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Optimal Design of Reinforced Concrete Beams and Frames

Dimensionnement optimal des poutres et portiques en beton arme

Optimale Bemessung der Stahlbetonbalken und -rahmen

M.Z. COHN D.E. GRIERSON
Professor of Civil Engineering and Lecturer in Civil Engineering

University of Waterloo, Waterloo, Ontario, Canada

The following optimization problem is solved in the paper:
design a structure of given geometry for maximum efficiency vs.
elastic design, so that under any possible load combination
certain specified minimum load factors be guaranteed against
both the collapse of the structure and the first yield of its
critical sections.

By linearizing the merit function and developing a method
to generate all limit equilibrium constraints the problem is
solved with the help of linear programming and Computer techniques.

The principles involved and corresponding optimal solutions
are ülustrated by the examples of a reinforced concrete
continuous beam and frame.

INTRODUCTION

In the last few years, limit design (as opposed to limit analysis) methods
have been developed enabling limit equilibrium and serviceability conditions to
be explicitly used in the mathematical formulation of the problem.

Such methods, called "serviceability" (as opposed to "compatibility")
methods, have been extensively applied to reinforced concrete continuous bea

[l], [2], [3] and [4]*. More recently the validity of these methods has been
ms

* Figures within brackets refer to the list of references at the end of the
paper.
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investigated for a variety of basic assumptions and design criteria [5] and their
extension was developed for frame design [6], [7]. A comprehensive discussion of
the features of serviceability vs. compatibility methods has been presented by
reference to their use in building structures [8].

The possibility of considering a variety of design criteria was earlier
recognized [1], [5] and suggestions for optimizing relevant merit functions have
subsequently been given [6], [7].

The problem of optimal design for reinforced concrete frames has been for-
mulated in [6], but two major difficulties have been recognized in the actual
Solution of the problem: 1) the explicit expression of suitable merit functions
and 2) the formulation of the limit equilibrium constraints for all possible
modes of structural collapse.

Some views on the first problem are offered in papers by MASSONNET and SAVE

[9] and by ANDERHEGGEN and THÜRLIMANN Q.0] in which the total cost or the steel
volume are suggested as merit functions, respectively. The authors tested, with
favorable results, the use of an "efficiency index" (defined as the ratio of the
steel consumption by limit vs. elastic designs, v V /V as merit function [7].0 E

The second problem has been amply investigated [11] and a systematic
procedure has been developed for generating all possible modes of collapse and pre-
dicting the most critical combinations [12].

As a result, by using mathematical programming techniques, it is now
possible, and this paper illustrates how, to produce direct designs of reinforced
concrete beams and frames such that 1) Optimum, 2) limit equilibrium and
3) serviceability criteria be satisfied simultaneously.

It should be noted that an optimal Solution verifying the three conditions
above would still have to be checked for compatibility. While it is possible to
add the compatibility conditions to those already considered and to attempt the
Solution of the more general programming problem of optimization with
compatibility constraints, this will be left for a separate investigation.

THE OPTIMAL DESIGN PROBLEM

Consider a reinforced concrete beam or frame with given geometry and moments
of inertia, to resist a system of known loads varying between prescribed limits.

It will be assumed that:
1) Reinforced concrete can be idealized as an elasto-plastic material with

limited ductility;
2) All possible loading conditions are considered;

3) Limit equilibrium and serviceability are basic design criteria, with
compatibility to be separately investigated;

4) The Optimum criterion is to accomplish the minimum volume of longitudinal
reinforcement.

It will also be assumed that bending action prevails, that shear and axial
forces are negligible and that inelastic rotations are concentrated at critical
sections as in the simple plastic theory.
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Let j 1, 2, s be the critical sections of the structure and M M
PJ PJ

its corresponding positive and negative plastic moments, as in general,reinforced
concrete sections may have unequal flexural resistance in the two bending

directions.

A desien Solution is found when a set of M and M is derived for all
PJ PJ

critical sections of the structure such that the following conditions are
satisfied:

1) Optimum: the design will provide the minimum volume of flexural
reinforcing steel.

2) Limit Equilibrium: the structure will resist any loading combination
of an intensity less than the prescribed ultimate load W and may collapse
plastically for any load W a W

3) Serviceability: the critical sections of the structure will remain well
within the elastic ränge for any combination of working loads and hence will have
a safety against yield not less than a prescribed minimum value, \ It can be

shown that provision of adequate yield safety will ensure satisfactory serviceability,

i.e. acceptable cracking, stresses and deflections.

Let W W and x be the ultimate load, the service load and the overall load
u o

factor, respectively, when proportional loading is assumed, i.e. W X W. Let
M ± be the maximum (minimum) elastic envelope moment at section j, and denote \

PJ 1J

as the yield load factor of section j, i.e. a plastic hinge will occur at this
section under some particular scheme of loading at a load level X, .W.

It can be shown [4] that the design plastic moment for section j is
proportional to the corresponding elastic envelope moment for the ultimate load:

M x. \ M. (1)
PJ JOJ

The scale factor x- is called the yield safety parameter [3] and is defined
by the ratio of yield tö ultimate load factors:

x. X,./X (2)
J lj o

It is noted that high x. values correspond to superior serviceability and
low Xi values correspond to superior economy. An optimal Solution will
determine x values that accomplish the largest overall steel savings consistent

with adequate serviceability. This is taken to mean that for any section, under
any loading condition,the yield load factor X,. is not smaller than a specified
lower bound X. 2 1 (the case X. 1 corresponds to the formation of a plastic
hinge at Service loads). For a section to become a plastic hinge in some possible
mechanism it is necessary that X,. <. X Therefore the serviceability constraints
become:

\1/X0 ^ Xj s 1 (j 1, 2, s) (3)

A limit equilibrium condition is associated with each possible mode of
plastic collapse (i) of the structure. This expresses the relationship between
the energy dissipated in the plastic hinge rotations U. and the external work
E. of the ultimate load in displacements corresponding to the mode of collapse i:

U. s E. <*)
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Relation (4) indicates that the structure collapses in the i mechanism
at either the prescribed load factor X if U. E. or at a larger load factor
x >xo ifu.>El. ° l x

Assuming p possible mechanisms exist and expressing U. in terms of the

plastic moments (1) and E. in terms of the specified ultimate load, the

equilibrium constraints become after simplifications:
s
£ a,. x 2 c. (i 1, 2, p) (5)

j=l 1J J

where a.. and c. are some non-negative constants.ij i
As the optimal Solution corresponds by definition to the minimum steel

volume V, the merit function is:
M ds X

V f -^ T ^ M. x. ds min '. (6)
j j

where the integral is extended over the entire length of the structure and K.
is a constant depending on the section geometry and materials properties.

In summary the optimal design problem consists of determining the x. values
for s critical sections of the structure so that the Optimum criterion (6),
the limit equilibrium constraints (5) and the serviceability constraints (3) be
satisfied.

This is easily identified as a typical programming problem to which the
Standard algorithms of mathematical programming are applicable.

MERIT FUNCTION, CONSTRAINTS AND OPTIMAL SOLUTION

Merit Function. The concrete sizes being fixed, the amount of steel reinforcement

on which the design plastic moments depend is the only variable in the
feasible design solutions. In current detailing practice the reinforcement
provided at critical sections is maintained constant over certain lengths of the
members before it is bent or terminated to conform with bond, anchorage and/or
shear requirements. As a result the resisting moments provided follow a stepwise

diagram, which can be idealized by a set of rectangles of depth M and of

length &., the distance over which M is maintained constant [8], [10].

With these assumptions and notations the steel volume associated with each

plastic moment can be expressed as:

Vj Asj *j " MPJ VKJ (7)

Therefore the merit function (6) expressing the total steel volume is linearized
in the form:

v s Mpj V3/Yj xj x° mj V3/Vj (8)

where Y are the known ratios of moments of inertia for sections j to a
J

reference moment of inertia for the structure.
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Constraints. A major difficulty of the plastic analysis and design of highly
indeterminate frames consists of writing explicitly the equilibrium conditions
(5) representing the limit equilibrium constraints of the optimization problem.
In the paper this is done by an extension of the theory of "combination of
mechanisms" due to Neal and Symonds [13], which is fully developed elsewhere
[11], [12].

The procedure is based on the fact that in the derivation of the optimal
Solution only a limited number, m, of equilibrium conditions (collapse modes)
need be considered, which is called the critical or active set of equilibrium
constraints.

The active set of constraints is identified by the fact that 1) it contains
m s - n collapse mechanisms, (n is the degree of statical indeterminacy of the
structure) 2) which are linearly independent, 3) have only one degree of freedom,

and 4) correspond to the lowest load factors of any possible mechanism.
A Computer programme which generates automatically all relevant combinations of
mechanisms (COMECH) and which identifies the critical set of constraints based
on the above mentioned criteria has been developed [11], [12]. A flow-diagram
of the COMECH programme is shown in Fig. 1.

READ PROBLEM DIMENSIONS
% ,m.n

READ ROTATION COEFFICIENTS ANO EXTERNAL
WORK CONSTANTS FOR THE INITIAL SET OF

LINEARLY INDEPENDENT MECHANISMS

BECIN A NEW
COMBINATION

CHAIN

GENERATE A COMBINED MECHANISM BY ADCfNG
ONE INITIAL MECHANISM TO EITHER ANOTHER
INITIAL MECHANISM OR TO A PREVIOUSLY
GENERATED COMBINED MECHANISM

MECHANISM HAS ONE DEGREE OF FREEDOM

I YES

MECHANISM IS LINEARLY INDEPENDENT OF ALL
THE MECHANISMS ALREADY IN OUTPUT
STORAGE THAT HAVE SMALLER COLLAPSE
LOAD FACTORS

YES'

PLACE MECHANISM IN OUTPUT

STORAGE AND ALSO RETAIN
FOR FUTURE COMBINATIONS

NO

RETAIN MECHANISM ONLY

FOR FUTURE COMBINATIONS

OUTPUT STORAGE : LINEARLY INDEPENDENT
MECHANISMS RANKEO ACCORDING TO THE
MAGNITUDE OF THEIR COLLAPSE LOAD FACTORS

HAVE ALL POSSIBLE COMBINATIONS BEEN
INVESTIGATED

'

-^
OUTPUT :m LINEARLY INOEPENOENT MECHANISMS

HAVING ONE DEGREE OF FREEDOM AND

THE SMALLEST COLLAPSE LOAD FACTORS

FIG. 1
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Optimal Solution. With the linear merit function (8), the serviceability
constraints (5) and the equilibrium constraints determined by COMECH, the simplex
algorithm can be used to solve the resulting linear programming problem of
optimal design [14]. A Standard Computer programme for the Simplex algorithm
is used to solve this problem.

The coefficients of the variables, the external work constants and the
bounds on the variables are given as input and the following data are obtained
as Output:

1) The optimal design plastic moments for all critical sections;
2) The efficiency index of the optimal design, v, and
3) The effective ultimate safety of the active collapse modes.

EXAMPLES

Example 1. Given is the five-span continuous

*f-

© (o LOADING AND
GEOMETRY

aa aa
i_«zri_v-ru.T ' '—T

0610

WD/V-i_= OA

(b) LONGITUDINAL
REINFORCD.SNT

(c) ELASTIC
MOMENT ENVELOPE

beam with the geometry and loading
in Fig. 2a. Live loads are 2.5
times higher than the dead loads
and can be applied to any or all
of the spans. Dead and live
load factors of 1.5 and 1.8
respectively are assumed, con-
forming to the American practice.
An overall load factor X. 1.715

o

is implied. A minimum yield

TVl/AVUA\J (Mj/WLL,
^t, 0.598 0-445

6__

(0-3831OPTIMUM —~ 0-463
FRD — (0.434) 0.377

Kl
0279 (0 317 1

(0292) 0-3230-468
0-482)

(d) POSSIBLE COLLAPSE
MECHANISMS

(e) FLU- REDISTRIBU¬
TION DESIGN (FRD)

<Mpj/X0WLL)

OESIGN A-~(0-466) 0 466
DESIGN B—-0 466 (0-377)

LIMITED REDISTRIBUTION

DESIGN

RD)

10- ;™, (0-377) (0.377) {MpjA„WLL)

load factor X
1

1.2 is specified
and therefore the minimum x.
value permitted is x. X,/Xj 1 o
1.2/1.715 0.7.

With the conventional
arrangement of the reinforcement
as in Fig. 2b, the elastic moment

envelope coefficients in
Fig. 2c and assuming K. K

const., the merit function is
given by expression (9).

All possible modes of
collapse are indicated in Fig. 2d
and are labelled by (a), (b) and
(c). The corresponding limit
equilibrium conditions are given
by expressions (10).

The serviceability
constraints are given by expression
(11).

FIG. 2
Therefore the problem

Statement is:
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minimize:

KV | 0.526 Xl +
2

°"61° X2 +
3 °'398 X3 +

2
°*538 X4 +

3
°'445 X5 (9)

subject to:
1.052 x, + 0.610 x 2 1.4

1 2
0.610 x„ + 0.796 x, + 0.538 x, a 1.4

2 3 4
1.076 x, + 0.890 xc 2 1.4

4 5

(10a)

(10b)

(10c)

and: 0.7 s x. s 1 (j 1, 2, 5) (11)

The set of x. values corresponding to the optimal design is given in the

last column of Table 1.

It is to be noted that the optimal Solution corresponds to conditions (10)
becoming equalities, i.e. to mechanisms (a), (b) or (c) occuring at the
prescribed load factor X 1.715. Therefore this is a füll redistribution design.
The corresponding bending moment diagram is ülustrated by the füll lines in
Fig. 2e.

For the sake of comparison the elastic Solution and three additional limit
design solutions are provided as follows:

a füll redistribution design (FRD) based on [3], column 5 in Table 1 and
bending moment diagram in dotted lines, Fig. 2e.
two limited redistribution designs (LRD) labelled A and B respectively, with
equal design moments at a number of sections for convenience of steel
placing. These solutions are given in Table 1, columns 3 and 4, and the
corresponding bending moments are ülustrated in Fig. 2f.

table 1

example 1: design solutions

X, M .A M.
j PJ 0 j

Section ELASTIC OPTIMAL

(J) DESIGN LRD:A LRD:B FRD DESIGN

1 1.000 0.887 0.887 0.916 0.889
2 1.000 0.763 0.763 0.712 0.760
3 1.000 0.946 0.781 0.732 0.700
« 1.000 0.700 0.866 0.712 0.700
5 1.000 0.848 0.700 0.712 0.726

Lower serviceability limit x ¦ 0.700

In Table 2 a summary is given of the effective safety against collapse for
the various designs. If \\ is the actual load factor for a particular design

and collapse mode i the ratio x!/X is indicative of the relative conservatism
r • 1 ». • 10of various solutions.

In the same table the efficiency index is given for all solutions studied.
As expected, it is noted that the larger is the relative safety against collapse
the less economical is the design. The optimal Solution is evidently the most

efficient while providing exactly the required safety in all possible modes of
failure. Note that the füll redistribution design (FRD) is very close to the
efficiency of the optimal Solution.
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TABLE 2

EXAMPLE l: STRUCTURAL SAFETY AND EFFICIENCY

\J\ 0

Mechanism
(i)

ELASTIC
DESIGN LRD:A LRD:B FRD

OPTIMAL
DESIGN

a
b

c

1.189
1.389
1.405

1.000
1.142
1.075

1.000
1.111
1.111

1.000
1.000
1.000

1.000
1.000
1.000

v " VVE 1.000 0.828 0.813 0.767 0.766

Example 2. The frame in Fig. 3a [13] is to be designed for any possible
combination of the applied live loads, assuming zero dead load. With an overall
load factor X 1-8 and a minimum yield load factor X. 1.2,the minimum
permissible value of x. 1.2/1.8 0.667.

J

The reinforcing details are provided in Fig. 3b and the elastic moment

envelope is indicated in Fig. 3c. A merit function of the form (8) is obtained,
which is not reproduced here for the sake of brevity.

p-L-f-L-^
WL © j _

©IlllllllllHlllllllllllll
®

3

(a) GEOMETRY 8
LOADING

(wD=o)

12 3 4

vr\ m rsr\ rr?5 6 7 8

m rz\ (Q) POSSIBLE
COLLAPSE
MECHANISMS

T
L

rh flfl fl
u*J L^©

(b) LONGITUONAL
REINFORCEMENT

408
«78 281 459527

(b) LRD MOMENT

ENVELOPE

(MpjAoWLL)

4M
HO 207

(c) ELASTIC
MOMENT ENVELOPE

(Mj/WLL)

570

(C) OPTIMAL DESIGN

MOMENT ENVELOPE

(MpjA0WLL)

FIG. 3 FIG. 4

Of all the potential collapse modes, the COMECH programme [11] identifies
the 10 mechanisms in Fig. 4a, which correspond to the critical or active set of
limit equilibrium constraints.
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By using the Simplex Computer programme the Optimum Solution is found and
the corresponding x^ values are listed in the last columns of Table 3. Also

listed are the elastic Solution (xt 1 const.) and a limited redistribution
design based on [7].

The B.M. diagrams associated with these designs are represented in Figs. 4b
and 4c, which are obtained by scaling down the bending moments in Fig. 3c with
the corresponding x. values in Table 3.

TABLE 3

EXAMPLE 2: DESIGN SOLUTIONS

X - M ,/X M.
J PJ ° J

ELASTIC LIM. RED DESIGN OPTIMAL
Section DESIGN LRD DESIGN

+ _ + _(j) XJ x.
J

x.
J Xj xj Xj

1 1.000 1.000 0.900 0.900 0.667 0.667
2 1.000 1.000 0.900 0.900 0.667 0.667
3 1.000 1.000 0.900 0.900 0.667 0.667
4 1.000 1.000 0.858 0.667 0.835 0.667
5 1.000 1.000 0.667 0.853 0.667 1.000
6 1.000 1.000 0.900 0.900 0.931 0.975
7 1.000 1.000 0.667 0.807 0.667 1.000
8 1.000 1.000 0.850 0.667 0.915 0.667
9 1.000 1.000 0.900 0.900 0.667 0.667

10 1.000 1.000 0.900 0.900 0.667 0.667
11 1.000 1.000 0.900 0.900 0.667 0.667
12 1.000 1.000 0.900 0.900 0.824 0.919

Lower serviceability limit x. 0.667

The effective collapse safety of the elastic, LRD and optimal solutions is
indicated in Table 4, along with the corresponding efficiency indices. It should
be noted that the optimal design enables 8 modes of collapse at the prescribed
ultimate load with an overall steel reduction of about 207. vs. the elastic
Solution. The limited redistribution design generates only 2 modes of failure
at X W with a steel saving of 147. vs. the elastic design.

TABLE 4

EXAMPLE 2: STRUCTURAL SAFETY AND EFFICIENCY

^A 0

Mechanism ELASTIC OPTIMAL

(i) DESIGN LRD DESIGN

i 1.46 1.26 1.26
2 1.42 1.20 1.28
3 1.31 1.18 1.00
4 1.31 1.18 1.00
5 1.16 1.00 1.00
6 1.17 1.01 1.00
7 1.17 1.00 1.00
8 1.19 1.04 1.00
9 1.21 1.06 1.00

10 1.25 1.09 1.00

v V /v
0 E

1.000 0.860 0.803
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CONCLUSIONS

Optimal solutions can be derived for reinforced concrete beams and frames
for minimum steel consumption, with adequate safety against both the structural
collapse of structures and the first yield of their critical sections.

With the assumptions adopted in the paper the optimal design becomes a
linear programming problem, which can be solved by using digital Computers.

Examples of optimal design presented indicate savings of 20 - 237. in steel
consumption vs. the elastic solutions based on the ultimate strength design for
the sections.

While the techniques described are straightforward when applied using a

digital Computer, they appear prohibitive for hand calculation in design offices.

However Standard optimal solutions may be computed and tabulated for typical
beams in the same way as in [4].

Data in Tables 2 and 4 confirm that the füll redistribution design (FRD) is
nearly as efficient as the optimal design, a result which has been anticipated
in some previous studies [7], [8]. Because of this feature and of the relative
simplicity of serviceability methods it appears that approaching füll
redistribution is a realistic and practical objective in the limit design of reinforced
concrete frames.
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NOTATION

a.., c. constants defining the internal and external work in the limit
equilibrium equations

A flexural reinforcement of section jsj
i index referring to the mode of collapse (mechanism)
j index referring to critical sections of the structure
K. a constant which depends on the section geometry and materials

properties and defines the flexural reinforcement of section j.I total distance over which M prevails
J PJ

m number of independent mechanisms
M. elastic moment envelope value at section j
M design plastic moments at section i

PJ
n degree of statical indeterminacy of the structure
p total number of possible collapse modes (mechanisms)
s total number of critical sections of the structure

steel volume required by elastic designV

V steel volume required by optimal design

v V /V efficiency index of the structural design
o E

Bq. Schlussbericht
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W Service (dead + live) loads
W W dead and live service loads, respectively
VJ X W specified ultimate load

u o

\ specified ultimate load factor
o

X- specified yield load factor
\ effective ultimate. load factor in the i collapse mode
"¦l
X-, - minimum effective yield load factor of section j
x. X,./X yield safety parameter of section jj lj o

SUMMARY

Optimal solutions can be derived for reinforced concrete
beams and frames for minimum steel consumption, with adequate
safety against both the structural collapse of structures and
the first yield of their critical sections. With the assumptions

adopted in the paper the optimal design becomes a linear
programming problem, which can be solved by using digital
Computers

While the techniques described are straightforward when
applied using a digital Computer, they appear prohibitive for
hand calculation in design Offices. However Standard optimal
solutions may be computed and tabulated for typical beams in
the same way as in [4].

RESUME

II est possible d'arriver ä un dimensionnement optimal
des poutres et portiques en beton arme pour un minimum d'armature,

avec securite adequate contre la ruine "totale de la structure

et la premiere rupture dans une section critique. L'economie

contre la methode elastique est de l'ordre de 20-23 f°.

La technique de calcul decrite est directe pour une
calculatrice eiectronique, main plutöt difficile pour le calcul
manuel. Cependant des solutions-standard pourraient etre pre-
parees en tabelles pour des poutres typiques, comme dans [©J-
D'ailleurs une methode approchee (table 4) donne d'assez bons
resultats.

ZUSAMMENFASSUNG

Die optimale Bemessung der Stahlbetonbalken und -rahmen
ist bei gleicher Sicherheit gegen Traglast sowie erstem
plastischen Gelenk der gefährdeten Querschnitte für ein Minimum
an Bewehrung möglich. Die Ersparnis gegenüber der elastischen
Verfahren beträgt 20-23 %.

Während die beschriebene Methode auf Digital-Computern
einfach anzuwenden ist, erscheint sie für die Handrechnung
nicht empfehlenswert. Wie auch immer, die standardisierten
Optimumslösungen mögen in der gleichen Weise wie in [3]
berechnet und tabelliert werden. Im übrigen ergibt ein
Näherungsverfahren (Tafel 4) hinreichend genaue Ergebnisse.
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