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VIII 4

Limits of Equilibrium of Earths and Loose Materials.

Grenzzustände des Gleichgewichtes in Erd-
und Schüttmassen.

Etats limites de l'equilibre dans les masses de terre et de depöt.

Dr. M. Ritter,
Professor an der Eidg. Technischen Hochschule, Zürich.

Iji the following report we shall establish the conditions which must be

fulfilled by the internal stresses of a noncohesive mass of earth or other loose

material when the mass is at the so-called limit of equilibrium. We shall confine

our observations to two-dimensional states of stress, on the fundamental assumption

that the stresses constantly vary with the place under consideration. Applying
the classic law of friction, we find the limit of equilibrium at any point through
which a rupture surface passes, i. e. a surface in which the resultant stress q
forms the frictional angle p with the surface normal.

As early as 1857 Rankine analysed the classic state of stressing, now called
after him, in the interior of a laterally unlimited mass of earth of even surface,
using the hypotheses mentioned. Winkler, Mohr, Weyrauch, Levi and others

subsequently elaborated this theory. Boussinesq and Resal1 extended Rankine's
theory to other surface conditions and attempted to establish the State of stressing
behind a retaining wall when the direction of earth pressure deviates from that
demanded by Rankines theory. This problem, particularly in conjunction with
Coulomb's theory of earth pressure, eventually led to numerous discussions in
technical publications. In 1893 F. Kotier published the general differential
equation for the pressure in a curved rupture surface2. Although quite a number
of engineers subsequently treated earth pressure problems under the assumption
of curved friction surfaces, the relation has not, as far as we know, been practically

applied. In 1924 H. Reissner3 expressed his views on the problem of earth

pressure in an extensive work and discussed the difficulties offered by the analysis
of the general limit condition under consideration of the dead weight of the mass
of earth. More recently A. Caquot41 has worked out the theory as a whole and

1 J. Resal: Poussee des terres (Earth Pressure), Vol.'2, Paris 1903.
2 H. Müller-Breslau: Erddruck auf Stützmauern (Earth Pressure on Retaining Wallsj.

Stuttgart 1906.
3 //. Reissner: Zum Erddruckproblem (The Problem of Earth Pressure). Sitzungsberichte

der Berliner Mathematischen Gesellschaft, 1924.
4 A. Caquot: Equilibre des massifs ä frottement interne (Equilibrium of solid bodies vnith

internal friction), Paris 1934.
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applied it in solving a number of practical problems. Apart from its importance
in calculating retaining walls, its prineipal use lies in determining the carrying
capacity of foundation strips at the limit of equilibrium — a problem to which
Rankine had already tried to find a Solution. Now that light has been thrown by
K. Terzaghfi on the principle of cohesion for masses of earth or loose material,
calculation can also be extended in certain cases to include cohesive soil as well.
Thus, Caquot elaborates the formula for the carrying capacity of a foundation
strip to cover soil with so-called apparent cohesion.

1. Principles.
On the assumption that the stresses in a mass of soil vary from point to point,

the angle p', formed by the stress q' of any surface element forms with its
normal, is a continuous function of the angle 9 of the surface element in
respect to a fixed direction. The angle p' attains its highest value p in the
rupture surfaces; thus the latter are defined by the fundamental relation

^•' 0. (i)
dep

In conjunction with the conditions necessary for equilibrium, this relation
suffices to determine both the relative position of the rupture surfaces in respect
to the main stresses, and the main stress ratio that must be present in a limiting
state of equilibrium.

If ö± and ö2 denote the main stresses, the conditions necessary for equilibrium
in an infinitely small prism of earth having a length 1 (see Fig. 1), then

q sin p' (öi — <52) s^n 9 cos 9

hence
q cos p' öA cos2 cp + ö sin2 cp,

tgp':
(öi — Ög) tg <p

öi + ö* tg2 cp
' (2)

Fig. 1.
*zdss/n<p

cfscos 9•

yds

\*T~\

Fig. 2.

0;

The maximum p' p is created in aecordance with Eq. 1 for

dP'_dtgp'_Oi — ö2)(öi — ö2tg2cp)

d cp d tg cp (d + Oa tg2 cp)2

which first of all gives

öi Ö2 %2 V
and Eq. 2 yields for the rupture surfaces

tg p —cotg 2cp.

5 K. Terzaghi: Erdbaumechanik (Soil Mechanics), Vienna 1925.

(3)

(3a)
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Thus we have cp 45° + — ; the rupture surfaces form with the surface on
u

which ö± acts, the angles ^h (45° + ^), which means that they intersect below

the angle 90° — p.

The ratio (3a) is therefore transformed into

^o P
ö1 <J1tg^460-^j; (4>

this relation between the two main tensions must be present at every point
belonging to a friction surface, i. e. to every point at the limit of equilibrium.
The pressure q at the friction surface can readily be expressed in terms of
<5X or öo, and amounts to

q ö.tg(45°—|). (5}

The relations we have established may easily be extended to cohesive soiL on
the assumption that apparent cohesion, as so designated by Terzaghi, is present.
This is created by the pressure of capillary water, which compacts the material
and subjects it to a state of spatial stressing having the umveHsal compressive
stresse» pk which exceed the other stresses. The angle of fraction p remains
as long as the state of stressing is oansidened to include the compressive
stresses pw. The law of friction now becomes

t (ö + pk) tg p pk tg p + ö tg p. (6)

Even Coulomb had calculated in principle with this law, introducing a coefficient
of cohesion and writing the law of friction as x c 4- ö tg p.

As the compressive stresses pk are self-stresses and maintain equilibrium in
some part of the mass of soil, it is necessary, when the stresses öv ö2 and q*

are brought into relation with external forces, to exclude the stresses pk. Eq. 4
therefore becomes the following for cohesive materials:

hence

o8 + Pk (öx + Pk) tg2 \4ö° - -|J,

"-fl-P* 1_tg«(45°—| (7)

After deduction of the normal stressing pk, the compression q at the rupture
surface becomes (Fig. 2)

sinp tgp
<lo q7iz-r' where tgp0 —

sin po' ™-j Pk_- (8)

q cos p

At the rupture surface there thus arises an apparent (greater) angle of friction

p0, while the angle 45° + « between rupture surface and main stressing is

maintained.
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The easiest way of assessing the practically possible values of pk is by
considering the vertical walls of excavations, which, as is well known, often hold
without shoring to a considerable height h. At the surface of such a wall
ö± yh and ö2 0, hence according to Eq. 7 the material must be subjeet
to a capillary compressive stress of

1

(9)yhPk T

tg2(45°+f)-l
Compressive stresses pk of from 0.3 to 0.5 kg/cm2 are frequently to be

observed in gravel sand containing clay.

2. Compressive stresses at the rupture surface.
We shall now proceed to establish F. Kotiert equation for compressive

stressing at a curved rupture surface in a particularly simple form especially
intended for enjgineers1. We shall consider an infinitely small prism of earth
lying at a curved rupture surface AC at a distance s fnom the surface C

(cf. Fig. 3). Let the prism have a length 1 vertically to the plane of the

figure, and let the one surface 1 — 2 ds • 1 lie in the rupture surface, the
other surface 2 — 3 being turned an angle of dep. On the surface 1 — 2 acta
the compressive stress q ds at the angle of friction p, on surface 2 — 3 the
compressive stress q' ds, also at the angle of friction p (cf. Eq. 1). The conr
dition necessary for equihbrium as regards turning around the axis o in the
surface 1 — 3 is

qds-_ cos (p — d cp) q' d s • __? cos (p + d cp);

from which we get

t cos (p — d cp) cos p cos d cp -f- sin p sin d cp

^ cos (p + d cp) cos p cos d cp — sin p sin d cp

or when cos dep 1 and sin dep dep

q' q(l+2tgp.dcp). (10)

The dead weight of the earth prism creates an infinitely small moment of
a higher order an'd therefore does not come under consideration. We now
add to the surface 1 — 3 the congruent prism 1 — 3 — 4 having its 1 — 4

surface in the rupture surface. Now the compressive stress (q + dq) ds acts

on the 1 — 4 surface at the angle of friction p, the compressive stress q" ds

on the surface 3 — 4 also — in aecordance with Eq. 1 — at the angle of
friction p. The prism 1 — 2 — 3 — 4 has a dead weight of y ds2 dep • 1, wherein y
denotes the specific weight of the earth. We can readily eliminate q" by
introducing the condition necessary for maintaining equilibrium against displacement
in the direction of the axis a — a perpendicular to the stress q". This
condition is

(q + d q) d s d cp — q (1 + 2 tg p d cp) d s d cp y sin (cp — p) d s2 d cp

6 M. Ritter: The theory of earth pressure on retaining walls. Schweizerische Bauzeitung
1910. These eiueidations were confined to non-cohesive material.
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and yields F. Kotier's differential equation

dq
ds

2 q tg p • -£ — Y sin (ep — p). (11)

Integration gives us

q^ye2?1^ Je-2(?t^Psin(cp —p) d s + qa,
o

in which C denotes the compressive stress at the point C. If the rupture surface
is plane, dep/ds disappears and we get

q y s sin (cp — p) + qa. (12

In the case of a cohesive material q0 and p0 can be calculated from q and p with
the aid of Eq. 8; here it should be noted that p* varies ajong the rupture
surface as the relation pk/q changes. This fact makes the application of the

equation more difficult.

*yxv>

cas

ads a'ds

*9 </p

?ds*d»A__ '
p.p

Fig. 3.

df)d$

-?f /ld* df dp
€/ds €fds€ds *><*

-Jt pVs

yds'd
€/ds -Cff?

*A__
ff. dp

Fig. 4.

(€f*&6f)dS

2. The prineipal stresses.

For the prineipal stressing öx or ö2 a relation can be established, in the
same manmer as for the compressive stress q at the rupture surface, permilting
the ready calculation of ö± and ö2 at any depth below the surface. A H in
Fig. 4 is a prineipal stress surface whose tangents may take the direction of
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the prineipal stress ö2. Let us consider the infinitely small prism of earth
1 — 2 — 3, having a length 1 and one surface of which, 1 — 2 ds • 1,
lies in me prineipal surface A H amd forms the angle dep with the surface 2 — 3.
On the surface 1 — 2 acts the prineipal stress <sv on the surface 2 — 3 the
stress p, which is only distinguished from öx by an infinitely small magnitude
of the second order. The prineipal stresses, as is known, being maximum values,
on the prineipal surface we have dö/dep 0. It should be noted that p does

not act normally to the surface 2 — 3, but at an angle dp', which can easily,
be calculated. From Eq. 12, for a prism of earth with an angle ep of any
size, we get

dp' _ (öt — ö2) fa — ö2 tg2 cp)
#

dep
"

(öt + ö2 tg2 cp)2

by turning the surface ds. 1 in the prineipal plane, i. e. by making ep 0,
the following is obtained:

(V\ i _ ö, i _ tg2 (45°- £.\ (13)
\dcp/(p o Ox \ 2/

To the surface 1 — 3 we now add the congruent prism 1 — 3 — 4, whose
surface 1 — 4 lies in the prineipal surface A H and is subjected to the main
stressing ö1 -\- döv while the compressive stress p'ds acts on the surface 3 — 4
at an angle of —dp' (it is easy to realise that d2pydcp2 disappears when
cp 0). The dead weight of the prism 1 — 2 — 3 — 4 is y ds2 dep • 1. The
condition necessary to prevent displacement in the direction of the axis a — a,
inclined at an angle of ep — dp' and perpendicular to p', is expressed:

(pi + d öj) d s (d cp — d p') — ox d s d p' — öx d s (d cp — 2 d p1) y d s2 d cp sin (cp — d cb;)

from which is obtained:

d öx _ ysincp __
/ p\

ds_l_ip: \ 2/ *' (14)
dep

The integration, beginning from the surface, yields

Oi ytg8(45°+|-)-Jsin9ds Ttg2(450 + |-)-y+Oa1, • (15)

in which öal detnotes the main stressing ö1 (caused by surcharge) at the surface.

Eq. 15 implies that the main stress a1 set up at the depth y by the weight y,

corresponds to the comppessive stress of a liquid of ytg2(45° + -^) specific

weight.
In corresponding manner it is possible to calculate the main stress ö2. The

condition necessary for equilibrium in the infinitely small prism of earth is
in this case

d ö2 y sin cp

^=i + -^;
dep



Limits of Equilibrium of Earths and Loose Materials

in which we have to introduce

dpA
dcp/9 9oo

1553

tg" 45" + £ -1
By integration we obtain

o* Ytg2(45°-f)-y + öa2,

<5a2 representing the main stress ö2 at the surface.

For cohesive soil Eq. 15 is written

P^

(16)

ö! + Pk y tg2145° + -£j • y + (öai + pk).

Eq. 15 and also Eq. 16 thus remain in the sense that the compressive stresses

pk vanish. The influence of cohesion is expressed in the alteration of öal in
aecordance with Eq. 7.

4. Carrying capacity of the foundation strip.
The relations developed in Pars. 2 and 3 permit the calculation of the greatest

possible loading of a foundation strip, compatible with equilibrium. The loading
in this case is that which, when rupture surfaces form, causes the soil to be

laterally displaced and the foundation block to subside. Let us assume that
the foundation lies at a depth h below the surface, that its width is 2fb and its
length such that the problem can be treated as a two-dimensional stress

problem. Fig. 5 shows roughly the approximate character of the State of

<,..6..J^„6—> /P

R I l s 2 s
W///WV/» 77777.

J_ 77T7

&Y
A?

6/05

^<nauprfiäche
surFaceprincipale
V Main surface

Fig. 5.

Gleirffäche
surface deglissement
rupture surface

stressing at the limit of equilibrium. The specific compressive stress of the
foundation we shall desigjnate with ö, antl we shall assume that outside the
foundation there also acts a surface stress p.

For reasons of symmetry the plane s — s is a prineipal surface in the sense

of Par. 3, so that in accoi*-dance with Eq. 16 the horizontal prineipal stress

o2 T tg2 (450-1-) • y + o tg* (45°- -|).

^cts at the depth y. The rupture surfaces must form the angle 45°

(17)

ö
9

with the prineipal surface s

98 E

s, and the angle 45° -f- — with foundation slab.
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Below the foundation, therefore, within the form CAC, there prevails the
classic Bankine state of stressing with plane rupture surfaces, and

z btg (45°+ -£-). (18)

Outside the rupture surfaces A C and A C the system of stresses is more
complicated; as seen in Fig. 5, curved rupture surfaces are created, a group

of them cutting the free surface at an angle of 45° — ^f since the surface on
Li

which p acts represents a prineipal surface. The prineipal surface of the
stresses ö1? which passes through A, cuts this group of rupture surfaces at

an angle of 45° + ^, thus forming in section with the plane of the figure

the curve EAE' which, for reasons of symmetry, possesses a horizontal tangent
at A and cuts the free surface vertically at E and E'.

Although the form of the prineipal surface E A E' is not quite definite, it
is easy to calculate the prineipal stressing öx from Eq. 15, for ö± does not
depend on the form of the surface, but soleley on the depth y. According to
Eq. 4, at the surface we get the relation

p öftl tg: (*-;-)¦
from which it is necessary to withdraw öal and introduce it into Eq. 15.

Accordingly, at the depth y

Oi Y »g2 (45° + f) • y + p tg2 (45° + §). (19)

We analyse the compressive stress öx ds • 1 into its horizontal components
öt ds sin cp öx dy and its vertical components a1 ds cos ep. The condition for
equilibrium in the body of earth ABCDE necessary to prevent horizontal
displacement then yields the foundation pressure ö at the limit of equilibrium.

This condition is

R + R'= fo. dy. (20)
O

The resultant B in the surface A B ensues from Eq. 17 by integration —

R -2-Y^tg2(45»--|)4-öztg^45°-^
To obtain the resultant B', however, Eq. 18 has to be used, giving us

R'-={ T h2 tgä (45» + f) + P h tg2 (450 + |
The sum of the horizontal forces at the curved main surface AE is

h+z h+z h+z

Jöldy= J\tg2(45«> + ^)ydy+ J p tg* Ub° + |J d y
o o o

lT(h + z)*tg*(45° + |) + p(h + z)tg*(450 + §).



Limits of Equilibrium of Earlhs and Loose Materials 1555

If these expressions are introduced into Eq. 20 and z is expressed, in aecordance
with Eq. 18, in terms of b, we obtain the foundation pressure ö at the limit
of equilibrium, namely,

1 ' [tg5(450 + ^)-tg(45°+p^ö Y1 (yh + p)tg^45°+|). (21)2/ ~° \'~ '

2)
The first summation represents the carrying capacity when the foundation
is placed directly on a free surface. The second term, which expresses the
influence of the depth of the foundation when the surface is subjected lo
loading, has already been dedueted by Rankine himself and is to be found in
most manuals. For soil with cohesive properties ö' 4- pk must be inserted in

Eq. 21 instead of ö, and p + pk instead of p. This yields the increased
foundation pressure ö' at the limit of equilibrium

ö — ö Pk tg*(45° + ^)-l (22)

The employment of the prineipal surfaces in calculating the carrying capacity
ö and ö' respectively offers the advantage that the form of the prineipal
surfaces outside the zone ACC need not be exactly known. Besides which
one can also try to use the rupture surface A F passing through A to determine
the stressing. A. Prandtl, //. Reissner and A. Caquot (1. c.) for h — 0 and

disregarding the weight y, deduced that

a p tg2145° + -£ I • e^sp (23)

which for cohesive soil (by writing ö' -+ pk instead of ö and p + pk instead
of p) becomes

ö' ö + Pk tg2 45°+ £ e'^P - 1 (24)

These relations were arrived at by takinjg as a basis the state of stressing
sketched in Fig. 6, for which the condition of a continuous form of the
stresses is fulfilled. In the regions ACC anid CFG Rankine's states of
stressing, with plane surfaces, are assumed, while in the zone A C F continuous
transition is obtained by using the Resal state of stressing, in which one set
of rupture lines is represented by a group of rays, and the other (which crosses
it at an angle of 90° — p), by logarithmic spirals. It is then easy to recognise
that the compressive stresses, at the rupture surface A G pass through the
point C, and that the angle A C G is a right angle. The moment equation for
the point C of the earth body A B C J G then gives us directly the relations
23 and 24. However, the author finds this basis of calculation, which leads to

very much higher limit loads than Eq. 21, extremely unsure. For, firstly, it is

by nb means proved that the state of stressing shown in Fig. 6 (in itself
possible and not contradictory) correspond to the minimum values of ö and ö'
respectively. Furthermore, it is not possible to extend the calculation in order
to take the dead weight y of the soil into account, since the equilibrium of
forces at the element C M N is upset if the compressive stresses at the surfaces
C M and C N are determined according to Eq. 12 and the dead weight is taken
into account in the calculation.

98*
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5. Earth pressure on retaining walls.

The general relations given in sections 2 and 3, permit the calculation of the
earth pressure E acting at any angle, i. e. at the angle of incideince p' (p' < p)
as given by Coulomb, on the face A B of a retaining wall (cf. Fig. 7). The

/P
~^

-TT
T 7 7 // / /" / /

| / /^Gleitfläcnen Fig. 7.
9 '

*?dy / surfaces deglissement
2 / rupture surfaces
*2'ds
—Hauptfläche
surfaceprincipale

Main surface

hypothesis of plane rupture surfaces, for an arbitrary arrangement, of the
direction of E, leads of course to contradictions in the equilibrium of forces in
the slipping earth prism, for which reason H. Müller-Breslau, II. Reissner
(1. c.) and others found it necessary to calculate with curved rupture surfaces.
The main problem — the ascertaining of the form of the rupture surfaces
requiring the greatest earth pressure E to ensure equilibrium — has not been
solved up to the present time.

In the following we shall confine our attention to horizontal ground and
vertical retaining wall. The rupture surfaces A C, A' C, of unknown shape, are

cut at an angle of (45° — -) by the main surface A H, which is acted upon by
Lt

the main stresses ö2, calculable from Eq. 16. Thus at a depth of y we have

Ö2 y tg2 (45«»-1) • y + p tg« (450- £

in which p is an evenly distributed surcharge. We analyse ö2 ds into its horizontal
component ö2dssinep ö2 dy and its vertical component ö2dsoosep. The
equilibrium of forces against displacement of the earth body A B H in a
horizontal direction gives us

H
/ \

h
/ \

h

Ecosp'= Jö2dy^ytg2(45«-|j./ydy + ptg2(450---|j.Jdy,
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»hence E= (l yll. + p
h\ ^Tzl). (*>

\ 2 ' / cos p'

With this formula, which is based on the curved form of rupture surfaces, we
can obtain perceptibly higher earth pressures than with Coulomb's earth pressure
formula, which assumes plane rupture surfaces.

If the question is one of cohesive soil, p -f- pk should be written in Eq. 25
instead of p, and pk h introduced for E' cos p'. From this is obtained

l_tg»(45»—|)
E' E-Pkh - - <26>

v cos p'

The relations 25 and 26 are based on the assumption that the limit of
equilibrium has been reached in all points of earth body ABC. Whether this
state creates the greatest earth pressure, or whether the case in which only
one rupture surface is formed is more unfavourable, cannot be determined by
the author.

Summary.

For the limit of equilibrium in which every point of the earth body belongs
to a (curved) rupture surface, the differential equations for compressive stress
at the rupture surface and at the main surface (main stresses) are deduced and
integrated. These equations, established for non-cohesive and cohesive soil, are
applied in the calculation of the carrying capacity of a strip of foundation,
and in the establishment of the earth pressure on a retaining wall, assuming
curved rupture surfaces.
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