**Zeitschrift:** IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

**Band:** 3 (1948)

**Artikel:** Approximative method of analysis for rectangular reinforced concrete

plates under uniformly distributed or hydrostatic load

**Autor:** Bijlaard, P.P.

**DOI:** https://doi.org/10.5169/seals-4037

### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

### Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

**Download PDF: 23.11.2024** 

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

# IV<sub>b1</sub>

Calcul approché des dalles rectangulaires en béton armé pour une charge uniformément répartie ou hydrostatique

Näherungsmethode zur Berechnung von rechteckigen Platten aus Eisenbeton bei gleichmässig verteilter und hydrostatischer Belastung

Approximative method of analysis for rectangular reinforced concrete plates under uniformly distributed or hydrostatic load

> PROF. IR. P. P. BIJLAARD Technische Hoogeschool Delft, Technical adviser I. A. B. S. E.

# Introduction

As a direct integration of the differential equation of the plate is in general not possible for rectangular plates, supported at the edges, several methods have been developed to cope with this difficulty, using double and single Fourier series, differences equations, etc. Some of these methods lead to sufficiently accurate results. They are, however, rather laborious, especially if all kinds of boundary conditions have to be taken into account, whilst no usable general formulae for bending moments, etc. are obtained. It is true Marcus (1) gave relatively simple formulae for rectangular plates with uniformly distributed load, but these have not been derived directly. They have been composed in such a manner that they approximate as much as possible the results of his more accurate calculation (2), which leads only to numerical results.

At the other hand our method (3) is rather simple and gives a clear insight in the way in which the plates carry the load. Moreover it leads

<sup>(1)</sup> Marcus, Die vereinfachte Berechnung biegsamer Platten, Springer, Berlin, 1925.
(2) Marcus, Die Theorie elastischer Gewebe und ihre Anwendung auf die Berechnung biegsamer Platten, Springer, Berlin, 1924.
(3) Bijlaard, De Ingenieur, n° 26, 1934, n° 23, 1935; De Ingenieur in Ned. Indië, n° 12, 1935; Proc. Third Engineering Congress, Tokio, 1936.

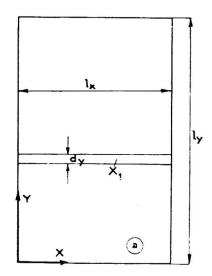
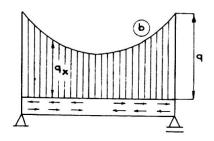


Fig. 1.



to simple general formulae for the maximum bending moments as functions of the ratio  $\mathbf{z} = l_y/l_x$  of the sides, which are similarly built for all boundary conditions, for uniformly distributed as well as for hydrostatic load. Furthermore our formulae are more accurate than those of Marcus.

# Simply supported plates

Let us consider first a rectangular plate (fig. 1a) with simply supported edges, carrying an arbitrary load q = f(x, y). An arbitrary X-strip,  $X_1$ , of this plate, having a breadth dy, will only have to carry a vertical load  $q_x$ , the remainder of the load q being carried by the vertical shearing forces acting on its sides. The bending moment per unit breadth of the strip, due to this vertical load  $q_x$ , we denote by  $M_{xx}$ .

As, however, also twisting moments  $M_{yx}$  and  $M_{yx} + \frac{\partial M_{yx}}{\partial y} dy$  are acting on the sides of the strip, which cause bending moments  $M_{xz}$  per unit breadth of its cross sections, the real bending moment per unit breadth of the strip amounts to

$$M_x = M_{xy} + M_{xz} \tag{1}$$

so that

$$\mathbf{M}_{xz} = \mathbf{M}_x - \mathbf{M}_{xz} \tag{2}$$

We know that (4)

$$\mathbf{M}_{x} = - \mathrm{D}\left(\frac{\partial^{2} w}{\partial x^{2}} + \nu \frac{\partial^{2} w}{\partial y^{2}}\right) \tag{3}$$

<sup>(4)</sup> TIMOSHENKO, Theory of Plates and Shells, 1940, p. 88.

whilst

$$M_{yx} = -D (1 - \gamma) \frac{\partial^2 w}{\partial x \partial y}$$

acting on strip  $X_1$  as indicated in fig. 1b. Consequently the total moment exercised per unit length of the strip by the twisting moments  $M_{yx}$  and  $\frac{\partial M_{yx}}{\partial x}$ .

$$M_{yx} + \frac{\partial M_{y,x}}{\partial y} dy$$
 is

$$\frac{\partial \mathbf{M}_{yx}}{\partial \mathbf{y}} \, d\mathbf{y} = -\mathbf{D} \, (1 - \mathbf{y}) \, \frac{\hat{\sigma}^3 \, \mathbf{v}}{\partial \mathbf{x} \partial \mathbf{y}^2} \, d\mathbf{y}$$

acting on the strip in the opposite direction of the arrows in fig 1b. Hence the bending moment  $M_{r\tau}$  per unit breadth of the strip, caused by the twisting moments, amounts to

$$\mathbf{M}_{xz} = -\mathbf{D} (1 - \mathbf{v}) \int_{x}^{t_{x}} \frac{\partial^{3} w}{\partial x \partial y^{2}} dx = -\mathbf{D} (1 - \mathbf{v}) \left[ \frac{\partial^{2} w}{\partial y^{2}} \right]_{x}^{t_{x}} = \mathbf{D} (1 - \mathbf{v}) \frac{\partial^{2} w}{\partial y^{2}}$$

$$(4)$$

a similar result being already obtained by Marcus.

But with eqs. (3) and (4) it follows now from eq. (2) that

$$\mathbf{M}_{xv} = -\mathbf{D}\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2}\right) \tag{5}$$

whence we obtain, by changing x and y

$$\mathbf{M}_{yv} = -\mathbf{D}\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2}\right) \tag{6}$$

so that we draw the conclusion that

$$\mathbf{M}_{xv} = \mathbf{M}_{yv} \,. \tag{7}$$

Hence at any point of a rectangular plate with simply supported edges and arbitrary load, the bending moment  $M_{xv}$  per unit breadth, that would occur in an X-strip, if it had to carry its total vertical load  $q_x$  as a simple beam, without being discharged by the twisting moments  $M_{yx}$ , is equal to the bending moment  $M_{yv}$ , occurring at the same point in an Y-strip, if it would have to carry its total vertical load  $q_y$  as a simple beam, whilst of course

$$q_x + q_y = q. (8)$$

At the other hand we know that, according to eq. (3), whence  $M_y$  follows by changing x and y, we have

$$M_x + M_y = -D (1 + \nu) \left( \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right)$$
 (9)

so that it follows from eqs. (5) and (6) that

$$M_x + M_y = (1 + v) M_{xv} = (1 + v) M_{yv}$$
 (10)

With structures in reinforced concrete, where Poisson's ratio is usually equated to zero, this yields

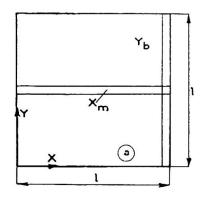
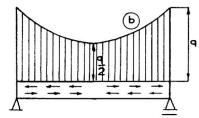
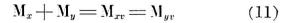


Fig. 2.





$$\mathbf{or}$$

$$\mathbf{M}_{x} = \mathbf{M}_{xv} - \mathbf{M}_{y} \tag{12}$$

and 
$$M_y = M_{yv} - M_x. \tag{13}$$

Furthermore it follows from eq. (4) and also by comparison of eqs. (1) and (12) that, with  $\nu = 0$ ,

$$M_{xz} = -M_y$$
 (14) and  $M_{yz} = -M_x$  (15)

the latter equation following from the first one by changing x and y.

For example we shall use eq. (11) in order to find the bending moment in the centre of a square plate with sides l which carries a uniform load q = const. (fig. 2a). As at the edges  $M_x = M_y = 0$  according to eq. (10) in any section of a boundary strip  $Y_b$  the moment  $M_{yv}$  will be zero too, so that for these strips  $q_y$  must be zero. Therefore, according to eq. (8), at x = 0 and x = l the middlemost X-strip  $X_m$  has to carry a load  $q_x = q$ , whilst at x = l/2, on account of symmetry,  $q_x = q_y = q/2$ , so that  $q_x$  is distributed according to fig. 2b. Assuming a parabolic limitation of  $q_x$  we find that in the middle of  $X_m$ 

$$M_{xv} = \frac{1}{8} q l^2 - \frac{5}{48} \frac{q}{2} l^2 = \frac{7}{96} q l^2$$

so that, because in the centre of the plate  $M_x = M_y$ , eq. (11) yields

$$M_x = M_y = \frac{1}{2} M_{xv} = \frac{7}{192} q l^2 = 0.0365 q l^2$$
.

According to Nadai (5) the real bending moment with  $\nu = 0$  is  $0.0368 \, ql^2$ , so that our result is sufficiently accurate.

In order to find the equation of the deflection surface we remark that according to eq. (14) the moment  $M_{xz}$  in  $X_m$  is distributed as  $M_y$ , consequently practically as the negative deflection  $w_x$  of  $X_m$ , so that it may be

<sup>(5)</sup> NADAI, Elastische Platten. Berlin, 1925.

assumed to be caused by a fictituous load, being distributed according to the second differential quotient of  $w_x$ , consequently as  $-M_x$ . Assuming again a parabolic limitation of the total fictituous load  $q_x'$  according to fig. 2c, it follows that

$$M_{xm} = \frac{1}{8} q l^2 - \frac{5}{48} (q - q'_{xm}) l^2 = \frac{7}{192} q l^2$$

or  $q'_{xm} = 0.15 q$ . The deflection  $w_x$  of  $X_m$  follows from  $q_x'$  by integrating four times and dividing by EI. Assuming the deflections of the other X-strips to be proportional to those of  $X_m$ , we obtain in this way the deflection surface of the square plate

$$w = \frac{8}{104\ 175} \frac{q l^4}{E \mathcal{J}} (24 \xi - 65 \xi^3 + 75 \xi^4 - 51 \xi^5 + 17 \xi^6)$$

$$(24 \eta - 65 \eta^3 + 75 \eta^4 - 51 \eta^5 + 17 \eta^6) \quad (16)$$

in which  $\xi = x/l$  and  $\eta = y/l$  and from which the bending and twisting moments at any point may be calculated immediately. These are situated fairly between the values obtained by Marcus (2) and Lewe (6), as was shown in our third paper in footnote 3. In a similar way we found for a square plate with a hydrostatic load q = xp/l the deflection surface

$$w = \frac{8}{2 \cdot 187 \cdot 675} \cdot \frac{\rho l^4}{E \cdot J} (208 \xi - 217 \xi^3 - 42 \xi^5 + 51 \xi^7)$$

$$(24 \eta - 65 \eta^3 + 75 \eta^4 - 51 \eta^5 + 17 \eta^6) \quad (17)$$

Various boundary conditions

If an X-strip is for example fixed at two sides (fig. 3), the moment  $M_{x\tau} = -M_y$ , that would be caused in it by the twisting stresses  $\tau_{yx}$  if it were simply supported, being  $-M_{ym}$  in the middle of the strip, will cause moments  $\varphi_{xc} M_{ym}$  at the clamped edges (fig. 3b and 3c), by which at the crossing M of the most loaded strips  $X_m$  and  $Y_m$  we get, instead of eqs. (12) and (13)

$$\mathbf{M}_{xm} = \mathbf{M}_{xv} - \varphi_x \mathbf{M}_{vm} \tag{18}$$

and 
$$\mathbf{M}_{yw} = \mathbf{M}_{yv} - \varphi_y \mathbf{M}_{xw} . \tag{19}$$

As for example along  $X_m$  the moment  $M_{x\tau} = -M_y$  is about proportional to the deflection  $w_x$  of  $X_m$ , values  $\varphi_x$  or  $\varphi_y$  may be calculated if the ratios of the ordinates of  $w_x$  or  $w_y$  are known.

Also to this effect we remark that, by the twisting moments  $M_{xy}$  alone, the Y-strips, that cross  $X_m$ , would obtain deflections  $w_{y\tau}$  according to curve 1 in fig. 3d, being proportional to  $M_{y\tau} = -M_x$ . As at their crossing with  $X_m$  their real deflections coincide with the deflection  $w_x$  of  $X_m$ , given by curve 2, the part  $q_y$  they take there of the total load q will be about proportional to  $w_x - w_{y\tau}$ , being the distance between curves 1 and 2. Assuming a uniformly distributed load q, we therefore find the

<sup>(6)</sup> Lewe, Pilzdecken, Berlin, 1926.

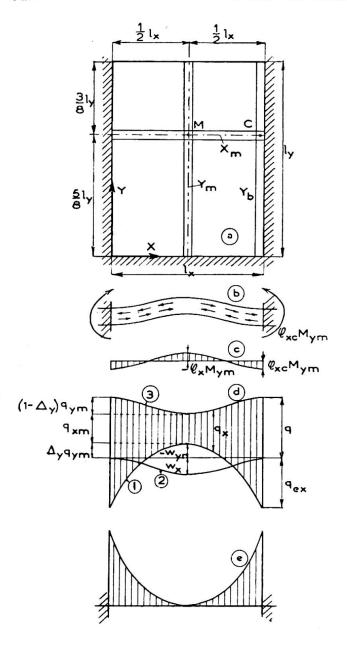


Fig. 3.

vertical load  $q_x$  on  $X_m$  by drawing curve 3 at a distance q above curve 2, load  $q_x$  being denoted by cross hatching. It follows that near a clamped edge the Y-strips cause an excess load  $q_{ex}$  on  $X_m$  instead of discharging it. Value  $q_{ex}$  was computed from the condition that the load  $q_y$ , taken by the boundary strip  $Y_b$ , being  $q_y = -q_{ex}$  at C, has to cancel the bending moments

 $M_{yz} = -M_{xc}$ 

caused by the twisting stresses  $\tau_{yx}$ , in which  $M_{xc}$  is the mo-

ment  $M_x$  along the clamped edge. For a square plate with all edges built in  $q_{ex}$  is e.g. 0.61 q.

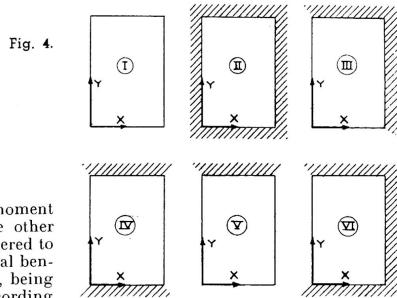
At the crossing M of the most loaded strips (fig. 3a)

$$q_{xm} + q_{ym} = q \tag{20}$$

whilst the deflections of  $X_m$  and  $Y_m$  in M must be equal. Expressing these deflections in the maximum positive moments  $M_{xm}$  and  $M_{ym}$  and assuming for that the same relations which hold for uniform load, this condition gives us the relation

$$\mathbf{M}_{xm} = \mu \varepsilon^2 \,\mathbf{M}_{ym} \tag{21}$$

in which  $\varepsilon = l_y/l_x$ , whilst for the six cases we considered (fig. 4, where a single line denotes a simply supported and cross hatching a clamped edge)  $\mu$  is 1, 1, 1, 0.6, 32/45 and 27/32 respectively. Furthermore in fig. 3d the deflection  $w_{y\tau}$  of  $Y_m$  is the result of the twisting moments  $M_{xy}$ ,



which cause in M a moment  $-\varphi_{\nu}M_{xm}$  in  $Y_m$ . At the other hand  $w_x$  may be considered to be the result of the actual bending moment  $M_{\nu}$  in  $Y_m$ , being  $M_{\nu m}$  in M, so that, according to eq. (21) and fig. 3d we have e.g.

$$\Delta_{y} = \frac{-w_{y\tau}}{w_{x} - w_{y\tau}} = \frac{\varphi_{y} M_{xm}}{M_{ym} + \varphi_{y} M_{xm}} = \frac{\mu \varepsilon^{2} \varphi_{y}}{1 + \mu \varepsilon^{2} \varphi_{y}}$$
(22)

We could show (3) that for values  $\varepsilon$  between 0.5 and 2 it is sufficiently accurate to assume curve 1 in fig. 3d, the ordinates of which are proportional to  $-M_x$ , as a parabola, if  $M_{xm}$  and  $M_{ym}$  are considered as the maximum positive moments in the strips and not always as those in M. Then also curve 3, being proportional to  $w_x$ , may be easily found. For we showed above here that the effect of the twisting stresses on  $X_m$  is equivalent to that of a fictituous load proportional to  $-M_x$ , so that the deflection  $w_x$  is between that by a uniform and that by a parabolic load, the latter being indicated in fig. 3e. With known shapes of  $w_x$  and  $w_y$  values  $\varphi_x$ ,  $\varphi_{xc}$ ,  $\varphi_y$  and  $\varphi_{yc}$  can also be computed. The only unknown values in fig. 3d being now  $q_{xm}$  and  $q_{ym}$ , we may calculate

$$\mathbf{M}_{xv} = m \left( q_{xm} + e q_{ym} + f q_{ex} \right) l_x^2 \tag{23}$$

whilst in the same way we find

$$M_{yv} = n(q_{ym} + gq_{xm} + hq_{ey})l_y^2.$$
 (24)

Consequently we have six equations, (18), (19), (20), (21), (23) and (24), with six unknown values,  $q_{xm}$ ,  $q_{ym}$ ,  $M_{xv}$ ,  $M_{yv}$ ,  $M_{xm}$  and  $M_{ym}$ . In this way we got the maximum positive moments  $M_{xm}$  and  $M_{ym}$ , whence we obtain also the clamping moments

$$\mathbf{M}_{xc} = \mathbf{M}_{xvc} + \varphi_{xc} \,\mathbf{M}_{ym} \tag{25}$$

an'd

$$\mathbf{M}_{yc} = \mathbf{M}_{yvc} + \varphi_{yc} \, \mathbf{M}_{xm} \,. \tag{26}$$

For values  $\varepsilon = l_y/l_x$  between 0.5 and 2 we got

with 
$$q_{x'} = \beta \frac{\epsilon^4}{\epsilon^4 + \gamma \epsilon^2 + \alpha'} q, \quad q_{y'} = \beta \frac{\alpha}{\epsilon^4 + \gamma \epsilon^2 + \alpha'} q$$
 (27)

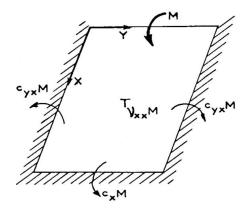


Fig. 5.

with 
$$q_{xc}' = \lambda_x \frac{\varepsilon^4 + \omega_x \varepsilon^2 + \rho_x}{\varepsilon^4 + \gamma \varepsilon^2 + \alpha'} q \leqslant q$$
,  $q_{yc}' = \lambda_y \frac{1 + \omega_y \varepsilon^2 + \rho_y \varepsilon^4}{\varepsilon^4 + \gamma \varepsilon^2 + \alpha'} q \leqslant q$  (28)

If we put  $q_{ex}$  and  $q_{ey}$  equal to their values for  $\epsilon = 1$ , values  $\beta$ ,  $\gamma$ ,  $\alpha'$ , etc. are constants (7). Somewhat more accurate values could be obtained, however, by taking into accumt the variation of  $q_{ex}$  and  $q_{ey}$  with  $\epsilon$ . In order to avoid that by this  $\beta$ ,  $\gamma$ ,  $\alpha'$ , etc. would become functions of  $\varepsilon$ , we expressed  $q_{ex}$  and  $q_{ey}$  in  $q_{xm}$  and  $q_{ym}$ , by which  $\beta$ ,  $\gamma$ ,  $\alpha'$ , etc. remained constant in the intervals  $\varepsilon = 0.5 - 1$  and  $\varepsilon = 1 - 2$  (\*). In table I, where cases  $I_u - VI_u$ refer to the 6 cases in fig. 4 and to uniform load, all values of eqs (27) and (28) are given.

Only for the moments along the short clamped edges it is not allowed to assume curve 1 in fig. 3d as a parabola. These clamping moments we derived as follows.  $M_{yc}$  for case  $II_u$  we found by superimposing on the deflection of a square plate, with sides  $l_x$ , for which  $M_{yc}$  is known (see also under here), a deflection of one of the clamped edges according to that of the middle strip  $X_m$  in case  $\varepsilon = 2$ , yielding  $M_{uc} = -0.057 \, q l_x^2$ . Subsequently we found  $M_{uc}$  for case  $IV_u$  and  $\varepsilon = 2$  by remarking that here the X-strips, with lengths  $l_x$ , have the same rigidity as if they were clamped with lengths  $l_x' = l_x \sqrt[4]{5}$ , so that  $M_{yc}$  has about the same value

as for case II<sub>u</sub> and  $\varepsilon = \frac{2}{1/5} = 1.34$ , being

$$M_{uc} = -0.057 \ q l_x^{\prime 2} = -0.127 \ q l_x^2$$
.

As, however, here  $q_{ey} = 1.22 \, q$  instead of  $1.32 \, q$  for case  $II_u$ , we have to multiplicate this value with about 2.22/2.32, yielding  $M_{yc} = -0.120 \ q l_x^2$ . Using the carry-over factors, mentioned under here, we computed from these values  $M_{xc}$  and  $M_{yc}$  for  $\varepsilon = 0.5$  and 2 for the other cases (fig. 4). Demanding that  $dM_c/d\epsilon$  is continuous at  $\epsilon = 1$  and zero at  $\epsilon = 0.5$  and 2, we obtain for  $\varepsilon < 1$  and  $\varepsilon > 1$  respectively

$$\mathbf{M}_{xc} = [-\mathbf{A} + \mathbf{B}(\varepsilon - 0.5)^p] q l_y^2$$
 and  $\mathbf{M}_{yc} = [-\mathbf{C} + \mathbf{D}(2 - \varepsilon)^p] q l_x^2$ 
(29)

<sup>(7)</sup> BIJLAARD, De Ingenieur, n° 23, 1935. (8) BIJLAARD, De Ingenieur in Ned. Indië. n° 12, 1935.

in which A, B, C, D and p are given in table II. For case VI and  $\epsilon < 1$  we got

$$\mathbf{M}_{xc} = \left[ -0.057 - 0.06 \left( \varepsilon - 0.5 \right)^2 + 0.35 \left( \varepsilon - 0.5 \right)^5 \right] q l_y^2. \tag{30}$$

In the same way we examined cases I and II (fig. 4) for hydrostatic load  $q = xp/l_x$ . As we considered both cases separately and disposed already of the data for uniform load, we could approximate the shapes of curves 1 and 3 (cf. fig. 3d), for which in case II we used curves of the fifth and seventh degree respectively, still better than before. Eqs. (27) and (28) hold here as well, the coefficients being given in table III (cases  $I_h$  and  $II_h$ ), in which  $M_{xcu}$  and  $M_{xcl}$  refer to the upper (x=0) and lower edge  $(x=l_x)$ . For the clamping moments at the shorter edges we got for case  $II_h$  and  $\epsilon < 1$ 

$$\mathbf{M}_{xcu}\!=\!0.002(9-40\;\mathbf{e}+22\;\mathbf{e}^{2})\,pl_{y}{}^{2}\quad\text{and}\quad\mathbf{M}_{xcl}\!=\!0.0066(4\;\mathbf{e}-9)\,pl_{y}{}^{2} \tag{31}$$

whilst for  $\epsilon > 1$  the maximum clamping moment  $M_{yc} = -0.028 \, pl_x^2$ . The better approximation appears from the fact, that with the values in table III it follows from case  $II_n$  and  $\epsilon = 1$  a clamping moment for uniform load p = q, being the sum of  $M_{xcu}$  and  $M_{xcl}$ , the value  $M_{xc} = -0.0507 \, ql_x^2$ , whilst with our values for case  $II_u$  in table I we find directly  $M_{xc} = -0.0529 \, ql_x^2$ , the accurate value being  $M_{xc} = 0.0513 \, ql_x^2$  (°). In the same way other cases may be examined. It is, however, easier to determine from our values for uniform load the carry-over factors c according to the Cross method of moment distribution (fig. 5). It is for example obvious that, with reference to the moments at the middles of the edges,

$$c_x\!=\!\frac{\mathrm{M}_{xc\mathrm{VI}}-\mathrm{M}_{xc\mathrm{II}}}{\mathrm{M}_{xc\mathrm{II}}}\quad\text{and}\quad c_{yx}\!=\!\frac{1}{2}\left(1-c_x\right)\frac{\mathrm{M}_{yc\mathrm{IV}}-\mathrm{M}_{yc\mathrm{II}}}{\mathrm{M}_{xc\mathrm{II}}}\;.$$

In a similar way we calculated the influence values  $\nu$  of an edge moment M (fig. 5) for the positive moments in the slab. Furthermore we calculated the factors with which the clamping moments at the middle of the sides have to be multiplicated to get the maximum edge moments. We found for example the coefficients for case VI<sub>h</sub> for hydrostatic load (edge x=0 simply supported), as given in table III, by superimposing the influence of a moment, opposite to  $M_{xcu}$ , on the moments for case II<sub>h</sub>. We have e.g.  $M_{xcu} = M_{xcu} + c_x M_{xcu}$ . The clamping moments at the shorter sides are

$$\begin{aligned} \mathbf{M}_{xcl} = & \left[ -0.0352 \, (2 - \varepsilon) + 0.072 \, (1 - \varepsilon)^2 - 0.09 \, (1 - \varepsilon)^3 \right] p l_y^2 \\ \text{and} \qquad & \mathbf{M}_{yc} = & \left[ -0.0367 + 0.0074 \, (2 - \varepsilon)^4 \right] p l_x^2 \,. \end{aligned} \tag{32}$$

Moreover, using the carry-over factors c, we are able to calculate continuous floor slabs, starting from case II for all plates, according to the Cross method, whereby we can also allow for the torsional rigidities of the beams. After having found the final edge moments we correct the positive moments in the slabs by means of the partial influence values  $\psi$  of the edge moments, being valid if each edge moment varies separately.

These values  $\psi$  were calculated in another way by Bittner (10) (his values  $\mu$ ). From our data for uniform and hydrostatic load we determined

<sup>(9)</sup> Timoshenko. Theory of Plates and Shells, 1940, p. 228.
(10) Bittner, Momententafeln und Einflussflächen für kreuzweise bewehrte Eisenbetonplatten, Vienne, 1938.

| Casa                                  |                                             |                                               |                            |                |                              | $\epsilon=1-2$                              |                                           |                                           |                           |                           | $\epsilon = 0.5 - 1$      |                                             |                                           |                                           |                                      |                                      |                                      |
|---------------------------------------|---------------------------------------------|-----------------------------------------------|----------------------------|----------------|------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Case                                  | m                                           | n                                             | $m_c$                      | n <sub>c</sub> | α                            | β                                           | α'                                        | Y                                         | $\lambda_x$               | w <sub>x</sub>            | $ ho_x$                   | β                                           | α'                                        | Υ                                         | λ <sub>y</sub>                       | ωy                                   | ρ <sub>y</sub>                       |
| Iu<br>IIu<br>IIIu<br>IVu<br>Vu<br>VIu | 1/8<br>1/24<br>9/128<br>1/8<br>1/8<br>9/128 | 1/8<br>1/24<br>9/128<br>1/24<br>9/128<br>1/24 | -1/12<br>-1/8<br>-<br>-1/8 |                | 1<br>1<br>1<br>5<br>2.5<br>2 | 7/6<br>1.21<br>1.20<br>1.26<br>1.22<br>1.23 | 1<br>0.91<br>0.94<br>5.22<br>2.53<br>1.94 | 2<br>0.86<br>1.33<br>3.08<br>2.64<br>1.55 | 1.18<br>1.20<br>-<br>1.23 | 0.27<br>0.37<br>—<br>0.40 | 0.22<br>0.24<br>-<br>0.38 | 7/6<br>1.32<br>1.29<br>1.43<br>1.26<br>1.36 | 1<br>1.09<br>1.07<br>6.19<br>2.69<br>2.29 | 2<br>0.94<br>1.42<br>3.34<br>2.72<br>1.68 | 1.30<br>1.28<br>6.88<br>3.11<br>2.66 | 0.27<br>0.37<br>0.22<br>0.32<br>0.25 | 0.22<br>0.24<br>0.07<br>0.12<br>0.14 |

Table I

| Case | A     | В    | С     | D                                                                                                 | p |
|------|-------|------|-------|---------------------------------------------------------------------------------------------------|---|
| II.  | 0.057 | 0.25 | 0.057 | $\begin{array}{c} 0.004/\epsilon^{6} \\ 0.006/\epsilon^{5} \\ 0.05 \\ 0.033 \\ 0.018 \end{array}$ | 6 |
| III. | 0.08  | 0.19 | 0.08  |                                                                                                   | 5 |
| IV.  | —     | —    | 0.12  |                                                                                                   | 2 |
| V.   | —     | —    | 0.12  |                                                                                                   | 3 |
| VI.  | —     | —    | 0.08  |                                                                                                   | 4 |

TABLE II

| Case                                                 | m                                                    |                     | $m_c$                                      | $n_c$                  | $\epsilon=1-2$         |                                                      |                      |                      |                |                |      |                                                       |               |                 |
|------------------------------------------------------|------------------------------------------------------|---------------------|--------------------------------------------|------------------------|------------------------|------------------------------------------------------|----------------------|----------------------|----------------|----------------|------|-------------------------------------------------------|---------------|-----------------|
| case                                                 | "                                                    | n                   |                                            |                        | β                      | βα                                                   | α'                   | γ                    | $\lambda_{xu}$ | $\omega_{xu}$  | Pxu  | $\lambda_{xl}$                                        | $\omega_{xl}$ | P <sub>xl</sub> |
| I <sub>h</sub><br>II <sub>h</sub><br>VI <sub>h</sub> |                                                      | 1/8<br>1/24<br>1/24 | <br>1/12<br>1/8                            | <br>1/12<br>1/12       | $0.62 \\ 0.62 \\ 0.47$ | $\begin{vmatrix} 0.52 \\ 0.58 \\ 0.94 \end{vmatrix}$ | 0.78<br>0.84<br>1.92 | 1.76<br>0.82<br>0.80 | 0.50<br>—      | -<br>0.15<br>- | 0.01 | $\begin{bmatrix} - \\ 0.71 \\ 0.64 \end{bmatrix}$     | 0.25<br>0.04  | 0.21<br>0.60    |
| Case                                                 |                                                      |                     |                                            |                        | ε =                    | 0.5 — 1                                              |                      |                      |                |                | Ф    | 0 -9                                                  |               |                 |
| Case                                                 | β                                                    |                     | βα                                         | α'                     |                        | γ                                                    | $\lambda_y$          |                      | ω <sub>y</sub> | ρ,             | ,    | $_{1}=2$ $\varepsilon^{2}$ $_{2}=2$ $\varepsilon^{2}$ |               |                 |
| I <sub>h</sub><br>II <sub>h</sub><br>VI <sub>h</sub> | 0.62 Φ <sub>1</sub><br>0,67 Φ<br>0.09 Φ <sub>3</sub> | 0.1                 | 2<br>26 Ф <sub>2</sub><br>8 Ф <sub>2</sub> | $0.78 \\ 0.97 \\ 1.42$ | (                      | 1.76<br>0.88<br>1.14                                 | 0.124<br>0.175       |                      | 0.28<br>0.31   | 0.2            | З Ф  | 2== 2 s<br>3== 18                                     |               |                 |

TABLE III

| - M <sub>yc</sub>                                                         |                                 | Timoshenko              |                         |                         | Multiplier              |                         |                                                                  |  |
|---------------------------------------------------------------------------|---------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------------------------------------------------|--|
| Case                                                                      | II <sub>u</sub> IV <sub>u</sub> |                         | v <sub>u</sub>          | 11,,                    | IV                      | V <sub>u</sub>          | maraphet                                                         |  |
| $egin{array}{l} \epsilon = 0.5 \ \epsilon = 1 \ \epsilon = 2 \end{array}$ | 0.083<br>0.051<br>0.057         | 0.084<br>0.070<br>0.119 | 0.122<br>0.084<br>0.122 | 0.083<br>0.053<br>0.057 | 0.083<br>0.070<br>0.120 | 0.123<br>0.087<br>0.120 | $\left \begin{array}{c}ql_y^2\\ql_y^2\\ql_x^2\end{array}\right $ |  |

TABLE IV

values  $\omega$  and  $\varphi$  according to Bittner too for values  $\varepsilon = 0.5 - 2$ . It is evident that for uniform load e.g.  $\omega_y = -M_{ycv}$  and that  $\varphi_y = \frac{M_{ycv} - M_{yciv}}{M_{yciv}}$ , so that, in cases where this is easier, we can calculate a slab in this way too (11).

In table IV we compared the clamping moments  $M_{uc}$  according to our formulae with those according to Timoshenko (12) for cases  $II_u$ ,  $IV_u$  and  $V_u$  and  $\varepsilon = 0.5$ , 1 and 2.

## Résumé

Par une méthode approximative nous obtenons des formules simples et générales nous permettant de déterminer, avec une approximation suffisante, les moments fléchissants maxima positifs et négatifs. Ces moments ainsi déterminés, nous pouvons calculer les coefficients de transmission utilisés pour le calcul des dalles continues selon la méthode de Cross.

# Zusammenfassung

Durch ein Näherungsverfahren werden für die grössten positiven und negativen Biegungsmomente einfache allgemeine Formeln von genügender Genauigkeit erhalten. Mit den so berechneten Werten können die Uebertragungskoeffizienten bestimmt werden, die es erlauben, durchlaufende Platten auch nach dem Momentenverteilungsverfahren von Cross zu berechnen.

# Summary

By an approximative method simple general formulae have been obtained for the maximum positive and negative bending moments, which give more than sufficiently accurate results. From the data obtained in this way the carry-over factors were calculated, by which the bending moments in continuous floors may also be computed by the Cross method of moment distribution.

<sup>(11)</sup> These values  $\omega_y$  and  $\varphi_y$  have nothing to do with our values  $\omega_y$ ,  $\varphi_y$ , etc.

<sup>(12)</sup> Timoshenko, Theory of Plates and Shells, 1940, pp. 228, 206 and 213 resp.

# Leere Seite Blank page Page vide