Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

Band: 8 (1968)

Artikel: Analysis of bridge structure comprising two continuous curved main box

girders, whose supports are staggered or not, and that are connected

by cross beams having flexural but not torsional rigidity

Autor: Vandepitte, D.

DOI: https://doi.org/10.5169/seals-8814

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 28.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Analysis of Bridge Structures Comprising Two Continuous Curved Main Box Girders, Whose Supports are Staggered or not, and That are Connected by Cross Beams having Flexural but not Torsional Rigidity

Calcul des structures comprenant deux poutres caisson maîtresses continues et courbes, à supports décalés ou non, et reliées par des traverses sans rigidité torsionelle

Berechnung von Brücken mit zwei durchlaufenden, gekrümmten, kastenförmigen Hauptträgern, deren Auflager beweglich oder fest sind, und die mit biegesteifen, jedoch drillweichen Querträgern verbunden sind

D. VANDEPITTE Professor at the University of Gent

Assumptions

- 1) The structure behaves elastically.
- 2) The supports of the box girders are unyielding and the intermediate supports provide vertical reactions only.
- 3) The loads act on the two box girders.
- 4) The formula's for uniform torsion are valid. It is well known that the errors resulting from this assumption are small in the case of box girders.

The two main girders may or may not have the same number of spans. Their flexural rigidity EI and torsional rigidity GC may be variable. The flexural rigidity of the cross beams may be infinite or finite. If the distance a between the box girders varies, the rate of variation must be small enough for the transverse beams to be practically perpendicular to the girders. The supports of the girders may or may not coincide with the locus of the shear center of their cross sections, which we shall henceforth call the center line. The end supports may or may not allow flexural or torsional rotation of the ends of the box girders. The loads may act on or off the center line of the main girders.

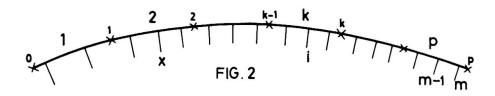
<u>Nodes</u>

In figure 1 each box girder is represented by its center line.

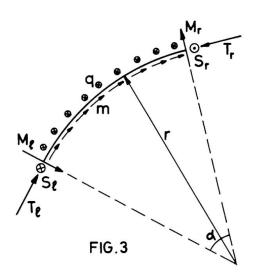
We first consider the box girder on the outside of the curve,

× support FIG.1

together with one half of each tie beam (fig. 2). Along its center line nodes are introduced: at each support, at each junction with a connecting beam, at the point of application of every concentrated external load or moment,



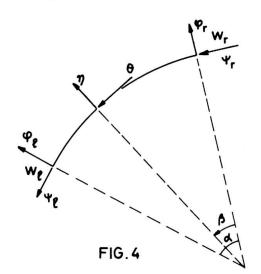
at the boundaries between zones of constant curvature, or of constant flexural or torsional rigidity, or of constant distributed load,



and at all points of the girder where it is desired to know the stress resultants or displacement components. Hence each girder element between two successive nodes has or is assumed to have a constant radius r (fig. 3) and constant rigidities EI and GC = $\frac{EI}{P}$, and it carries or is assumed to carry a uniform downward load q along its center line and a constant moment m (per unit length) about the center line. m is taken positive when it acts in the direction of the rotation of a corkscrew that moves forward in the direction of the arrow in figure 3.

Element transmission matrix

The forces at the left end of the element considered as a free body are the shear force S_ℓ , the bending moment M_ℓ and the torque T_ℓ . Similar forces act at the right



 T_ℓ . Similar forces act at the right end of the element. Se is considered positive when it acts downwards on the element, S_r when it acts upwards. The positive direction of the bending moments and torques is defined by the corkscrew rule, as is that of the rotations ϕ in the vertical plane tangent to the center line and Ψ in the plane perpendicular to that line, both rotations being represented in figure $^{\downarrow}$ by arrows perpendicular to the plane of rotation. The vertical (downward) displacements at the ends of the element are denoted by w_ℓ and w_r .

Statics provides the following relationships between the internal forces at the right end and at the left

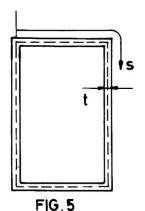
end of the element :

$$S_r = S_\ell + \alpha qr \tag{1}$$

$$M_{r} = M_{\ell} \cos \alpha - T_{\ell} \sin \alpha + S_{\ell} r \sin \alpha + r(qr - m)(1 - \cos \alpha)$$
 (2)

$$T_{r}^{1} = M_{\ell} \sin \alpha + T_{\ell} \cos \alpha + S_{\ell} r(1 - \cos \alpha) - r(qr - m) \sin \alpha + \alpha qr^{2}$$
 (3)

One obtains the bending moment M and torque T in the section defined by the angle β by replacing α by $\alpha-\beta$ in the expressions 2 and 3. The curvature η and the twist per unit length θ at the same point are given by $\eta = \frac{M}{ET}$ and $\theta = \frac{T}{GC} = \frac{\rho_T}{ET}$



with C given by Bredt's formula $C = \frac{4A^2}{\int \frac{ds}{t}}$ when

the box girder is monocellular (fig. 5 - A: cross-sectional area bordered by the center line of the girder walls).

Geometry, as applied to small angles and deflections, allows the following relationships between the vertical and rotational displacements at both ends of the girder element to be written:

$$\varphi_{\mathbf{r}} = \varphi_{\ell} \cos \alpha - \Psi_{\ell} \sin \alpha + \int_{0}^{\alpha} \cos \beta \cdot \eta \, \mathrm{r} \, \mathrm{d}\beta - \int_{0}^{\alpha} \sin \beta \cdot \theta \, \mathrm{r} \, \mathrm{d}\beta \\
= \varphi_{\ell} \cos \alpha - \Psi_{\ell} \sin \alpha + \frac{r}{EI} \int_{0}^{\alpha} \mathrm{M} \cos \beta \, \mathrm{d}\beta - \frac{\varrho_{\mathbf{r}}}{EI} \int_{0}^{\alpha} \mathrm{T} \sin \beta \, \mathrm{d}\beta \qquad (4) \\
\Psi_{\mathbf{r}} = \varphi_{\ell} \sin \alpha + \Psi_{\ell} \cos \alpha + \int_{0}^{\alpha} \sin \beta \cdot \eta \, \mathrm{r} \, \mathrm{d}\beta + \int_{0}^{\alpha} \cos \beta \cdot \theta \, \mathrm{r} \, \mathrm{d}\beta \\
= \varphi_{\ell} \sin \alpha + \Psi_{\ell} \cos \alpha + \frac{r}{EI} \int_{0}^{\alpha} \mathrm{M} \sin \beta \, \mathrm{d}\beta + \frac{\varrho_{\mathbf{r}}}{EI} \int_{0}^{\alpha} \mathrm{T} \cos \beta \, \mathrm{d}\beta \qquad (5) \\
\Psi_{\mathbf{r}} = \Psi_{\ell} + \varphi_{\ell} \sin \alpha - \Psi_{\ell} \mathbf{r} (1 - \cos \alpha) + \int_{0}^{\alpha} \sin \beta \, \mathrm{d}\beta - \int_{0}^{\alpha} \mathbf{r} (1 - \cos \beta) \, \mathrm{d}\beta \qquad (6)$$

Substituting the expressions of M and T into 4, 5 and 6, and performing the integrations, one finds three equations, which may be assembled with 1, 2 and 3 into the matrix equation

or
$$V_r = BV_\ell$$
, with (7)

$$b_{14} = \frac{r^2}{2EI} \left[(1+\beta)\alpha \sin\alpha - 2\beta (1-\cos\alpha) \right] \qquad b_{15} = \frac{r^2}{2EI} (1+\beta) (\alpha \cos\alpha - \sin\alpha)$$

$$b_{24} = \frac{r}{2EI} \left[(1-\beta)\sin\alpha + (1+\beta)\alpha\cos\alpha \right] \qquad b_{25} = -\frac{r}{2EI} (1+\beta)\alpha \sin\alpha$$

$$b_{34} = \frac{r}{2EI} (1+\beta)\alpha \sin\alpha \qquad b_{35} = \frac{r}{2EI} \left[(1+\beta)\alpha \cos\alpha - (1-\beta)\sin\alpha \right]$$

$$b_{16} = \frac{r^3}{2EI} \left[(1+\beta) (\alpha \cos \alpha - \sin \alpha) + 2\beta (\alpha - \sin \alpha) \right]$$

$$b_{26} = \frac{r^2}{2EI} [(1+\rho)\alpha \sin \alpha - 2\rho(1-\cos \alpha)]$$
 $b_{36} = -\frac{r^2}{2EI} (1+\rho)(\alpha \cos \alpha - \sin \alpha)$

$$b_{17} = \frac{r^3}{EI} \left[(1+\rho)(1-\cos\alpha - \frac{\alpha}{2}\sin\alpha)(qr-m) + \rho(1-\cos\alpha - \frac{\alpha^2}{2})qr \right]$$

$$b_{27} = -\frac{r^2}{EI} \left[\frac{1}{2} (1+\rho)(\alpha\cos\alpha - \sin\alpha)(qr-m) + \rho(\alpha - \sin\alpha)qr \right]$$

$$b_{37} = \frac{r^2}{EI} \left[(1+\rho)(1-\cos\alpha - \frac{\alpha}{2}\sin\alpha)(qr-m) + \rho(1-\cos\alpha)m \right]$$

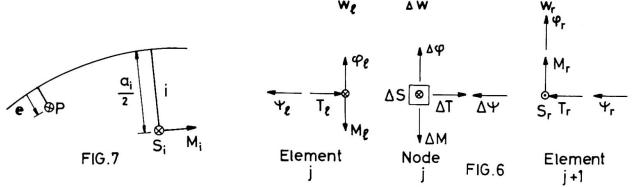
One finds the column vector V_{r} , made up of the displacement components and stress resultants pertaining to the right end of the girder element by premultiplication of the column vector V_{ℓ} pertaining to the left end by the element transmission matrix B.

Boundary vector and boundary matrix

A boundary vector L and a boundary matrix D are associated with each node at which an external load acts on the box girder. This applies in particular to the junctions of the girder with the tie beams, but not to its supports.

Discontinuities Δw , $\Delta \Phi$ or $\Delta \Psi$ in the displacement components w, φ and Ψ at the node may also be included in the vector

The positive directions of the Δ -quantities are shown in figure 6.



If the load consists of a downward force P acting with the eccentricity e (positive toward the center of curvature) with respect to the center line (fig. 7): $\Delta S = P$ and $\Delta T = Pe$. At the junction of the girder with the cross beam i: $\Delta S = S_i$ and

$$\Delta T = M_i + \frac{a_i}{2} S_i$$
 (S_i and M_i: shearing force and bending moment at mid span of the transverse beam i).

Denoting by Lj the boundary vector and by Dj the boundary matrix associated with the node j, that separates the girder elements j and j+1, and observing that the quantities on the right hand, resp. the left hand side of figure 6 are the components of the vector V_{j+1} , relating to the left end of the element j+1, resp. of the vector V_{jr} relating to the right end of the element j, one sees from considerations of geometry and equilibrium that

$$V_{j+1,\ell} = L_j + V_{jr}$$
.
Using equation 7, we obtain $V_{j+1,\ell} = L_j + B_j V_{j\ell}$ (9)

Span transmission matrix

Numbering 1 to n the elements in any given span k of the box girder (fig. 8), we may write $V_{nr} = B_n V_{n\ell}$ and then repeatedly apply equation 9:

FIG. 8 repeatedly apply equation
$$V_{nr} = B_n V_{n\ell} = B_n (L_{n-1} + B_{n-1} V_{n-1}, \ell) = B_n (L_{n-1} + B_{n-1} (L_{n-2} + B_{n-2} V_{n-2}, \ell))$$

$$= \dots = B_n (L_{n-1} + B_{n-1} (L_{n-2} + B_{n-2} (\dots (L_2 + B_2 (L_1 + B_1 V_{1\ell})))))$$

Since $D_{j}V_{1\ell} = L_{j}$ (j=1,2,...,n-1), the above equation may be transformed into $V_{nr} = B_{n}(D_{n-1}+B_{n-1}(D_{n-2}+B_{n-2}(\cdots(D_{2}+B_{2}(D_{1}+B_{1})))))) V_{1\ell}$ or $V_{nr} = U_{k}V_{1\ell}$ (10)

with the span transmission matrix $\mathbf{U}_{\mathbf{k}}$ defined by

$$U_{k} = B_{n}(D_{n-1} + B_{n-1}(D_{n-2} + B_{n-2}(\cdots (D_{2} + B_{2}(D_{1} + B_{1})))))$$
(11)

Now denoting by V_{kr} and $V_{k\ell}$ the vectors V pertaining to the right end and to the left end of the <u>span</u> k, equation 10 is identical with $V_{kr} = U_k V_{k\ell}$ (12)

The product of any two matrices B has zero elements and unit elements in the same places as the matrices B themselves. Hence, the span transmission matrix is of the type

If all the loads on the box girder, including the shearing forces S_{1} and bending moments M_{1} in the tie beams, and the displacement discontinuities Δw , $\Delta \varphi$ and $\Delta \Psi$, if any, are known, equation 11 yields the numerical value of the 2^{1} elements u of every one of the p matrices $U_{\mathbf{k}}$ (p is the number of spans of the box girder - fig.2).

Expanding equation 12, we obtain

$$w_{kr} = w_{k\ell} + u_{12} \varphi_{k\ell} + u_{13} \psi_{k\ell} + u_{14} M_{k\ell} + u_{15}^T k\ell + u_{16} S_{k\ell} + u_{17}$$
(14)

$$\varphi_{kr} = u_{22}\varphi_{k\ell} + u_{23}\varphi_{k\ell} + u_{24}M_{k\ell} + u_{25}T_{k\ell} + u_{26}S_{k\ell} + u_{27}$$
(15)

$$\Psi_{kr} = u_{32} \varphi_{k\ell} + u_{33} \psi_{k\ell} + u_{34} M_{k\ell} + u_{35} T_{k\ell} + u_{36} S_{k\ell} + u_{37}$$
(16)

$${}^{M}_{kr} = u_{44}{}^{M}_{k\ell} + u_{45}{}^{T}_{k\ell} + u_{46}{}^{S}_{k\ell} + u_{47}$$
 (17)

$${}^{T}_{kr} = u_{54}{}^{N}_{k\ell} + u_{55}{}^{T}_{k\ell} + u_{56}{}^{S}_{k\ell} + u_{57}$$
 (18)

$$S_{k\ell} = S_{k\ell} + u_{67}$$
 (19)

Girder transmission matrix

1) All supports coincide with the center line of the girder

Then $w_{kr} = w_{k\ell} = 0$ for all values of k. We obtain φ_{kr} , ψ_{kr} , M_{kr} and M_{kr} as functions of $\varphi_{k\ell}$, $\psi_{k\ell}$, $M_{k\ell}$ and $M_{k\ell}$ only by adding 14 successively to 15, 16, 17 and 18, after multiplying 14 with respectively $-\frac{u_{26}}{u_{16}}$, $-\frac{u_{36}}{u_{16}}$, $-\frac{u_{46}}{u_{16}}$ and $-\frac{u_{56}}{u_{16}}$. The resulting expressions may be written as the matrix equation

$$\begin{cases} \varphi_{\mathbf{kr}} = \begin{bmatrix} u_{22} - \frac{u_{26}}{u_{16}} u_{12} & u_{23} - \frac{u_{26}}{u_{16}} u_{13} & u_{24} - \frac{u_{26}}{u_{16}} u_{14} & u_{25} - \frac{u_{26}}{u_{16}} u_{15} & u_{27} - \frac{u_{26}}{u_{16}} u_{17} \\ u_{32} - \frac{u_{36}}{u_{16}} u_{12} & u_{33} - \frac{u_{36}}{u_{16}} u_{13} & u_{34} - \frac{u_{36}}{u_{16}} u_{14} & u_{35} - \frac{u_{36}}{u_{16}} u_{15} & u_{37} - \frac{u_{36}}{u_{16}} u_{17} \\ - \frac{u_{46}}{u_{16}} u_{12} & - \frac{u_{46}}{u_{16}} u_{13} & u_{44} - \frac{u_{46}}{u_{16}} u_{14} & u_{45} - \frac{u_{46}}{u_{16}} u_{15} & u_{47} - \frac{u_{46}}{u_{16}} u_{17} \\ - \frac{u_{56}}{u_{16}} u_{12} & - \frac{u_{56}}{u_{16}} u_{13} & u_{54} - \frac{u_{56}}{u_{16}} u_{14} & u_{55} - \frac{u_{56}}{u_{16}} u_{15} & u_{57} - \frac{u_{56}}{u_{16}} u_{17} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

or, denoting the two column matrices in this equation by W_{kr} and $W_{k\ell}$, and the square matrix by F_k : $W_{kr} = F_k W_{k\ell}$ (21)

Neither of the quantities φ , ψ , M and T varies suddenly at any intermediate support. Therefore $W_{k\ell} = W_{k-1,r}$ $(k=2,3,\ldots,p)$ and

$$W_{pr} = F_p W_{p\ell} = F_p F_{p-1} W_{p-1,\ell} = F_p F_{p-1} F_{p-2} W_{p-2,\ell} = \cdots$$

= $F_p F_{p-1} F_{p-2} \cdots F_2 F_1 W_{1\ell}$

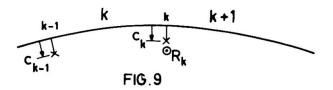
$$w_{pr} = ZW_{1\ell}$$
 (22)

with the girder transmission matrix defined by

$$Z = F_p F_{p-1} F_{p-2} \cdots F_2 F_1$$
 (23)

Z is a 5x5 matrix; its fifth row consists of four zero elements and one unit element.

2) Some or all of the supports are located off the center line of the box girder



The eccentricity of support k, between the spans k and k+1, towards the center of curvature of the girder is denoted by c_k (fig. 9). The downward movement of point k on the

center line is $w_{kr} = c_k \psi_{kr} = c_k \psi_{k+1,\ell}$, and that of point k-1 is $w_{k\ell} = c_{k-1} \psi_{k\ell}$. Equation 14 thus becomes

$$\mathbf{c}_{\mathbf{k}}^{\mathbf{v}_{\mathbf{k}}} = \mathbf{u}_{12}^{\mathbf{v}_{\mathbf{k}}} + (\mathbf{c}_{\mathbf{k-1}}^{\mathbf{+}} \mathbf{u}_{13}^{\mathbf{+}}) \mathbf{v}_{\mathbf{k}} + \mathbf{u}_{14}^{\mathbf{M}_{\mathbf{k}}} + \mathbf{u}_{15}^{\mathbf{T}_{\mathbf{k}}} + \mathbf{u}_{16}^{\mathbf{S}_{\mathbf{k}}} + \mathbf{u}_{17}$$
(24)

We multiply both members of 16 with c_k and subtract from 24 to obtain an equation that we solve for $s_{k\ell}$:

$$S_{k\ell} = -\frac{u_{12} - c_k u_{32}}{u_{16} - c_k u_{36}} \varphi_{k\ell} - \frac{c_{k-1} + u_{13} - c_k u_{33}}{u_{16} - c_k u_{36}} \varphi_{k\ell} - \frac{u_{14} - c_k u_{34}}{u_{16} - c_k u_{36}} M_{k\ell} - \frac{u_{15} - c_k u_{35}}{u_{16} - c_k u_{36}} M_{k\ell}$$

$$-\frac{u_{15} - c_k u_{35}}{u_{16} - c_k u_{36}} T_{k\ell} - \frac{u_{17} - c_k u_{37}}{u_{16} - c_k u_{36}}$$
(25)

Substitution of this expression for $S_{k\ell}$ in 15, 16, 17 and 18 yields a set of four equations that may be written in matrix form :

$$\begin{bmatrix} \varphi_{\mathbf{kr}} \\ \psi_{\mathbf{kr}} \\ M_{\mathbf{kr}} \\ T_{\mathbf{kr}} \\ 1 \end{bmatrix} = \begin{bmatrix} h_{22} & h_{23} & h_{24} & h_{25} & h_{27} \\ h_{32} & h_{33} & h_{34} & h_{35} & h_{37} \\ h_{42} & h_{43} & h_{44} & h_{45} & h_{47} \\ h_{52} & h_{53} & h_{54} & h_{55} & h_{57} \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} \varphi_{\mathbf{k}\ell} \\ \psi_{\mathbf{k}\ell} \\ M_{\mathbf{k}\ell} \\ T_{\mathbf{k}\ell} \\ 1 \end{bmatrix}$$
(26)

or
$$W_{kr} = H_k W_{k\ell}$$
 (27)

with
$$h_{ij} = u_{ij} - \frac{u_{1j} - c_k u_{3j}}{u_{16} - c_k u_{36}} u_{i6}$$
 (i=2,3,4,5; j=2,3,4,5,7) (28)

on the understanding that $u_{+2} = u_{+3} = u_{52} = u_{53} = 0$ and that for j=3 $c_{k-1}+u_{13}$ must be substituted for u_{13} in the numerator. Obviously all the elements u appearing in the matrices $\mathbf{U}_{\mathbf{k}}$ and $\mathbf{F}_{\mathbf{k}}$ and in the equations 25 and 28 relate to span k of the girder, although this is not specified explicitly in the notation. The matrices H_k and F_k are identical when $c_{k-1}=c_k=0$.

Equilibrium of the infinitely short portion of the girder resting on support k (fig. 10) requires $S_{k+1,\ell} = S_{kr} - R_k \quad \text{and} \quad T_{k+1,\ell} = T_{kr} - c_k R_k \cdot \text{Elimination of } R_k \text{ leads to}$ $T_{kr} = S_{kr} - R_k \quad \text{and} \quad T_{k+1,\ell} = T_{kr} - c_k R_k \cdot \text{Elimination of } R_k \text{ leads to}$ $T_{kr} - T_{k+1,\ell} = c_k (S_{kr} - S_{k+1,\ell}) \cdot \quad \text{For } T_{kr} \quad \text{we}$ substitute in this equation the expression included in equation 26. For S_{kr} we substitute, in accordance with equation 19, uf $T_{k\ell} = T_{k\ell} \cdot T_{$ we differentiate the elements u pertaining to span k+1 from those pertaining to span k by denoting the former by u'; the quantities $\varphi_{k+1,\ell}$, $\psi_{k+1,\ell}$ and $\psi_{k+1,\ell}$ appearing in the expression for $\psi_{k+1,\ell}$ are equal to ψ_{kr} , ψ_{kr} and ψ_{kr} , and consequently they can be written as functions of $\varphi_{k\ell}$, $\psi_{k\ell}$, $M_{k\ell}$ and $T_{k\ell}$ by means of equation

The operations described finally yield an equation that we solve for $T_{k+1,\ell}$: $T_{k+1,\ell} = \overline{h}_{52} \varphi_{k\ell} + \overline{h}_{53} \psi_{k\ell} + \overline{h}_{54} M_{k\ell} + \overline{h}_{55} T_{k\ell} + \overline{h}_{57}$ (29) the quantities $\overline{h}_{5,j}$ being defined by

$$\left(1 + c_{k} \frac{u_{15}^{\prime} - c_{k+1} u_{35}^{\prime}}{u_{16}^{\prime} - c_{k+1} u_{36}^{\prime}}\right) \overline{h}_{5j} = h_{5j} + c_{k} \frac{u_{1j} - c_{k} u_{3j}}{u_{16} - c_{k} u_{36}} - \frac{c_{k}}{u_{16}^{\prime} - c_{k+1} u_{36}^{\prime}} \cdot \left[h_{2j} \left(u_{12}^{\prime} - c_{k+1} u_{32}^{\prime}\right) - h_{3j} \left(c_{k} + u_{13}^{\prime} - c_{k+1} u_{33}^{\prime}\right) - h_{4j} \left(u_{14}^{\prime} - c_{k+1} u_{34}^{\prime}\right)\right] (30)$$

on the understanding that $u_{13} + c_{k-1}$ must be substituted for u_{13} and that, for j=7, $-c_k \left(u_{67} + \frac{u_{17}' - c_{k+1}u_{37}'}{u_{16}' - c_{k+1}u_{36}'}\right)$ must be added to the

second member of equation 30.

The first three relationships contained in 26 may be assembled with equation 29 into the matrix equation

$$\begin{pmatrix} \varphi_{k+1,\ell} \\ \psi_{k+1,\ell} \\ M_{k+1,\ell} \\ T_{k+1,\ell} \\ 1 \end{pmatrix} = \begin{pmatrix} h_{22} & h_{23} & h_{24} & h_{25} & h_{27} \\ h_{32} & h_{33} & h_{34} & h_{35} & h_{37} \\ h_{42} & h_{43} & h_{44} & h_{45} & h_{47} \\ h_{52} & h_{53} & h_{54} & h_{55} & h_{57} \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} \varphi_{k\ell} \\ \psi_{k\ell} \\ M_{k\ell} \\ T_{k\ell} \\ 1 \end{pmatrix}$$
or
$$W_{k+1,\ell} = \overline{H}_{k} W_{k\ell} \qquad (32)$$

The matrices \overline{H}_k and F_k are identical when $c_{k-1} = c_k = 0$.

Now we successively apply equation 27 for k=p and equation 32 for $k=p-1, p-2, \ldots, 2, 1$:

$$W_{pr} = H_{p}W_{p\ell} = H_{p}\overline{H}_{p-1}W_{p-1}, \ell = H_{p}\overline{H}_{p-1}\overline{H}_{p-2}W_{p-2}, \ell = \cdots$$

$$= H_{p}\overline{H}_{p-1}\overline{H}_{p-2}\cdots \overline{H}_{2}\overline{H}_{1}W_{1\ell}$$
or
$$W_{pr} = ZW_{1\ell} \qquad (22)$$

with the girder transmission matrix defined by

$$Z = H_{p}\overline{H}_{p-1}\overline{H}_{p-2} \cdot \cdot \cdot \cdot \overline{H}_{2}\overline{H}_{1}$$
 (33)

End support conditions

We expand matrix equation 22:

$$\varphi_{pr} = z_{11}\varphi_{1\ell} + z_{12}\varphi_{1\ell} + z_{13}M_{1\ell} + z_{14}T_{1\ell} + z_{15}
\varphi_{pr} = z_{21}\varphi_{1\ell} + z_{22}\varphi_{1\ell} + z_{23}M_{1\ell} + z_{24}T_{1\ell} + z_{25}
M_{pr} = z_{31}\varphi_{1\ell} + z_{32}\varphi_{1\ell} + z_{33}M_{1\ell} + z_{34}T_{1\ell} + z_{35}
T_{pr} = z_{41}\varphi_{1\ell} + z_{42}\varphi_{1\ell} + z_{43}M_{1\ell} + z_{44}T_{1\ell} + z_{45}$$
(34)

1) Both end supports coincide with the center line of the girder

Various boundary conditions at the left end support may occur:

a) The end of the girder rotates freely about its tangent and also in the vertical plane containing the tangent : $T_{1\ell} = M_{1\ell} = 0$

D. VANDEPITTE 727

- b) The end of the girder cannot rotate in either direction : $\psi_{1L} = \psi_{1l} = 0$
- c) The end of the girder rotates freely in one of those directions, but is fixed in the other direction: either $\psi_{1\ell} = 0$ and $M_{1\ell} = 0$
- or $T_{1\ell} = 0$ and $\phi_{1\ell} = 0$ (unlikely combination). One of these pairs of conditions obtains at the right end support.

Whatever the combination of end support conditions may be, two terms are zero in the right hand member of each equation 34. Moreover, the left hand member of two equations is also zero. These may be solved for the two unknown components of the vector $\mathbf{W}_{1\ell}$.

2) The end supports are located off the center line of the girder

We write equation 25 for k = 1, multiply by containing only $\phi_{1\ell}$ by $T_{1\ell}$, and thus obtain a relationship containing only $\phi_{1\ell}$, $\psi_{1\ell}$ and $T_{1\ell}$. A second such relationship is provided by the third equation 34, with $M_{1\ell}=M_{pr}=0$. To obtain a third, we premultiply both members of equation 12, written for k = p, by $U_p^{-1}: V_{p\ell}=U_p^{-1}V_{pr}$, extract from this equation the expressions for $w_{p\ell}$ and $\psi_{p\ell}$ as functions of $w_{pr}=c_p\psi_{pr}$, φ_{pr} , ψ_{pr} , $M_{pr}=0$, T_{pr} and S_{pr} , write that the former expression is equal to c_{p-1} times the latter expression, substitute $\frac{T_{pr}}{c_p}$ for S_{pr} in the resulting equation, and so arrive at a relationship between ϕ_{pr} , ψ_{pr} and T_{pr} , that we transform into a relationship $\varphi_{1\ell}$, $\psi_{1\ell}$ and $T_{1\ell}$ by using the first, second and fourth equations 34. Thus we finally have three equations that we may solve for $\phi_{1\ell}$, $\psi_{1\ell}$ and $T_{1\ell}$.

Displacement components and stress resultants

Whether the end supports coincide with the center line of the girder or not, we know vector $W_{1\ell}$ completely after having performed the computations just described. We may now calculate $W_{k\ell}$ for all other values of k by repeatedly using equation 32. Equation 25 then yields the numerical value of $S_{k\ell}$ for $k=1,2,\ldots,p$. Since $w_{k\ell}=+c_{k-1}\psi_{k\ell}$, we know all the vectors $V_{k\ell}$ and are able to compute the vector V pertaining to any node in any span by means of equation 9.

<u>Deformation induced by direct load - Deformation influence</u> <u>coefficients - Actual deflections and rotations</u>

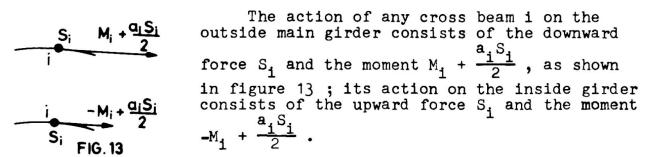
The above analysis is used to calculate the deflections w of the outside box girder and the rotations Ψ about the tangent at the nodes coinciding with the m cross beams (fig. 2) for 2m + 1 different loading conditions. We denote

by w_{io} (i=1,2,...,m) the deflection and by ψ_{io} the rotation at the junction with cross beam i, produced by the given external loading on the box girder:

loading on the box girder; by w_{ix} (i=1,2,...,m; x=1,2,...,m) the deflection and by ψ_{ix} the rotation produced at the same point by a downward force applied at the junction with cross beam x (fig. 11); by w_{ix} , the deflection and by ψ_{ix} , the rotation produced at the same point by a unit moment acting at the junction with cross beam x, as shown in figure 12.

The corresponding quantities for the inside girder are calculated likewise. They are denoted by the same symbols, marked off by an ' (figures 11 and 12).

Maxwell's reciprocal theorem shows that the calculated deflection and rotation influence coefficients must satisfy the relations $\mathbf{a_x}\mathbf{w_{ix}} = \mathbf{a_i}\mathbf{w_{xi}}$; $\mathbf{a_x}\mathbf{\psi_{ix}} = -2\mathbf{w_{xi}}$,; $\mathbf{\psi_{ix}}$, $= \mathbf{\psi_{xi}}$,.



The actual deflection w_i and rotation ψ_i of the outside main girder at its junction with cross beam i under the influence of the given loading acting on the complete structural system are given by

$$w_{i} = w_{io} + \sum_{x=1}^{m} \left[\frac{a_{x}}{2} w_{ix} S_{x} + w_{ix}, \left(M_{x} + \frac{a_{x} S_{x}}{2} \right) \right]$$

$$= w_{io} + \sum_{x=1}^{m} \left[\left(w_{ix} + w_{ix}, \right) \frac{a_{x} S_{x}}{2} + w_{ix}, M_{x} \right]$$
(35)

$$\psi_{i} = \psi_{io} + \sum_{x=1}^{m} \left[\frac{a_{x}}{2} \psi_{ix} S_{x} + \psi_{ix}, \left(M_{x} + \frac{a_{x} S_{x}}{2} \right) \right] \\
= \psi_{io} + \sum_{x=1}^{m} \left[\left(\psi_{ix} + \psi_{ix}, \right) \frac{a_{x} S_{x}}{2} + \psi_{ix}, M_{x} \right]$$
(36)

The actual deflection w_i^* and rotation ψ_i^* of the inside main girder

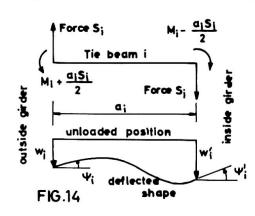
are likewise_m

$$w_{i}' = w_{io}' + \sum_{x=1}^{m} \left[(-w_{ix}' + w_{ix}') \frac{a_{x}S_{x}}{2} - w_{ix}', M_{x} \right]$$
(37)

$$\psi_{1}' = \psi_{10}' + \sum_{x=1}^{m} \left[(-\psi_{1x}' + \psi_{1x}') \frac{a_{x}S_{x}}{2} - \psi_{1x}', M_{x} \right]$$
 (38)

Deformation of the cross beams

The loads acting on any tie beam i and emanating from the main girders are shown in figure 14. They bring about the end deflec-



tions w_i and w_i' and end rotations ψ_i and ψ_i . Assuming that the braces between the Tie beam i

box girders are full-webbed beams and not trusses, and that the shear deformation is therefore negligible with respect to the flexural deformation, one easily derives the following relations: $\psi_{i} - \psi_{i}' = \frac{a_{i}M_{i}}{EI_{i}}$ $\psi_{i}' - \psi_{i}' - \psi_{i}' = \frac{a_{i}M_{i}}{EI_{i}}$ (39)

$$\psi_{\mathbf{i}} - \psi_{\mathbf{i}}' = \frac{a_{\mathbf{i}}^{\mathsf{M}} \mathbf{i}}{\mathsf{EI}_{\mathbf{i}}} \tag{39}$$

$$\psi_{i} + \psi_{i}' + 2 \frac{w_{i}' - w_{i}}{a_{i}} = \frac{a_{i}^{2}S_{i}}{6EI_{i}}$$
 (40)

 $(I_i : moment of inertia of the tie beam i).$

Similar relations between the shear force, the bending moment and the displacement components may be derived for trussed connections between the main girders.

Obtaining the values of the unknowns Sx and Mx

Substituting the expressions 35 to 38 for $\mathbf{w_i}$, $\mathbf{\psi_i}$, $\mathbf{w_i}$ and $\mathbf{\psi_i}$ into 39 and 40 we find

$$\sum_{x=1}^{m} \left[(\psi_{ix} + \psi_{ix}, + \psi_{ix} - \psi_{ix}') \frac{a_{x}S_{x}}{2} + (\psi_{ix}, + \psi_{ix}') M_{x} \right] - \frac{a_{i}M_{i}}{EI_{i}} = \psi_{io}' - \psi_{io}$$

$$\sum_{x=1}^{m} \left[(\psi_{ix} + \psi_{ix}, - \psi_{ix}' + \psi_{ix}', - \frac{2}{a_{i}} (w_{ix} + w_{ix}, + w_{ix}' - w_{ix}') \right] \frac{a_{x}S_{x}}{2} + \left[(\psi_{ix}, -\psi_{ix}', - \frac{2}{a_{i}} (w_{ix}', + w_{ix}', + w_{ix}') \right] M_{x} \right]$$

$$+ \left[(\psi_{ix}, -\psi_{ix}', - \frac{2}{a_{i}} (w_{ix}', + w_{ix}', + w_{ix}') \right] M_{x}$$

$$-\frac{a_{i}}{3EI_{i}} \cdot \frac{a_{i}S_{i}}{2} = -\psi_{io} - \psi_{io}^{2} + \frac{2}{a_{i}} (w_{io} - w_{io}^{2}) \quad (i=1,2,...,m)$$
 (42)

This set of 2m simultaneous algebraic equations may be solved

for the 2m unknowns $\frac{a_X S_X}{2}$ and M_X . The matrix to be inverted is of the order 2m, while the structure is $2m+p+p' \rightarrow +$ times statically indeterminate (p': number of spans of the inside girder), if the ends of the main girders are free to rotate.

When the shearing forces and bending moments in the bracing are known, it is easy to determine the final internal stress resultants and displacement components for the box girders, either by superposing for each one 2m+1 cases of loading already analysed, or by analysing each box girder separately under its full loading, including the forces and moments emanating from the bracing.

The complexity of the structural system considered is such that the calculation is hardly feasible without a computer.

Remark about the location of the connecting beams

It was assumed implicitly in the above that the braces do not meet the box girders at the supports. Yet, it is almost natural for some tie beams to be connected with the main girders at supported cross sections. This situation can be handled in the analysis by assuming that the junction of any such cross beam is located beside, but close to the support, leaving an infinitely short girder element between itself and the support.

SUMMARY

The structural system described in the title is analysed by applying the transmission (or reduction) method to the curved main girders separately, thus obtaining deformation components and influence coefficients, and by using the force method to find the shear forces and bending moments in the connecting beams.

RÉSUMÉ

Les deux poutres maitresses courbes sont d'abord étudiées séparément par la méthode de transmission ou de réduction, ce qui fournit les composantes de la déformation de ces poutres, ainsi que les coefficients d'influence de ces composantes. Ensuite les efforts tranchants et les moments fléchissants dans les traverses sont déterminés au moyen de la méthode des forces.

ZUSAMMENFASSUNG

Die zwei gekrümmten Kastenträger werden zunächst gesondert mit dem Übertragungsverfahren studiert. Diese Berechnung liefert die Verformungskomponenten, sowie Einfluszzahlen für diese Komponenten. Nachher werden die Querkraft und das Biegemoment in den Querbalken mit dem Kraftverfahren ermittelt.