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Optimum Design for Structural Safety

Dimensionnement optimal pour la securite d'une construction

Optimierung für die Bausicherheit

FRED MOSES
Assistant Professor of Engineering

Case Western Reserve University
Cleveland, Ohio U.S.A.

BAC KG ROUND

In recent years there have been developments in the area of optimum desiqn
of structures which concerned the sizinq and proportioning of members for
minimum weight or cost. The utilization of digital Computers and advances in
allied fields of Mathematical Programming and Operations Research led to the
formulation of structural optimization as a problem in Mathematical Proaramming.
Given a set of design variables such as depth, thickness, area, moment of inertia
all denoted by a vector X- the desiqn problem becomes:

Minimize f(Xn-) (1)

such that giX-j) _> 0 j=l,2,.., Number of constraints (2)

f(X-f) is a function of weight or cost to be minimized while n(X^) are the
design limitations on stress, stability and deflection or any practical
fabrication or construction restrictions. It is necessary to be able to
compute for any set of design variables X^ the stresses, defiections and

stability associated with this design. Recent papers in the structural
engineering literature have presented efficient optimum desinn techniques for
a wide class of problems including plate girders, trusses, frames, stiffened
plates and cylinders.1 These works have used Mathematical Programming
techniques such as linear programming, dynamic Programming, gradient methods
and unconstrained minimization.2 The Mathematical Programming approach to
design may be limited in that unlike Professor Courbon's paper entitled,
"Optimization of Structures" it does not consider creative changes in design or
even large deviations from an initial prescribed design geometry and
topology.3 Nevertheless, it has led to important economies in structural design
and has been used in practice particularly for conventional type structures
such as plate girder bridges and frames.

This paper considers the problem of optimization within the context of
safety. It has been proposed by Professor Freudenthal that a rational approach
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to safety must be based on reliability or probability of failure."* This leads
to a new formulation of an optimum design problem which is:

Minimize f(Xi) (3)

such that Pf(Xi) __ Pf allowable (4)

Pf allowable is the minimum failure probability acceptable for the design and

is assumed in this study as given. Pf(X-j) is a function which aives the overall
failure probability of the structure as a function of the design variables to
be determined. This constraint on Pf(X-j) is the only constraint used on
structural behavior although other constraints may be based on construction or
other requirements. Several methods for Computing Pf(X-j) and utilizing it in
an optimum design procedure are presented. Some factors which have motivated
this approach to optimization include the following points:
a) Safety as expressed in terms of probability of survival may actually be

impaired in current deterministic optimum design programs. This is because
existing design codes and safety factors are used to provide protection aqainst
stress, deflection and stability-type failure modes. These safety factors were
developed over a period of time in practice and were not associated with
structures which were optimized. Most mathematical programminq optimum designs
end up with a larger number of constraints on stress and deflection against
their limit than an unoptimized design. It should be expected, therefore, that
the probability of failure which is the probability that any failure mode occurs
will be higher for an optimized design. An optimization procedure which uses
overall structural failure probability as the behavior constraint should
produce more balanced designs consistant with the development of rational
safety.
b) In order to reach more significant levels of structural optimization it is
necessary to compare optimized structures of different configuration, material
and geometry. Within this decision context a rational comparison is possible
only if the structures have the same level of safety as expressed in terms of
probability of failure.
c) The use of new materials such as brittle composites with greater scatter in
strength tests and new structural applications in environments with greater un-
certainty suggest that there will be more emphasis in the future on designing for
probability levels rather than using preassiqned safety factors. It, therefore,
seems appropriate to formulate the design optimization problem as in equations
3 and 4.

d) Reliability based optimum Jasign may actually facilitate the mathematical
optimization problem by replacing the numerous limitations (on member stress
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and defiections) in a deterministic design by a Single constraint on overall
structural failure. The mathematical and computational complexity, however,
has been transformed from the minimization aspect to the analysis of failure
probability. The problem of minimizinn the weight subject to only one constraint
as illustrated in Figure 1 with two variables can be handled by several techniques
including linear programming approximations and useable feasible gradient moves.
Figure 1 illustrates an algorithm for minimization by use of the gradients or
normal vectors to the weight function and the reliability constraint. From an

arbitrary starting point the design is changed in Steps in the direction of
the gradient to the weight until the reliability constraint is encountered.
Subsequent changes in the design variables are made in a direction s-j which both
reduces weight and avoids violating the reliability constraint. This is a

useable feasible direction and methods for determining this direction are well
known.5 The design changes are continued until the constraint gradient and

reliability gradient are coli near.

RELIABILITY ANALYSIS AND OPTIMUM DESIGN

Most work in failure probability has concentrated on a problem in
which all the strength variability was included in one member and all the load
variability was included in one load. Freudenthal presented the probability
of failure of this one member one load structure often called the fundamental
case of structural reliability including the effect of frequency distributions,
Standard deviations for load and strength and the safety factor or ratio of mean
values.6 In considering the design or proportioninn of members in multi-member
multi-load structures, a model is needed to show the effect on failure probability
of each of the individual members of the structure and their interaction with all
load conditions. Two reliability applications of importance are presented herein.
The first is multi-member "v.eakest link" structures discussed by Professor
Freudenthal in which the structure fails if any single element fai 1 s under any
load condition.4 The second application is "redundant" structures such as

limit designed frames in which failure is the oocurrenc? of any collapse mode each
involving more than one element yielding. in both cases loads and strengths are
random variables described by known frequency distributions. The reliability
analysis computes for a given desiqn the overall failure probability of the
structure. The optimum design problem is to Proportion member sizes to have
minimum weight or cost for a specified allowable failure probability.

"UEAKEST LINK" STRUCTURES

The failure probability of a Single member of strength R under a Single
load condition S can be determined from the following equation:6

Pf [- Pr {S>t} Pr {R=t} dx [<» [1-FS(T)] fR(x) dx (5)

Pr should be read "probability that". F (x) is the distribution function
and f (x) the density function. In extensions to multi-member structures under
one load condition it has often been proposed that the overall failure probability
could be obtained from the following equation:7»8»9

N

Pf 1 - n [O-PjtjJ] N=Number of members (6)
T i=l n

P-fj is the failure probability of the itn member and Pf the overall failure
probability. If the individual Pf-,- are small as is usually the case, then
equation 6 becomes:

N

Pf l Pfi (7)
i=l
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Equation 6 ignores, however, the fact that the events corresponding to
member failures are stati stically correlated since the stresses in each member

are completely correlated since they arise from the same loadinn. The member

failures are not 100% correlated since the strengths are independent random
variables. The consideration of correlation loads to a lower value of Pf. If
there is only one load condition and N members or element strengths, then it is
easy to verify that the equation that gives the failure probability is:

Pf 1 - f- n [l-FRi(aiT)] fp(x) dx (8)
Jo i"l

The constant a-j relates the forces or stress levels in member i to the
load value of P=x. Equation 8 is valid for "weakest-link" structures which fail
if any member fails. This includes determinate structures and those indeterminate
structures with little "fail-safe" probability of survival available after the
first member has yielded. This is true for structures with brittle members which
can't carry any load after reaching yield load and for all structures for which the
load variability greatly exceeds the strength variability. If the structure is
subjected to M repeated application of the same loadina condition then Pf can be

computed by integrating on the density function of the worst load which is:

Wt)=m ^pW]""1 Mt) (9)

The failure probability is then:

Pf -1
f,

N

J=iLl-FR. T)] fpmay (x) dx (10)

0
i=l ix

If all loads are not of the same load condition but represent distinct load
conditions applied at different times then an exact Solution for Pf requires an

evaluation of a multiple integral based on the Joint distribution function of the
load conditions. Various bounds have been presented on the failure probability
based on evaluating Integrals which reflect the importance of Statistical
dependence between failure modes due to a Single load condition on multiple
members or a Single member acted on by distinct load conditions.10»11

An important factor in reliability design of "weakest link" structures is
whether the design constraint is based on equation 10 which is exact for the case
shown or equation 6 which is an upper bound on Pf and ignores the Statistical
correlation between failure modes. A previous study showed that this correlation
significantly affects the reliability analysis if the variability of the load
random variable exceeds that of the strength as in structures designed to resist
as their major loading wind and earthquakes.u In such instances, a lower bound
on Pf which is the largest member failure probability may be used as the design
constraint.

In studying optimum design of "weakest-link" structures two factors were
under Observation. One was the effect of Statistical correlation between failure
modes on the overall structural weight and the second is the influence of unequal
individual member failure probabilities. It should be noted that all previous
studies on reliability based Optimums have used equation 6 as the basis for
Computing the failure probability and thus have ignored the correlation.7»8»9.
To study the effect of correlation, a design is found for a truss with one load
condition. All members are assumed to have equal mean loads and, therefore, have
the same optimum area. The consideration of the exact value of the Pf constraint
in equation 8 including Statistical correlation allows each member to be desiqned
for a higher individual failure probability than if equation 6 were used as the
constraint and correlation ignored. The higher individual failure probability
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means a lower weight and the ratio of the two optimum weights based on equation 8

and equation 6 is plotted in Figure 2. With a normal frequency distribution of
load and strength for the coefficients of Variation shown the maximum weight
saving reaches 7.3% for case 1 in a 50 member structure.
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Another indication of the correlation factor becomes evident when the
overall failure probability is written as:

ai u
+ a, ..+ a1 fi ,.+ a,. P

N fN (11)

P« is the failure probability of the itn member and a-j is the percentage
of its failure probability that this member contributes to the overall
probability. The ai shown in Figure 3 are computed either by sequentially
integrating equation 8 for increasing number of members or by another technique
discussed elsewhere.11 If there were no Statistical correlation all ai would
equal 1.0. If there was complete correlation between failure modes and the
members were ordered with member 1 having the highest failure probability then
ai would be 1.0 and all other a's equal zero.

ai

1.0

STATISTICAL CORRELATION OF FAILURE MODES

0.8

0.5 -
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Figure 3

Figure 3 shows the potential weight saving with other frequency distributions
and members with unequal lengths and mean applied loads since it indicates the
correlation effect and the error introduced into the overall probability
expression as the number of members in a structure increases. The magnitude of
the weight saving can be obtained from plots of member failure probability vs.
member size (or equivalently its safety factor) and is available from the work
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on the Single member Single load fundamental case.6 It is seen from Figure 3

that the correlation factor becomes more significant when the load variability
exceeds the strength variability as in structures subject to wind and earthquake
loading.

The second factor mentioned above for study is "weakest-link" structures
with members of unequal mean loads. An optimum design in this case has unequal
safety factor and failure probability for each member. In general minimum

weight results if heavier members have higher than the average failure probability
and lighter member with lower mean applied loads or stresses have less than one

average member failure probability. It has been proposed that the following
equation applies to an optimum design.8

p
Weight of member i _ _fi /-|2)
Total we1'9ht Pf allowable

This equation was derived and is applicable to cases where equation 7 for Pf
is used as the design constraint. Furthermore, it implies that the element P^-
depends only on the size of the ith element, or:

—L -Jl (13)
Sxi Jxi

In general, for a statically indeterminate structure this last equation is
not applicable and:

- o 2 - pl!f I l_Ii (u)
?Xi k=l ?xi

K '

That is the change in any member affects the force distribution and,
therefore, the failure probability of every indeterminate member of the structure.
It should be noted that the simplicity that equation 7 introduces into the
optimization procedure is not lost when the correlation is included in the
computation of the failure probability. This simplicity is needed since rnost
optimization methods need the gradient to the constraint. Using equation 11,
the components of the gradient of the reliability constraint can be computed as:

?Pf N ?Pf!.~ l a. —S. (15)
?xi k=l

k ?xi

It has been found from experience that the a^ which accounts for the
correlation does not change much in a small region in which the gradient is
determined from the partial derivatives using a finite difference technique.
Thus the gradient based on N computations of the form shown in equation 15 need
not be obtained from finite difference perturbations of equation 8 of N members
and one load but rather from equation 5 which is for one member and one load.
The computation time saved in this manner may be significant.

To illustrate an optimum design for a structure with unequal member sizes
Table 1 is presented for a determinate truss with 10 members. The formulation of
the design problem as a minimum weight design with a failure probability constraint
as indicated in equations 3 and 4 was used. Equation 12 can be seen not to be
valid at the optimum due to correlation between failure modes not considered in
its derivation. Also shown in Table 1 is a design based on equal safety factor
for each member such that the overall failure probabilitv of the structure based
on equation 7 is equal to the allowable value. The difference between the weight
of the optimum design and the equal safety factor design is partly due to
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the correlation factor but principally due to the Mathematical Programming
technique discussed above which proportions the members in an optimum manner
using only the Single overall failure probability constraint.

Member

1

2

3

4
5

6

7

8

9

10

TABLE 1-10 Member Example"

Equal Safety Factor

Mean Load
Value

Area
in.2 fi

0.1P
0.2P
0.3P
0.4P
0.5P
0.6P
0.7P
0.8P
0.9P
LOP

0.274
0.547
0.817
1.09
1.37
1.64
1.92
2.19
2.46
2.74

0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001

Optimum Oesinn

Area
in.2

Pfi

0.297 0.519x10- "
0.554 0.604X10-1*
0.818 0. 958x1 0-1*

1.09 0.991X10-1*
1.35 1.23 xlO-4
1.61 1.61 xlO-4
1.86 2.08 xlO-1*
2.11 2.65 xlO-"
2.35 3.25 xlO-14
2.59 3.91 xlO-"

a Mean Load, P=60,000 Ib.; C.V.(P) 20%

Mean Yield stress, - =40,000 psi; C.V. (a

Density 0.283 lb/in.3;
Length L^ =60" for all members.

Both P and a have normal distributions

Weight based on equal safety
5% design factor 255.6 Ib.

Weight based on optimum
design 248.6 Ib.
Pf allowable is 0.001

"REDUNDANT'STRUCTURES

In many structures particularly those designed by limit or ultimate design
methods several members or eiements must simultaneously reach their capacity before
the structure is failed. This is the case with some indeterminate trusses and
also beams and frames in which mechanisms form at failure. It is assumed that each
element strength is an independent random variable.12

A failure mechanism occurs if the contribution of load eiements exceeds the
strength eiements for any particular collapse mode. If the contributions are
linear this leads to an equation for reserve strength 1- in a mode j of:

n L J

ZJ l
i l

a.. M. I
k=l

bJk 1-1, n - Critical Elements
k-1, L - Loads
j=l. m - Collapse Modes

(16)

Equation 16 would for example govern a frame against the formation of a

collapse mechanism. The overall failure probability of the structure is the
probability that any Z^ is less than zero and can be written as:

Pr {Z1 £ 0} + Pr (Z2 <, 0, Z1 > 0} + Pr{Z3 -t 0, Z2 0 Z^ 0}+.. (17)

A method oresented elsewhere has been developed to comDute the probability
that each 1, is less than zero, including the effect of Statistical correlation
between Zi present because som3 load and strength terms appear in more than one
collapse equation.13'
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As an example of an optimum redundant design consider a Single bent
frame with design variables corresponding to the plastic moment capacity of the
beam and column. Figure 4 shows the deterministic constraints based on a safety
factor approach and the constraint based on failure probability as expressed in
equation 17. The weight function used which is shown linearized in Finure 4 is:

R

W K l (M.) % L.i=l
M. is the plastic moment capacity, L-j the length of the member, R the

number of members and K is a constant.

(18)

BEAM
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The allowable failure probability was set at 4.80 x 10-5 and was chosen
based on a failure probability analysis of the optimum design obtained using
the deterministic or nonstatistical constraints. Optimum design methods for
frames to resist plastic collapse in the deterministic case are well known and
since all constraints are linear, a linear Programming technique is applicable.
A result of a deterministic optimum design is that a theorem for this case shows
that the number of collapse modes designed up against their limit in the optimum
design equals the number of design variables which is the number of unknown
member plastic moment capacities.ll* Although this is acceptable from a

deterministic viewpoint and does not violate conventional safety factors, it
must be viewed as unsafe from a reliability design viewpoint. The fact that
an optimum design with a large number of design variables has an equally large
number of failure modes designed to their limit must indicate that the failure
probability is increased over a conventional unoptimized safety factor limited
design. Consequentially, the replacement of the deterministic constraints by a

Single reliability constraint should lead to a more balanced optimum and also
allows the failure probability to be specified in the constraint. An added
benefit that may be seen from Figure 4 is that the design optimized with
respect to failure probability is lower in weight than the deterministic
optimum with the same failure probability. Further examples of optimum Single
story frames showed the optimum weight increased as both the allowable failure



FRED MOSES 171

probability was decreased and the coefficients of Variation of load and

strength was increased.15

To illustrate reliability based optimum design for larger redundant
structures the frame shown in Figure 5 with six design variables was studied.

15K

3'6^ J.

12.5K
9K _— 1_

TWO STORY TWO BAY

OPTIMUM DESIGN EXAMPLE

10'30

-r
15'

,^~¦nr-Zr- 30'25

MEAN LOADS ARE SHOWN

Figure 5

I - MEMBER NUMBER

The resulting design moment capacities for the frame in Figure 5 is shown
in Table 2 for designs with normal and log normal frequency distribution for load
and strength of different coefficients of Variation. It is interesting to observe
as shown in Table 2 that at least for the examples studied one mode seems to
dominate in having a relatively larger failure probability than the other modes.13

Table 2

Optimum Design Results of Two Story
Two Bay Frame Shown in Figure 4

Optimum
Design

Example Moment
No. Capacities

K-ft
Members

C.V.
Mom.

Load
%

Pf

Allowable
Weight
Function

Freauencv Individaul Collapse
Distribution Mode Failure

Probability in Order
of Largest Value First

1 2 3

4 5 6

1

4
2

5

3

1 29.2 95.8 84.4
175.0 73.2 74.4

0.10
0.20

7.78(2)* 312.5 Normal 6.70(2)
6.26(4)

6.87(3)
3.16(4)

4.50(3)

2 27.8 96.3 84.4
173.8 72.0 77.9

0.10
0.20

7.80(2) 310.9 Log
Normal

4.85(2)
2.21(3)

1.55(2)
1.67(3)

1.35(2)

3 28.0 78.7 71.0
170.9 69.4 74.9

0.20
0.10

7.72(2) 297.3 Normal 4.94(2)
2.81(3)

1.22(2)
2.68(3)

1.16(2)

4 27.3 78.3 71.3
166.4 65.1 74.9

0.20
0.20

7.16(2) 293.5 Log
Normal

4.19(2)
3.13(3)

1.64(2)
2.25(3)

1.09(2)

5 29.1 87.8 72.3
170.3 68.0 74.1

0.15
0.15

7.52(2) 300.6 Normal 5.39(2)
1.71(3)

1.10(2)
1.69(3)

9.89(3)

* Exponents of failure probability are shown in
parenthesis (m) and should be read as 10-m
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DISCUSSION AND CONCLUSIONS

1] The results presented indicate the feasibility of using reliability or
probability of failure constraints in solving for optimum multi-member
structural designs. By using Mathematical Proaramming methods to Proportion
member sizes a design is obtained which has an overall failure probability
equal to an allowable value. This approach to design appears more rational
than many current optimum design methods which use conventional code safety
factors to restrict member dimensions based on stress and deflection limitations.
As a result such optimum designs end up with many element constraints active
which from a reliability viewpoint reduces its safety below a conventionally
unoptimized design. Two examples presented include "weakest-link" structures
for which any member failure constitutes failure of the structure and "redundant"
structures which fail by forming collapse nechanisms after several members have
simultaneously yielded.
2] It is seen from the examples presented that a reliability based optimum
design does not have equal safety factor for all eiements. In a "weakest-link"
structure the heavier members have higher failure probability values than
liqhter members. This factor is influenced by the degree of Statistical
correlation between member failures which depends on the ratio of the variability
or coefficient of Variation of the load to the strennth. In an optimum "redundant"
structure such as a frame designed to resist formation of a collapse mechanism,
the same safety factor is not present for each mechanism at the optimum desinn.
Rather the Mathematical Programming method proportions each member to achieve
minimum weight within the constraint of overall failure probability. For the
frames studied it was observed that one particular mechanism in an optimum
design dominates in its value of failure probability but it is not possible to
choose beforehand which mechanism this will be.

3] An important factor influencing the magnitude of the optimum design as well
as its member sizes will be the choice of load and strength frequency distributions
and their parameters particularly the coefficients of Variation. Curves of cost
vs. Statistical parameters show choice of frequency distribution is not too
critical unless the distribution is highly skewed. Another important factor is
the choice of an allowable failure probability. This should depend on the
function of the structure as well as the failure consequences in social and
economic terms and is not considered herein.16

4] The computation of failure probability for any frequency distribution as
presented herein and its incorporation in an optimum design procedure should
stimulate studies of random variables encountered in structural engineering to
improve their description. Empirical studies are needed to provide reasonable
frequency distributions for static strength, fatigue life, creep rate, floor
loading as well as stochastic theories for dynamic phenomena associated with
wind, highway and earthquake loading. The use of optimum design techniques
illustrated herein should be useful in assessinq the importance of changes in
the parameters of these frequency distributions in terms of optimum cost or
weight rather than in terms of predicted failure probabilities. Failure
probabilities are usually expressed in quantities of 10-2 to 10-9 and small
changes in frequency distribution may cause large changes in failure probability.
However, the change in optimum weight associated with this change in frequency
distribution may be of smaller maqnitude.

5] A truly optimum design should consider the behavior of the structure over
various types of loading conditions as well as possible strennth deteriorations.
In a more extensive approach under study an optimum desinn is to be found which
considers all levels of failure including yielding, formation of cracks, large
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defiections, instability and collapse. Although for some "weakest-link"
structures yielding and collapse occur simultaneously, this is not true for most
structures.17 One approach to this problem would be to impose an allowable
failure probability which depends on the damaae for each failure level and to
seek an optimum design which satisfies all probability of failure constraints.
Another approach is to combine the constraints into one reliability constraint
which would contain the probability of a level of failure occurrinn multiplied
by a factor which includes the associated damage.

6] One question often raised in consideration of failure probability analysis
is the meaningfulness of a Statement that the failure probability is 0.001 since
not enough data could conceivably exist to support this claim. It is easy,
however, to see that a Statement that Pf of structure A is 0.001 and of
structure B 0.00001 is meaningful.18 In the light of optimum design the Pf
Statements take on further meaning since they influence the overall structural
cost. Furthermore, in a Single design it would be possible to use various
combinations of Pf allowables, coefficients of Variation of load and strength
to see how they influence the overall cost. The final structural cost would be
based on the best estimate of these parameters in the light of previous
experience, empirical studies of existing structures and other economic
factors.

ACKNOWLEDGEMENT

The author wishes to thank the National Science Foundation for supporting
this research which is part of NSF Grant GK-1871 on "Optimum Design of
Structures Within a Reliability Philosophy" at Case Western Reserve University
under the direction of the Writer.

REFERENCES

1. Schmit, L.A., " Automated Design", International Science and Technology,
June 1966, pp. 63-78, also: "A Structural Synthesis Capabilitv for
Integerally Stiffened Cylindrical Shells", No. 68-327 AIAA - 9th Structures,
Structural Dynamics and Materials Conference, April 1968.

2. Kowalik, J. "Nonlinear Programming Procedures and Design Optimization;
ACTA Polytechnica Scandinavica, Math & Computing Mach. Series No. 13

Trondheim, 1966.

3. Courbon, J. "Optimization of Structures", Preliminary Publication--
8th Congress I.A.B.S.E. New York 1968 pp. 79-86

4. Freudenthal, A.M., "Critical Appraisal of Safety Criteria and their
Basic Concepts" Ibid. pp. 13-25.

5. Zoutendijk, G. Methods of Feasible Directions, Elsevier Publishing
Company, Princeton, 1960

6. Freudenthal, A.M., Garrelts, J .!¦!., Shinozuka, M., "The Analysis of
Structural Safety", Journal of the Structural Division, ASCE, Vol. 92,
No. St. 1, Proc. Paper 4682, Feb. 1966.

7. Hilton, H.H. and Feigen, M., "Minimum Weicht Analysis Based on Structural
Reliability," Journal of the Aerospace Sciences, Vol. 27, No. 9 Sept. i960.

8. Switzky, H., "Minimum Weight Design with Structural Reliability", AIAA 5th
Annual Structures and Materials Conference, 1964 pp. 316-322.

9. Khachaturian, N. and Halder, G.S., "Probabilistic Design of Determinate
Structures", Proceedings of the Specialty Conference, Eng. Mech. Div.
ASCE Oct. 1966, pp. 623-647.



174 lc - OPTIMUM DESIGN FOR STRUCTURAL SAFETY

10. Cornell, C. Allin, "Bounds on the Reliability of Structural Systems,
Journal of the Structural Division ASCE, Vol. 93, No. St. 1

Proc. Paper 5096, Feb. 1967

11. Moses, F., and Kinser, D.E. "Analysis of Structural Reliability",
Journal of the Structural Division, ASCE, Vol. 93, No. St. 5, Proc. Paper
5494, Oct. 1967

12. Tichy, M. and Vorlicek, M., "Safety of Reinforced Concrete Framed

Structures", Flexural Mechanics of Reinforced Concrete, Proceedings
of the International Symposium held in Miami, Fla., Nov. 1964, ASCE-ACI, 1965.

13. Stevenson, John D. "Reliability Analysis and Optimum Desiqn of Structural
Systems With ApDlications to Rigid Frames". Solid Mechanics, Structures,
and Mechanical Design Division Report No. 14, Case Western Reserve
University, November 1967.

14. Neal, G. "The Plastic Methods of Structural Analvsis", J. Wiley & Sons, Inc.
1956.

15. Moses, F. and Stevenson, J.D. "Reliability Based Structural Design"
Solid Mechanics, Structures, and Mechanical Design Division Report No. 16,
Case Western Reserve University, November 1967.

16. Asplund, S.O., "The Risk of Failure", Structural Engineer. Vol. 36,
No. 8, August 1958.

17. Sawyer, H.A. Jr., "Status and Potentialities of Nonlinear Design of
Concrete Frames" Flexural Mechanics of Reinforced Concrete, Proceedings
of the International Symposium held in Miami Fla. Nov. 1964, ASCE-ACI, 1965.

18. Bolotin, U.V., "Statistical Methods in Structural Mechanics" 2nd Ed.
STROIIZDIAT, Moscow, 1965 Translated by M.D. Friedman.



FRED MOSES 175

SUMMARY

An optimization procedure is presented in which safety in terms of
reliability or probability of failure is used as the Controlling design limitation
for finding minimum weight structures. Reliability analysis and optimum pro-
portioning in multimember structures is given for "weakest-link" and redundant
cases. Examples illustrate the effect on optimum weight of frequency
distributions, coefficients of Variation and allowable failure probability. Some

aspects of the reliability analysis problem are discussed.

RESUME

Le rapport presente un procede d'optimation oü la securite, en
termes d'endurance et de probabilite de ruine, determine le
dimensionnement minimal d'une construction. Dans les structures ä
eiements multiples, l'analyse de la securite et le dimensionnement
optimal sont determines par le membre le plus faible et par les
conditions extremes exagerees. Des exemples expliquent l'effet de la
repartition des frequences, des coefficients de Variation et de la
probabilite de ruine acceptable sur le dimensionnement optimal.
Quelques aspects du probleme de l'analyse de la securite sont dis-
cutes.

ZUSAMMENFASSUNG

In diesem Beitrag wird ein Optimierungsverfahren vorgestellt,
in welchem der Sicherheitsbegriff in Zuverlässigkeits- oder
Wahrscheinlichkeitsraten des Bruches zur Kontrollbegrenzung des
minimalen Gewichtes gebraucht wird. Die Zuverlässigkeitsanalyse und
die Optimierung (vielstäbiger) hochgradiger Bauwerke ist für das
schwächste G-lied und extreme Fälle durchgeführt worden. Beispiele
zeigen die Wirkung der Häufigkeitsverteilungen, der Streuungsmasse
und der zulässigen Bruchwahrscheinlichkeit auf das minimale
Gewicht. Einige Merkmale der Zuverlässigkeitsanalyse werden besprochen.
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