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CII 2

The use of high-strength steel in ordinary reinforced and prestressed
concrete beams

Emploi de l'acier ä hautes resistances dans les poutres en beton arme
ordinaire et precontraint

Die Verwendung von hochwertigem Stahl in gewöhnlichen und
vorgespannten Eisenbetonbalken

P. W. ABELES D.sc. (vienna), m.i.struct.e., m.am.soc.ce.
Civil Engineer's Department, The Railway Executive, Eastern Region, London

Introduction
High-strength steel is not generally used in ordinary reinforced concrete because

of the danger of excessive Cracking with small extension of the concrete. For a long
time only mild steel was used and the permissible stresses were limited, but later work-
hardened deformed steel bars were introduced and higher steel stresses were allowed,
the extent of cracking being limited because of better bond conditions obtained.
Piain bars have been excluded mainly because of the very smooth surface. The
author had the opportunity of investigating the use of piain high-strength steel bars
in connection with spun-concrete poles 1 and ordinary rectangular beams 2 which
showed limited width of individual cracks, because owing to good bond a great
number of fine cracks developed. Further tests on spun-concrete tubulär beams 3

indicated that the concrete tensile zone co-operates greatly up to failure, in spite of
the development of cracks. The resistance moment of such slightly reinforced beams
was so high that the nominal steel stress, computed for this resistance moment and a
lever arm equalling the depth, considerably exceeded the strength of the work-
hardened steel used. Extensive tests carried out by Dr. Hajnal-Konyi 4 on beams
reinforced with work-hardened Square twisted bars in 1942/43 proved that the füll
strength of such bars could be reached at failure (and not as previously assumed only at
the yield-point stress) when the size of the bars was below -1 in. (1-25 cm.). In these
tests even a nominal stress in excess of the strength of the steel was obtained. Further
tests by Dr. Hajnal-Konyi5 showed that an increase in ultimate resistance approach-
ing the ultimate strength of cold-worked steel is possible also with bars of larger size

provided that an increased bond resistance by surface patterns is ensured.

1 For references see end of paper
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In ordinary reinforced concrete, no use has yet been made of the füll strength of
high-strength steel. With prestressed concrete, wire of extraordinary high-strength
properties has been introduced and there has been no objection to permitting high
steel-stresses when, under working load, only compressive stresses occur, as is the
case with "füll" prestressing, because any possibility of cracking is definitely avoided.
The use of such high-strength wire became particularly advantageous when it was
realised that losses of prestress, except that due to the creep of the steel, are inde-
pendent of the steel stress and depend only on the magnitude of the concrete
prestress, shrinkage and creep. The ultimate load conditions of prestressed concrete
were rarely investigated. However, it has been realised that they are also of import-
ance and must be considered. In the tests5 also the use, as reinforcement, of thin
untensioned wire of very high strength, as preferably used in prestressed concrete,
was investigated and it was found that approximately the same ultimate resistance
can be attained as when the beam is prestressed. This shows that an investigation
of the use of high-strength steel is possible on general lines for ordinary reinforced
and prestressed concrete.

Cracking
It was intended to investigate in the present paper not only the ultimate resistance

of work-hardened steel and high-strength wire in concrete beams but also the
behaviour of such structures generally. However, in view of the wide field, the
question of cracking will be only briefly discussed, while the main part of the paper
is devoted to ultimate load conditions.

With regard to cracking, reference may be made to the publications by Professor
R. H. Evans,6 Dr. F. G. Thomas 7 and the author.8 In reinforced-concrete beams,
cracks become visible at a bending moment at which the computed bending tensile-
stress in a straight-line distribution for a homogeneous material reaches the so-called
modulus of rupture (bending tensile strength). This nominal stress depends on the
tensile strength and plasticity of the concrete and on the shape of the cross-section. It
may vary between 500 and 1,000 lb./in.2 (35 to 70 kg./cm.2) for high-strength concrete.
If prestressing is applied, this stress seems to be higher than in ordinary reinforced
concrete of the same properties but it would appear that actual cracking commences at
the same State, the cracks being invisible at first to the unaided eye. Professor Evans
has shown 6 that by measurements with a high-powered microscope fine cracks of a

depth of 1/20 in. (1-25 mm.) and a width of 1/15,000 in. (1/600 mm.) may be detected
when the unaided eye does not notice cracking. In a recent publication 9 results of
investigations by Wenzel and Suhrmann were shown, according to which the intensity
of the transmitted pulse was measured by supersonic methods. A reduction of intensity

was already noticed at 40% of the load at which cracks became visible, and at the
latter load only 40% of the intensity was transmitted. The same investigations also
showed that the intensity was reduced to zero long before failure occurred. This
method of measurement is based on the fact that even a very narrow air-filled crack
reflects the ultrasonic pulse almost completely, and thus a reduction in intensity
transmitted indicates the occurrence of cracks. However, when comparing the
results mentioned with the actual strength properties, it would appear that such fine
and very shallow invisible cracks do not affect the strength properties. With increased
prestress the State at which cracks become visible may be further delayed, but com-
mencement of cracking can be inferred from the load-deflection line, even if the cracks
are not visible, as was shown in the tests.10
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From the author's paper 8 it is seen that cracks not exceeding 0-01 in. (0-25 mm.)
can be considered as harmless from the point of view of corrosion. With concrete
reinforced with ordinary mild steel designed in accordance with the permissible
stresses, cracks of even greater width may occur if the concrete is not cured and the
influence of shrinkage is great, which is often the case. If the concrete is vibrated a
much denser material is obtained and the danger of corrosion is reduced. When
considering only the State of cracking, high-strength steel could be used provided the
bars were of relatively small cross-section or increased bond resistance were ensured
by surface patterns on the reinforcement; even piain high-tensile wire might be used.
Nevertheless, it does not seem advisable to use piain high-strength wire in view of the
great deflection of such members. By prestressing the entire reinforcement or part
of it, cracking under working load can be avoided altogether or its extent limited to a
desired degree. For example, it is possible to design a structure in such a way that
under ordinary (dead) load no tensile stresses occur and thus any cracks close entirely,
while under working load cracks may temporarily open up. As long as this loading
is not sustained longer than a certain period, these temporary cracks can be ignored.
In view of the author's investigation,8 even visible fine cracks are harmless with regard
to corrosion, but where heavy impact takes place the occurrence of cracks should be
avoided altogether unless further investigations have proved that such impact is harmless.

In tests 10 it was shown that cracks in prestressed beams with bonded wires
close completely on unloading even if the failure load is approached. Advantage
can be taken of this great resilience by providing a prestressing force of such
magnitude that a considerable ränge is obtained between noticeable deflection and cracking
and failure, as suggested by the author in his paper n and embodied in Appendix 2 of
the "First Report on Pre-stressed Concrete." 12

Reference may be made to recent fatigue tests 13 for British Railways carried out
at Prof. Campus' Laboratory in Liege on partially prestressed composite members
with tensioned and untensioned wires. These members were tested in a cracked
State. In one case one million repetitions of loading were applied in a ränge cor-
responding to 100 lb./in.2 compressive stress and approximately 600 lb./in.2 nominal
tensile stress (7 and 42 kg./cm.2 respectively); after this fatigue test the cracks became
entirely invisible. In a second case three million repetitions were applied and after
each million the loading was increased so that for the third million nominal tensile
stresses of approximately 1,000 lb./in.2 (70 kg./cm.2) occurred; after this test very fine
cracks were visible. It is noteworthy that just before completion of the third million
repetitions, two tensioned wires fractured in gaps provided for affixing the gauges;
nevertheless the maximum calculated ultimate resistance was reached at a static
failure test, in spite of the previous fatigue loading, as discussed later (see Table VII—
slab S2).

Ultimate resistance
The elastic theory is quite suitable for working-load conditions but does not agree

with failure conditions. The author showed in 1935/7 x>14 that with ordinary
reinforced concrete for various percentages of reinforcement quite different factors of
safety are obtained when the design is based on permissible stresses. If cases are
excluded at which failure occurs owing to shear or slipping of the steel, two cases must
be distinguished, i.e. under-reinforced beams when failure is primarily due to the steel
(either fracture or excessive elongation of steel followed by crushing of the concrete),
and over-reinforced beams where failure is due to crushing of the concrete at a State
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when extension of the steel is relatively small and no warning is given of imminent
failure. Some of the special methods which were suggested a long time ago have been
discussed by Prof. R. H. Evans,15 Dr. K. Hajnal-Konyi16 and the author.1' 14>17 The
following names and dates may be mentioned: L. J.-Mensch (1914), H. Kempton-
Dyson (1922), F. Emperger (1931), Prof. F. Stüssi (1932), Dr. F. Gebauer (1933),
Dr. C. Schreyer (1933), S. Steuermann (1933), Dr. E. Bittner (1935/6), Prof. R. Sauger
(1936), Charles S. Whitney (1937), Kenneth C. Cox (1941), Prof. V. P. Jensen (1943)
and R. H. Squire (1943). In addition to these methods three further suggestions may
be mentioned, e.g. those of Prof. A. L. L. Baker,18 Mr. J. W. King 19 and Prof. Hjalmar
Granholm.20

Professor R. H. Evans has shown in his paper 15 that there is little difference in the
results of the various methods, and it seems therefore most advisable to employ the
simplest Solution. All methods are only approximations, though it is claimed by
some proposers that they have presented exact formulae based on strain consideration.
However, it must not be forgotten that there is a great variety in the behaviour of
concretes of different mixes, and practically any property may be obtained.14 Whitney
has shown21 that the resistance stress at failure Q Mm/(b d2) approximates to
f'c/3, where/'c is the cylinder strength if/'c exceeds 2,500 lb./in.,2 while for lower values
of f'c higher values apply for Q/f'c. ¦ Whitney suggested a rectangular compressive
distribution of a stress 0-85 f'c balancing the ultimate steel resistance. Kenneth C.
Cox 22 has modified this formula by introducing the entire cylinder strength instead
of 0-85/'c for the rectangular stress distribution; but Whitney stated in the discussion

that this applied only if the cylinder strength
was obtained from specimens differing in size
from the Standard cylinder. Prof. Evans, in
his paper,15 has come to the conclusion that
the prism strength with high strength values
approaches the cube strength and has introduced
the cube strength for the compressive stress.

Fig. 1 shows the results of Whitney's and Evans'
investigations. The author, who took part in
the discussion on these papers,21- 22 has used
stress distributions according to Cox in his pub-
lications 23> 24> 25 when dealing with ultimate
load conditions, but would like to modify this
method slightly in the following paragraphs.

The magnitude of the maximum compressive stress c,„, as shown in fig. 2(a),*
depends mainly on the strength and plasticity of the concrete used. It will be appre-
ciated that this measure could only be considered as a strength value if this strength
were obtained from specimens of definite size. Take, for example, prisms; quite
different sizes are being used with the consequence of different strength values. Thus
the stress cm cannot be taken as a strength value; but as a stress it may be considered
as dependent on the strength; e.g. it can be assumed that c„,=G cu, where cu is the
cube strength and G is a coefficient generally varying between 0-6 and 0-8, but c,„
may also in certain circumstances equal the prism strength cp. The second modifica-
tion of the Whitney method consists in the assumption that the maximum equivalent
depth of the rectangular stress-distribution is half the depth d, resulting in
Mmox=0-375 bd2cm. If G is taken as 0-6 a value of Mmax=0-225 bd2cu is

* In fig. 2, the formulae written with the Symbols used in German-speaking countries are shown
in parentheses.

WF*

030 Evans Cr

equals cylinder strength

---[¦-)-Cmis cube-strength

Sfrengffi ofconcrete
6000 W/h2

Fig. 1
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obtained, as suggested by the author 25 and introduced in the "First Report on
Prestressed Concrete." 12 Preliminary investigations have proved that this assumption
agrees very well with test results, as may be seen from the Charts, figs. 6 and 7.
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Fig. 2 shows the stress distribution at failure for (ö) an under-reinforced section
and (b) for balanced design, including formulae for balancing the ultimate resistances.
The percentage of reinforcement for balanced design p is determined by the relation
p=0-25jv=50cm/tu, where v=tu/200cm; tu is the ultimate steel-strength (in certain
cases it should be replaced by ty, the yield-point stress), and cm is the maximum
concrete stress. The stress Q Mml(bd2) due to maximum bending moment Mm is

investigated with regard to cm and /„. The stress-ratio R=Q/cm, obtained from the
test results, can be compared with the value 2vp(\ — vp) obtained from the force
equilibrium for under-reinforced beams. If R is greater than 2vp{\ — vp), the
calculation gives safe values. For over-reinforced beams (p >p) the theoretical value is
0-375. Similarly the utilisation of the steel can be investigated by Computing
J= 100 Ql(tu -p{\ — vp)); the theoretical value is unity for under-reinforced sections and
p/p for over-reinforced sections. The steel strength is fully utilised if J>\ or J>p/p,
where p >p, while lower values of J indicate that füll use is not made of the steel
strength. J represents, in fact, the ratio /„,//„, were tm is the steel stress in a cracked
section calculated for the maximum bending moment. When the values for /
obtained from test results are greatly in excess of the theoretical values, it must be
assumed that the concrete tensile zone co-operates in spite of its interruption by
cracks. In such a case the stress distributions according to fig. 2 would have to be
modified by considering an average concrete tensile resistance, as, for example, has
been suggested by the author in the discussion to Cox's paper.22

These formulae have been investigated for a number of tests on prestressed and
ordinary reinforced concrete beams, the cross-sections of which are shown in figs. 3

and 4 respectively. Fig. 3(a) relates to unpublished tests carried out by Stott at the
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University of Leeds and fig. 3(b) to similar tests carried out by Revesz at the Imperial
College, London. The author has obtained the data shown in Tables I and II from
Profs. R. H. Evans and A. L. L. Baker respectively, to whom as well as to Messrs.
Stott and Revesz he expresses his thanks. The test results are to be discussed in more
detail in theses.

The results of published Swiss tests,27 omitting beam II reinforced with mild steel,
and those of the Brixton School ofBuilding 28> 29 have been investigated, cross-sections

Table I
Data obtained from Prof. R. H. Evans regarding tests carried out by Mr. J. P. Stott

at the University of Leeds. (Cross-section, see fig. 3(a); span 10 ft. for beams
1-17 and 3 ft. 4 in. for beam 18; loading at third points.)

b d Cu* tu
Wires t FailureJ

moment
Mark top bottom „ Mm §

bd?cu

in. lb./in.* tons/in.2 number in.-tons

1 2-5 813 7,000

140

11 45 1360 0-264

2 2-5 8-21

7,430

9 36 174-6 0-321

3 2-5 813 8 31 152-6 0-285

4 2-63 813 6 27 147-2 0-271

5 2-56 8-13 8 32 146-8 0-269

6 2-56 8-23

9,100

120

8 31 126-4 0189

7 2-56 812 8 29 123-4 0185

8 2-53 80 7 27 119-4 0179

9 2-59 81 7 25 107-4 0161

10 2-50 8-25

8,260

9 35 1520 0-250

11 2-60 8-26 9 33 149-8 0-247

12 2-56 8-20 10 39 164-4 0-271

13 2-56 8-19 10 37 152-4 0-251

14 2-50 8-13 11 44 180-4 0-297

15 2-56 8 06 11 42 154-8 0-255

16 2-50 806 10 41 164-4 0271

17 2-50 806 10 39 164-6 0-272

18 2-50 806 10 39 1520 0-254

* Concrete strength on 4-in. cubes.
t All wires were of 008 in. diameter; initial prestress for the individual beams varying between

76-6 and 81 -7 tons/in.2
t The bending moment, due to dead load, of 1-7 in.-tons must be added to these values.
§ These values include the bending moment due to dead load of beam and the influence of the

residual tension in top steel at failure.
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Table II
Data obtained from Prof. A. L. L. Baker regarding tests carried out by Mr. S. Revesz

at the Imperial College of Science in London. (Cross-section, see fig. 3(b); span
14 ft.; loading at third points.)

Group

b* d d' et
Number

of
Wires %

Pili Failure*j
moment

At failure

Mark
in. lb./in.2

i

tons/in.2 in.-tons
Strain A'i Stress A't
Strain At Stress At

K

la
Fig.
3(6)i

300 503

0-55

7,840 8
83-58

to
84-44

38-56

—

A 2-92 4 61 7,820

12

49-42

B 2-91 4-85 7,820 55-3 —

E 2-88 500 7,650 0 51-38

H 2-93 4-77 7,840 52-4 57-82

D
Ib

Fig.
3(6)ii

4-25

6-92

316

4,010 12 84-44 74-40

—C 6-72 3,090 12 84-44
92 04

—

605 2§ 45-8

F

II
Fig.
3(6)iii

21-5

7-74 4-00 2,280

12

0 107-88 0-407 0-567

M 6-96 2-56 2,240
92

93-32 0195 0-702

L 7-46 3-35 6,560 107-88 0-42 0-81

G 701 2-62 5,560 52-4 99-48 0-304 0-637

J 7-78 3-25 3,720 8 84-4 6914 0-29 0-76

* The width b in Group la is obtained if the co-operation of the top reinforcement A't is taken
into account, based on strain measurements.

t Concrete strength on 6-in. cubes.
j The number of wires relates to the bottom reinforcement. In each beam two top wires were

provided. The wire is throughout 12-gauge (area per wire 00087 in.2) of a strength of 132 tons/in.2
and bonded except for beam C (see next note).

§ In addition to twelve bonded wires, as speeified above, two non-bonded wires 0-2 in. diameter of
a strength of 107 tons/in.2 were provided.

|| The initial prestress in the two top wires was equal to that in the bottom wires. The prestress
was transferred when the concrete strength was approximately 5,500 lb./in.2

*J Failure in all cases oecurred owing to fracture of tensile wire, except for beams C and E (crushing

of concrete) and J (horizontal shear).

being shown in figs. 3(c) and 3{d) respectively. Furthermore, two types of slabs

aecording to fig. 3(e) are included as tested for British Railways.13 Particulars of the
slabs S I and S II have not yet been printed but were given by the author in a
lecture.13 These tests relate to 9-ft. long members loaded as cantilevers at both sides

9 in. away from the ends and supported at two points each 9 in. from the centre. The
tensioned reinforcement consisted of eight wires 0-2 in. diameter placed in groups of
four in grooves which were later filled with cement mortar, Magnel-Blaton anchorages
being provided at the ends. Each slab S I and S II contained four untensioned wires
in the compression zones and four additional untensioned wires were provided in the
tensile zone of S II. It may be pointed out that S 2 also contained untensioned wires,
as proposed by the author when suggesting partial prestressing.23»30
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Table III
Tests of Stott, Leeds (see Table I)

Mark
P Q

V tul
200fm* pIp R 2vp(\-vp) J

o/,o lb./in.2

1 111 1,850

0-304

1-42 0-377 0-428 0-775

2 0-875 2,320 1-064 0-459 0-340 1-17

3 0-762 2,070 1028 0-407 0-356 113

4 0-630 1,900 0-764 0-387 0-309 j 118

5 0-768 1,940 0-956 0-384 0-359 105

6 0-735 1,640

0-202

0-620 0-270 0-261 0-985

7 0-697 1,645 0-592 0-264 0-252 103

8 0-667 1,658 0-560 0-255 0-240 1085

9 0-595 1,420 0-504 0-230 0-220 101

10 0-85 2,016

0-232

0-79 0-356 0-317 1-22

11 0-77 1,900 0-71 0-352 0-294 1 12*

12 0-93 2,150 086 0-387 0-338 1-27

13 0-98 2,000 0-82 0-359 0-326 106

14 108 2,470 10 0-425 0-375 1125

15 102 2,090 0-944 0364 0-360 101

16 102 2,280 0-944 0-387 0-360 111

17 0-97 2,280 0-900 0-385 0-348 1-25

18 097 2,100 0-900 0-363 0-348 1-15

* Cm 0-7 Cu.

Beams A,B,E,HiK (E not prestressed)
I i n n.r Beams E,G,J,LiM0 -1 Beams DiC /r ',

j, j[ fr notprestressed)
i'k'k' I-Z1-5"

A\

T"
6'

1
m

-v

U=

07)
^T

A't

Oü)̂
7

d'

T£STS IMPERIAL COLLEGE -fo-
1949/50

Fig. 3(6)
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Table

Tests of Revesz, Imperial

ABELES

IV

College (see Table II)

Mark
P Q

>'t pIp R 2vp(l-vp) J
0
/o lb./in.2

K 0-461 1,140

0-314

0-579 0-243 0-248 0-978

A 0-776 1,780 0-976 0-378 0-369 1025

B 0-740 1,810 0-932 0-384 0-355 1084

E* 0-724 1,595 0-322 0-932 i 0-348 0-357 0-976

H 0-747 ' 1,940 0-314 0-940 0-356 0-359 1145

D 0-355 818 0-613 0-87 0-339 0-341 0-996

C 0-605 1,160 0-740 1-764 0-614 0-493 1-25

F* 00714 208 1078 0-288 0148 0136 104

M 00835 229 1097 0-366 ' 0171 0167 102

L 0079 231 0-375 0118 0059 0057 102

G 00815 239 0-443 0-145 0072 0070 103

J 00507 143 0-660 0133 i 0065 0064 101

* Non prestressed. f Cm =0-6 Cu.

Table V

Swiss tests (Section, see fig. 3(c))

p Q
V P/p R 2vp(\-vp) J

Cm t"

/o lb./in.2 lb./in.2

I

0-5

1,175
0-233 0-446

0-235 0-206 1-14
5,000

III 1,050 0-210 0-200 102 233,000

VII 995 0-256 0-518 0-221 0-215 104 4,500

IV

0-394

850
0-219 0-346

0-170 0158 108
5,000

V 800 0160 0-158 102 219,000

VI 605 0-274 0-432 0151 0193 0-785 4,000

VIII 0-222 618 0-275 0-244 0-124 0114 108 5,000
275,000

IX 00975 296 0-306 0-119 0066 0052 114 4,500
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Table VI

Tests at Brixton School of Building (Section, see fig. 3(d), r„= 138 tons/in.2)

881

Mark
P Q

V pIp R 2vp'\-vp) J
Cm

/o lb./in.2 lb./in.2

1 0-22 641

0-386

0-340 0-160 0155 103

2 0-29 402 0-448 0200 0199 101

3A 1-58 885 2-40 0-495 0-480 103

4' 0-60 1,432 0-928 0-358 0-356 101 4,000

4A 0-47 1,212 0-726 0-303 0-297 102

6 0-27 786 0-418 0-201 0-187 105

8*
0-22

461
0-34

0114
0155

0-735

9 625 0156 100

I*
0-224

433
0-341 0-306

0096
0141

0-68
?X 6,800

11 765 0169 1 23

111 0-50 1,390 0-288 0-576 0-256 0-247 105
?x 8,040

* Wires non-bonded.

Table VII

Tests of British Railways (Section S2, see fig. 3(e); Section S I and S II, see fig. 3(e))

Mark
P Q

V pIp R 2vp(\-vp) J
Cm tu

Notes
/o lb./in.2 lb./in.2

S2 0-483 942 1-735 0-334 0153 0153 1005 6,150 213,000 After fatigue
loading

SI 105 1,866

0-224

0-940 0-373 0-359 1037

5,000 224,000

Eight tensioned
wires 0-2 in. dia.

Sil 1-57 2,653 1-412 0-532 0-360 1-03 Eight tensioned
plus four
untensioned wires 0-2
in. dia.

CR.—56
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Table VIII
Tests on spun-concrete tubes (Section, fig. 4(a), ?„=65,000 lb./in.2, c„,=8,000 lb./in.2)

Mark
P Q

V pIp R 2vp{\-vp) J Notes
/o lb./in.2

9b 0-38 445

00406

006 0056 0030 1-83

7a 1-26 910 0-20 0114 0097 1175 Tubulär
Beams

10b 1-92 1,280 0-31 0160 0144 1115

13b 0-61 620 010 0078 0049 1-605 Inverted
tubulär
T. beams14a 215 1,550 0-35 0194 0160 1-215

Table IX
Tests on rectangular beams, Vienna (Section, fig. 4(b))

P Q
V pIp R 2vp{\—vp) J

ty Cu*

0//o lb./in.2 lb./in 2

22 0-38 502 00850 0128 0-0895 00619 1-44 95,000

23 0-84 911 00775 0-26 0163 0122 1-34 87,000 8,400

24 1-47 1,375 0-0811 0-476 0-246 0-210 117 91,000

4 0-39 378 0-346 0-54 0-280 0-234 1175 95,000
2,060

5 0-84 480 0-316 1056 0-373 0-389 0-85 87,000

Cm=T Cu.

Table X
Tests of Dr. Hajnal-Konyi, 1942 (Section fig. 4(c))

Mark
P Q

V pIp " R 2vp'\ — vp) J
Cp tu

Notes
/o lb./in.2 lb./in.2

20 0-214 193-8 0-208 0-174 0108 0083 1-25 1,800 75,000 Twisted
bar, 5-
gauge

25 119 647 0184 0-832 0-323 0-327 0-945* 2,000 73,600 Twisted
bar,
i-in.27 119 811 0143 0-680 0-324 0-282 1-21 2,500 71,500

33 0-353 310
0-20

0-282 0155 0131 118
2,000 80,000

•

Twisted
bar, 5-34 0-562 482 0-450 0-241 0199 1-23

31 0-750 594 0-600 0-297 0-255 116

32 0-938 725 0-670 0-362 0-304 119

below 1-0, since bars under-twisted
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Fig. 4 relates to ordinary reinforced concrete; fig. 4(a) refers to the author's tests

on spun-concrete tubulär beams,3 fig. 4(b) to the author's tests on rectangular beams,2
and figs. 4(c) and 4(d) to Dr. Hajnal-Konyi's tests 4>5 respectively.

Table XI
Tests of Dr. Hajnal-Konyi, 1951 (Section, fig. 4(d))

Mark
P Q

V pIp R 2vp(l-vp) J
Cu tu ly

Notes
% lb./in.2 lb./in.2

3H 0-608 396
00873 0-213

0096
0100 0-95

6,200
72,130 — Square

00760 0185 0088 109 — 62,940 bar, i in.
dia.

11H 0-584 447
01043 0-244

Olli
0115 0-97

6,050
84,220 — '

Tor steel

00875 0-205 0097 111 — 70,780
1 in. dia.

12L 0-505 417
01736 0-393

0170
0-177 0-97

3,230
85,300 —

01490 0-337 0154 110 — 73,200 Indented

12H 0-570 461
01168 0-266

0121
0124 1015

5,760
86,000 — bar 1 in.

00997 0-227 0107 1165 — 73,700

15H 0-580 456
01113 0-258

0121
0121 100

5,890
83,600 — American

00935 0-217 0103 119 70,300 type,
twisted
1 in.

20L 0178 456 0-478* 0-340 0163 0155 105 3,990*
268,000 —

High-

20H 0180 491 0-355* 0-256 0130 0120 109 5,400* wire

Cm =0-7 Cu.

The investigation of these test results with regard to the presented formulae is
shown in Tables III-XI. It is obviously of greatest importance to select the right
value cm when calculating v, assuming that /„ is accurately known, which will be the
case generally. In the tests in fig. 3(a) a ratio G=cm/cu=07 has been taken into
account, while with regard to the tests in fig. 3(b) G=0-6 is still rather on the low side.

If the wire fractures in a certain case, it must be expected that J is not less than unity.
Hence for J=\, the corresponding value v and thus cm can be computed, resulting

in cm=xp—-T- — which results for beam K, in cm=3,980 lb./in.2 which
zUO \tup— ItXJ \J)

would have corresponded to a ratio (7=0-515 instead of 0-6 as taken into account.
In the case of the Swiss tests, the concrete strength was not known accurately, but
from the fact that in specimen III the wires fractured and the steel strength was given,
it was possible to assume cm. In the Brixton and British Railways tests the published
prism strength values have been taken into account. For the spun-concrete tubulär
beams c„,=8,000 lb./in.2 has been assumed in view of the extraordinary strength
properties of these specimens and the ultimate strength of the Isteg steel has been
considered, although there was a distinct yield point of this reinforcement. Nevertheless
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an extraordinary excess over unity was obtained for the ratio /. The high-strength
steel used in the rectangular beams tested by the author had a distinct yield point, and
this stress and two-thirds of the concrete cube strength were taken in analysing the
results. In Dr. Hajnal-Konyi's tests the published prism strength values have been
used, except for 20L and 20H, when 70% of the cube strength as with the Stott tests
has been used. For the specimens (fig. 4(d)i) the ultimate strength and the yield point
stress have been investigated. The examples (fig. 4(d)ü) were not included in the
paper 5 but were given during its presentation and published in Magazine of Concrete
Research in March, 1952.

The results evaluated in the Tables III-XI have been plotted in charts figs. 5-7.
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Fig. 5 shows the relation between the percentage p and the stress Q=Mml(bd2). In
addition to test results theoretical values have been plotted for /„=80,000, and 224,000
and 300,000 lb./in.2, and in each case two concrete values have been distinguished:
cm=2,000 and 6,000 lb./in.2 According to fig. 1 the value for balanced design for a
low stress, such as c„,=2,000 lb./in.2 would be rather higher than c„,/3. In figs. 6 and
7 prestressed and ordinary reinforced concrete are separated. Fig. 6 indicates how
far the concrete strength is utilised, while fig. 7 shows the exploitation of the steel
strength in exaggerated presentation, a difference of 5 % appearing as a great deviation.
The chart fig. 6 has been plotted in such a way that the abscissa represents 2vp(l — vp),
while the ordinate is R; thus a straight line between the origin and R=2vp(l — vp)
0-375 is obtained. In fig. 7 the values of / are plotted against p/p. A very good
agreement between the minimum values indicated in figs. 6 and 7 and the actual
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values is seen, and it can be concluded that safe values are obtained if G is assumed
as 0-6.

However, there are a few points which require further discussion. The slab S II
of the British Railways and the beam C of the Imperial College show very high values
of R, much exceeding the expected limit of 0-375. In the first case the reason is that
the compressive reinforcement consisting of four untensioned high-strength wires has
not been taken into account in Table VII. However, when considering a nominal
width of 10 in., corrected values are obtained as plotted in figs. 6 and 7 in addition to
the original values, indicated by brackets. The values for beam C have been obtained
from cm=0-6x 3,090= 1,854 lb./in.2, a very low value, resulting in 7?=0-614, which
seems to be an impossible value and must be excluded. It must be assumed that
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the concrete strength was higher than stated in Table II. However, if a value
cm=3,000 lb./in.2 is taken into account, a quite reasonable value for R is obtained, as

seen from the diagram. It may be mentioned that this beam C contained bonded and
additional non-bonded tensioned wires. Apparently this co-operation is quite suc-
cessful, while the ultimate resistance is much less with beams with only non-bonded
wires, as seen from specimens 8 and I of the Brixton tests. The behaviour of beams
with non-bonded wires requires further study. Further tests have been carried out
at the Imperial College and it is hoped results will be available to enable the author
to Supplement this study. It may be added that Prof. R. H. Evans was probably the
first to point out the difference between the behaviour of bonded and non-bonded
wires.31

Like the two beams with non-bonded wires the beam VI of the Swiss tests had a

relatively low ultimate resistance. In this case the initial tensioning stress was about
50,000 lb./in.2 and only a small prestress may have remained effective after all losses
had taken place. However, this cannot be taken as an explanation for a reduced
ultimate resistance, since the present study has proved that beams with untensioned
high-strength wires (E and F of tests by Revesz and 20L and 20H of tests by Dr.
Hajnal-Konyi) reached approximately the same high values as prestressed beams.
Moreover there are two beams with lower prestress among the tests by Revesz, i.e.
G and H, which show no appreciable difference from the other results with high
prestress, although one approached the balanced design. It seems therefore reasonable
to exclude the test result VI of the Swiss tests. This may be also justified by the fact
that for this test the lowest cracking load was obtained, but it would be very important
for similar tests to be carried out to check this question.

It was previously mentioned that slab S2 was statically tested to failure after a
fatigue test extended over three million repetitions. It may be pointed out that
bonded 0-2-in. wire was provided and this test has proved the complete efficiency of
this wire, although it was considered from tests 32 that wire of such a large diameter is

not suitable. Apparently it depends greatly on the surface conditions, and the
British wire of 0-2 in. diameter is suitable.

In conclusion it can be said that the tests presented have proved that generally the
same conditions apply with regard to ultimate resistance to prestressed and non
prestressed members. The modified simple formulae for ultimate resistance have shown
a very good agreement with test values and when assessing the ultimate resistance safe
results are obtained if a low stress cm is taken, e.g. 0-6 cu. The two charts, figs. 6 and
7, permit the separate investigation of concrete and steel resistance. This investigation

is limited to bonded reinforcement and further research is necessary on the
behaviour of non-bonded tensioned steel. In this case a reduction factor of, say,
0-60 to 0-80 will have to be considered and particulars will be shown in a Supplement.
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Summary

The behaviour of concrete beams with high-strength reinforcement (including
work-hardened steel) is investigated on the basis of various test results. Cracking is
discussed and the resilience of prestressed concrete pointed out. Fatigue tests have
shown that cracks which opened one million times closed entirely on removal of the
load. The main study of the paper is devoted to ultimate load conditions. Formulae
for the design are employed which allow a simple assessment of the ultimate resistance.
These formulae are based on a rectangular stress distribution of the maximum
concrete compressive stress cm over a maximum depth of 0-5 d, resulting in a maximum
resistance Mmax=0-375 bd2cm. If this stress is taken as 0-6 c„, a safe approximation
of the ultimate resistance is obtained. The percentage for the balanced design p
amounts to 0-25/v, where v=/„/200 cm- The ultimate steel strength tu is normally
reached but must in certain cases be replaced by the yield:point stress -*,,. Three
Charts are shown for the various test results. One contains the stress Q M„/(bd2),
the other the stress-ratio R= Q/cm, and the third the stress-ratio J=tmjtu. This gives
a measure of the co-operation of the concrete tensile zone between the cracks and
indicates the quality of adhesion between steel and concrete. The investigation has
shown that the high-strength properties of steel and concrete can be fully exploited,
both in prestressed and ordinary reinforced concrete, provided that efficient bond is
ensured. If the reinforcement is not efficiently bonded, Mmax, Q, R, and J are
appreciably reduced and reduction factors must be considered.

Resume

L'auteur etudie, sur la base de divers resultats experimentaux, le comportement
des poutres en beton armees avec de l'acier ä hautes resistances, y compris l'acier
ecroui. II aborde sommairement la question de la formation des fissures et attire
particulierement l'attention sur l'elasticite du beton precontraint. Des essais de
fatigue ont montre que des fissures qui s'ouvraient sous une charge appliquee 1 000 000
fois se refermaient completement au moment de la suppression de la charge.

La partie principale du present rapport traite de la question de la rupture elle-
meme. L'auteur emploie des formules simplifiees pour la determination approchee
du moment de rupture. Ces formules sont basees sur une repartition rectangulaire
de la contrainte maximum calculee dans le beton abmax sur une hauteur maximum de
0,5 h, ce qui donne un moment maximum Mmax=0,375 bh2abmax. En admet-
tant pour obmax 60% de la resistance de cube W, on obtient pour le moment de

rupture des valeurs approchees du cöte correspondant ä la securite. L'armature
limite pour laquelle la rupture se produit par destruction soit du beton, soit de l'acier,
est definie par ^=0,25/v avec v=<jeB/200<Jbmax en designant par aeB la charge de

rupture de l'acier, qui doit etre ici remplacee dans certains cas par sa limite ecoulement
aeF.
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Trois diagrammes mettent en evidence les resultats fournis par les essais. Ces

diagrammes donnent:

la contrainte Q=Mmaxl(bh2)
le taux de contrainte R=MmaXl(bh2abmax)
le taux des contraintes dans l'acier J=aemax/^eB, c'est-ä-dire le rapport entre

la contrainte calculee dans l'acier, pour une section de rupture et la charge
de rupture de l'acier.

On obtient ainsi une mesure du degre de Cooperation entre le beton et l'acier,
entre les fissures, ainsi qu'une mesure de l'adherence entre ces deux elements. Les
recherches ici exposees ont montre que, sous reserve d'une bonne adherence, les

caracteristiques de resistance mecanique de l'acier et du beton sont pleinement
utilisees, aussi bien dans le beton arme ordinaire que dans le beton precontraint.
Si l'acier n'a pas une bonne adherence Mmax, Q, R et J sont reduits considerablement
et Putilisation des facteurs de reduction doit etre consideree.

Zusammenfassung

Das Verhalten von mit hochwertigem (einschliesslich verdrilltem) Stahl bewehrten
Betonbalken wird an Hand verschiedener Versuchsergebnisse untersucht. Die
Rissbildung wird kurz behandelt und es wird auf die Elastizität von vorgespanntem Beton
besonders hingewiesen. Ermüdungsversuche haben bewiesen, dass sich Risse, die
sich unter wiederholter Belastung 1 000 000 mal öffneten, geschlossen haben, sowie
die Last entfernt wurde. Der Hauptteil des vorliegenden Berichtes bezieht sich
auf den Bruchzustand. Einfache Formeln werden verwendet, die eine angenäherte
Bestimmung des Bruchmomentes ermöglichen. Diese Formeln sind auf eine
rechteckige Spannungsverteilung der grössten rechnungsmässigen Betonspannung ab{max)

aufgebaut, die sich maximal auf die halbe Höhe h erstreckt, was ein Grösstmoment
AfmoJt=0-375 bh2abmax ergibt. Wenn abmax als 60% der Würfelfestigkeit W
angenommen wird, dann ergeben sich Annäherungswerte für das Bruchmoment,
die auf der sicheren Seite sind. Die Grenzbewehrung, bei welcher der Bruch
entweder durch Beton- oder Stahlzerstörung erfolgt, ergibt sich als 0-25/v,
v=CTj.B/200 ctbimax), wobei creB die Festigkeit des Stahles in einzelnen Fällen durch
die Streckgrenze aeF zu ersetzen ist. Drei Diagramme zeigen die Ergebnisse der
Auswertung der Versuche. Eines enthält die Spannung Q=Mmaxl{bh2), das andere
das Spannungsverhältnis R=Mmaxl(bh2abmax) und das dritte das Verhältnis der
Stahlspannungen J=oemaxloeBruch, d.i. das der rechnungsmässigen Stahlspannung
für einen gerissenen Querschnitt und der Stahlfestigkeit. Dies stellt den Grad der
Zusammenarbeit zwischen Beton und Stahl zwischen den Rissen dar und ist ein Mass
für die Haftung zwischen Beton und Stahl. Die vorliegende Untersuchung hat
bewiesen dass—gute Haftung vorausgesetzt-die hohen Festigkeitseigenschaften von
Stahl und Beton sowohl beim gewöhnlichen Eisenbeton als auch beim vorgespannten
Beton voll ausgenützt werden. In dem Falle, dass keine zuverlässige Haftung der
Bewehrung gesichert ist, werden Mmax, Q, R, und J wesentlich kleiner und
Reduktionsfaktoren müssen eingesetzt werden.
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