are then fulfilled only if the tangential component of the density of the
load has a determined value, which can be obtained precisely by writing the
conditions of equilibrium parallelly to the tangential plane. We shall call
"fundamental system of loads" every system of loads corresponding to the

preceding conditions, that is, such that the longitudinal stresses acting on two
conjugated elements, symmetrical to the prineipal directions, be equal. It then
becomes obvious that any system of loads can be considered as the summation
of a fundamental system and of a system which would be exclusively composed
of tangential loads, which we shall call "complementary system" to the
fundamental system of loads.

We are thus induced to study the complementary Systems, i. e. the Systems
in which the applied load is tangential to the surface. In such Systems, the

longitudinal stresses on canonical elements are equal and therefore the stress on
any element now depends only on two parameters, for instance the components of
the stress which acts on one of the two preceding canonical elements. It is obvious
that these two parameters can be arbitrarily chosen. It will be easily understood
that we can determine two conjugated imaginary functions cp and ij? in such a

manner that, when choosing as parameters two quantities which we shall call S?

and S^, the elastic forces acting on any element of the surface consist of linear
forms from the differential expressions ST di|? and S^ dep. The equations for
equilibrium in the tangential plane then show that the partial derivative of S? with
respect to 9 and the partial derivative of S^ with respect to x|> are linear functions

of ST and S^. By elimination of one of the two parameters, S^ for
example, between these two* relations, we get an equation to linear partial
derivatives of the second order, with imaginary characteristics, which the retained

parameter S9 must fulfil.
In order to arrive at a Solution for such an equation, we can assume a given
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the value of S9 and of one of its derivatives on an optional curve of the surface.
provided however that, the equation ha\ing imaginan characteristics, certain
conditions of analycih be fulfilled. If we observe that ST of the curve and one
of its derivatives may be assumed, the \alues S9 and S^ of this curve can be

obtained and in consequence there of the stresses acting on any element of the
curve. After making certain re^ervations for anal^city, we now see that the
stresses in the shell can be determined, provided that the stresses acting on the
elements of a curve be known.

The foregoing reserves for analycity are not merel) formal reserves. The}
correspond to a physical reality which is the following. We know that in all
problems where a function used to verify an equation with imaginary
characteristics is determined by means of the values it assumed — the same applies lo
one of its derivatives —, on a given curve, the Solution is not a continuous function

of the given values; in other words, by slightly varying the given values,
results of any desired difference can be obtained from this function, on points
arbitrarily chosen. It follows that the states of equilibrium of a convex shell.
corresponding to given values of the stresses acting on a curve, are not
stable with respect to the values of the stresses on this curve.

In order to arrive at stable Solutions, it is necessary to consider, for the
limits, conditions which are different from those we have taken. Instead of
assuming the values of the stresses on a curve to be given, we shall assume on
a closed curve, a given relation between the components of the stresses acting
on the elements of the curve. The problem then becomes clearly determined
and its Solution will be a continuous function of the given values. The
corresponding equilibrium will be stable. Let us suppose, for example, that we
wish the normal component of the stress along the given curve to be null. The
relative indetermination of the parameters S9 and S^ allows us to determine
them in such a manner that S9 represents, along the given curve, the value
of the normal component of the stress acting on the elements of this curve.
The theory of integral equations then allows us to determine the function S9 by
a method similar to that used by Fredholm and his successors in solving
problems of the same type, relating to equations with imaginary characteristics.

7) Shells of the third order.

Let us consider a thin shell of the third order. The value of the normal
component of the density of the load determines first of all at each point of the
shell the shear stresses on the asymptotical elements. Let us assume that the
stresses in the shell are reduced to these shearing stresses. For this purpose it
is necessary and sufficient, for the tangential component of the load which is

applied to an elementary quadrangle of asymptotical arcs to balance the
projection of the resultant of the tangential stresses applied to the elements of the

quadrangle on the tangential plane. We shall call "fundamental system of loads",
any system of loads corresponding to the preceding conditions, i. e. such that the
stresses acting on the elements of asymptotics are reduced to shear stresses. It
is quite obvious that any system of loads can be considered as a superposition
of a fundamental system of loads and of a system which we shall again call
"complementary system", exclusively composed of tangential loads.
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We thus return to the study of the action of complementary Systems. For this

purpose, we again observe that the elastic force acting on an element of shell

can be translated into a linear form of differential expressions such as S^dib
and S^ d cp, cp and i{? now being two real functions and S9 and S^, two real

parameters. The equations for equilibrium according to the tangential plane allow
then of expressing the partial derivatives of S(? with relation to cp and of S^ with
relation to ib, in linear functions of S„ and S..,. The elimination of S.(> between

1 VT V

these equations leads to an equation in S„, linear to thr partial derivatives of
the second order, with real characteristics. The characteristics of such an equation
to the partial derivatives are precisely the asymptotical lines.

in order to obtain a Solution from the preceding equation which would be

valid in an area D limited by a contour C, we shall divide this contour into to
two series of arcs T and T' in such a way that from any point of D two asymptotical

lines are drawn intersecting T only once; we shall then divide T into to
two series of arcs Tt and T2 in such a manner that any broken line of asymptotical

arcs joining any point from T1 to a point on T' has its intermediate
vertices on T2 or on T' and that there is no broken line of asymptotical arcs
having its ends on T± and its intermediate vertices on T2. We shall obtain a

single Solution, valid in D, when assuming a given the value on T1 of the stress

acting on the elements of T± and on T2, a relation between the components of
the stress acting on the elements of T2. The value of this Solution will be given
by the Riemann formula, successively applied to different fractional zones of
zone D. NG condition of analycity is here necessary and the Solution arrived at
is always a continuous function of the data. On the other hand, there is generally
no corresponding Solution to a relation between the components of the stresses

acting on the different elements of the closed curve C.

When the thin shell taken into consideration is a straight-line surface, the

equation to the partial derivatives of the second order can be reduced to a linear
equation with partial derivatives of the first order containing only one derivative,
the integration of which is immediate, as it can be considered as a linear
differential equation. In the case when the thin shell consists of a straight-line
surface of the second order, the determination of parameters S9 and S,j> is reduced
to the solving of two quadratic equations.

8) Choiee of supports for thin shells of the three groups.
#

The choiee of the system of supports for a thin shell depends essentially on
the group to which the surface belongs. We shall distinguish between two classes

of supports: single supports with which the reactions depend on one
parameter, and double supports, with which the reactions depend on two parameters.
The components of the stresses transmitted by the shell to a simple support
therefore fulfil a relation which is known a priori, whereas the components of
the stresses transmitted by the shell to a double support can assume independent
values. However, certain parts of the shell, on the marginal zones, shall be left
without support; in such a case the contour is said to be free.

We propose to find out how the free edges, single supports and double supports
must be distributed on the contour of a thin shell, so that the latter is subjected
to definite and stable equilibrium conditions.
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Let us consider at first the case of a thin shell of the first group. We can
assume the presence of a free edge on every part of the contour which comprises
no rectilinear generatrix, intersected once at the most by any generatrix. If the
free edge meets all the generatrices, the distribution of stresses in the shell is
determined and therefore the other edges must be equipped with double supports.
The resulting System of equilibrium is stable. If, on the contrary, we consider
two edges. each of them only once intersected by all the generatrices and provided
with double supports, we shall again obtain a State of stable equilibrium, on
condition that the rest of the contour exclusively composed of generatrices, be

arranged as double supports.
Should we now consider ä shell of the second group, such a shell cannot

admit of free edges, as the resulting equilibrium is not stable. The whole of the

periphery can, however, be arranged for single supports and the resulting
equilibrium is well defined and stable.

Let us finally consider a shell of the third group and divide its contour into
three series of arcs T1 T2 T', defined as indicated in 7. We can assume a free
edge according to Tv single supports according to T2 and double supports according

to 17. The resulting state of equilibrium is well defined and it is a stable.

9) Geometrical properties of the shells of the third group and their geometrical
calculation.

Shells of the third group show remarkable geometrical properties which allow
for an aecurate graphic calculation.

Let us first interpret geometrically the parameters S^and S^ and the functions
cp and ib introduced at 7. S9 and S^ are the longitudinal stresses acting on the

as)mptotical lines for a complementary system of loads. cp and i|? are the
curvilinear coordinates of the surface for which the lines of coordinates are the

asymptotical lines.
Let us replace these thin shells by a skew reticular system, the meshes of

which consist of rectilinear skew quadrangles formed by chords1 of asymptotical
lines. The system thus obtained works as does the given surface and the
assimilation of the two Systems to one another is legitimate if the meshes are
sufficiently small. The loads applied to the reticular system must be applied to
the vertices of this system according to the tangential plane to the surface.

If we apply a single force F to any vertex of the reticular system, such a

force can be decomposed between two of the bars passing at this point and

corresponding to two different asymptotical lines. Force F is thus transferred
to two other knots of the surface, where we operate in the same manner, and

so on. If we suppose that the contour of the surface is divided into three series
of arcs T± T2 Iv according to the foregoing conditions and if we conveniently
choose the two initial members in aecordance with which the given force F has
been devided, the fransfer of force F can be made as indicated without ever
encountering a free edge. If we meet with a free edge on T2 supposed to be

arranged for single support, we can still make the division between the second
member ending on the vertex considered on T2 and the direction of the reaction
of the single support. The Operation thus carried out is called a reflection on the

single support.
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By continuing in the same manner, we finally transmit the force F to a whole
zone of double supports. We thus obtain for the System a state of equilibrium
which is consistent with the reactions at the supports, and the equilibrium will
be stable. Operating in the same manner for each loaded knot of the reticular
system, we determine the state of equilibrium for the complementary system
of loads only by dividing forces according to the parallelograun of forces. The
corresponding diagram can be easily drawn by projecting on an arbitrary plane.

The geometrical determination of the stresses mentioned above allows of
considering the equilibrium of a shell of the third group as resulting from a

propagation of stresses according to the asymptotical arcs and starting from the
free edges so as to arrive at the double supports by reflection on the simple
edges. Such behaviour is similar to the propagation by means of waves of the
phenomena following the rule of linear equations to the partial derivates of the
second order with real characteristics, and is also essentially due to the real
nature of the characteristics of the equations governing the equilibrium of
stresses in the shell under consideration.

S\
m2

Fig. 1.

10) Elementary examples of shells of the third group.
The most simple example of a shell of the third group is the hyperbolic

paraboloid. This shell is characterized by its property that shear along to the
rectilinear generatrices, within a certain coefficient constant for the whole sur-

i i
l

i
Fig. 2.

Mode of propagation of tangential stresses,
in a ruled quadric surface.

44 E

iii¦ii1 lI iii iI
Fig. 3.

Mode of propagation of tangential stresses
in any other surface of the third group.
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face, is equal to the component along the axis of the paraboloid of the applied
load, brought back to the unit of surface projected on an arbitrary plane not
parallel to the axis. On the other hand, the stresses due to the complementary
system of loads propagate each generatrix without any interference between the
generatrices, so that a tengential stress applied to a small element of the shell
acts only on the bands produced by the generatrices encountered. The simplest
form of shell of the third group after the hyperbolie paraboloid is the
hypcrboloid. Just like the paraboloid, this shell has the property that stresses
due to the complementary system propagate each generatrix without any
interference with other generatrices. It only differs from the hyperbolic paraboloid
in a more intricate expression of the coefficient of proportionality between shear
and density of the applied load.

Then follow the undevelopable straight-line surfaces, and first of all the
conoids. For these surfaces, the coefficient of proportionality between shear
on the asymptotical lines and density of the applied load is expressed in a much
more complicated form than for the preceding surfaces, but the most distin-
guishing character of such surfaces is that the stresses due to the complementary
system propagate by opening on the surface; the unrectilinear asymptotical lines

abutting on the rectilinear generatrices of the surface, so that a tangential effort
applied to a small element affects a whole zone distributed over the surface,
just as for the most general surfaces of the third group.

Figures (2) and (3) show the difference between straight-line quadric
surfaces and other surfaces of the third group as regards the views expressed
above.

11) Conclusions.

With the exception of the developables straight-line surfaces, such as cylinders
and cones which form a very particular class of shells, all the shells with double
curvature can be divided into two important classes, according to the sign of
the total curvature. In these two classes, the asymptotical lines play the essential

part in the transmission of tangential stresses and therefore in the determination
of the nature of the reactions of supports corresponding to well defined and
stable conditions of equilibrium. When the asymptotical lines are imaginary, the
shell cannot admit of free edges, but can be limited by edges all arranged as

simple supports. A common example of such supports is given by a tympan or
flat slab of great stiffness in its own plane and without any appreciable stiffness
perpendicularly to this plane. When the asymptotical lines are real, the edges of
the shell are to be divided into free edges, edges with simple supports and edges
with double supports, according to the well determined principles we have
mentioned.

As double supports might involve difficulties as regards design, it is beneficial
to reduce their importance as far as possible, and this can be done in different
ways when conveniently choosing the outline of the surface.

If wc strictly consider the facilities of calculation, the views expressed above
show that, among the shells with double curvature, straight-line quadric surfaces

are those which lead to the most elementary calculation.



Theorv of Thin Curved Shells not Subjected to Bending. 691

S u in in a r y.

The problems offered by the design of thin curved shells of reinforced
concrete consist, in the first place, of purely statical problems, independent
from the theory of elasticity. We shall deal later on with these problems, as
a whole, excluding such other questions as concerning the application in practise
of shells under consideration of existing deformations and particularly the

problem of comptability of deformations due to stresses calculated by means
of ordinary statics.

We shall apply the hypothesis, generally accepted, of a uniform distribution
of stresses on any transverse section in such a manner that the shell can be
considered as being replaced by mid-surface of the shell.

44*
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