# Lateral buckling of welded beams and girders in HT 80 steel

Autor(en): Fukumoto, Yuhshi

Objekttyp: Article

Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH Kongressbericht

Band (Jahr): 10 (1976)

PDF erstellt am: **13.09.2024** 

Persistenter Link: https://doi.org/10.5169/seals-10456

# Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

## Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

# http://www.e-periodica.ch

## Lateral Buckling of Welded Beams and Girders in HT 80 Steel

Déversement de poutres soudées en acier HT 80

Kippen von geschweissten Balken aus HT 80 Stahl

YUHSHI FUKUMOTO Professor of Civil Engineering Nagoya University Nagoya, Japan

#### 1. INTRODUCTION

Lateral instability of compression flange has been one of the important limit state criteria for the determination of the ultimate bending strength of flexural members when the compression flange is not restrained enough against lateral deflection. The author has shown the results of the investigation on the ultimate strength of beams with lateral bracing at the intermediate points<sup>(1)</sup>)<sup>2</sup> and without any lateral supports in between<sup>3),4),5</sup> from theory and test.

This paper briefly describes the lateral buckling test  $^{3}$  on welded beams and girders with steels of SM 50 and quenched and tempered HT 80 (nominal yield stresses  $\sigma = 3200 \text{kg/cm}^2$  and  $7000 \text{kg/cm}^2$ , respectively), and the initial imperfections such as welding residual stresses and initial deformations are discussed with the test results. The comparisons are also made between theory and test.

#### 2. THE TEST SPECIMEN

No lateral bracings are provided except at the both ends of the specimen where the loading beams with heavy box cross section are connected using high strength bolts. The end condition of the specimen is thus clamped laterally and torsionally at the both ends. The test setup is shown in Fig. 1.

The detailed nominal dimension of the beam-type specimens are given in Table 1(a). The beam types are of 25cm or 30cm in beam height with the span length ranging from 2.5m to 4.5m. Total number of beam specimens is thrity-six of which

SM 50 : twenty-one including nine annealed beams, and HT 80 : fifteen including three annealed beams. Table 1(b) shows for the plate girders of 80cm or 100cm in height with the span length ranging from 2.8m to 4.0m. Number of sub-panels in web is two for G-D and the others have three sub-panels. The specimens are tested under uniform bending and under moment gradient with the end moment ratio of 0.5.

#### 3. INITIAL IMPERFECTIONS

After the test specimen is set in the position for testing and just prior to loading, the initial imperfections are measured in flanges and web plates. Table 2 summarizes the maximum lateral deflections of the compression flange  $\delta_{u}$  and tension flange  $\delta_{\mu}$  at the span center. Effective length of the specimens against lateral buckling becomes  $L_{e} = L/2$  (L=length of the specimen) under uniform bending since the clamped end condition is met at the connections of the specimens and the loading beams.

#### 4. WELDING AND ANNEALING DATA

Welding data for HT 80 steel specimens are as follows ;

For beams : Manual welding with  $5mm\phi$  electrode (YAWATA L80). 180 - 230 amp. current and preheating at  $120^{\circ}c$ .

For girders : Manual welding with  $4mm\phi$  electrode (KAWASAKI KS116, B-1). 165 - 175 amp. current and preheating at  $120^{\circ}c$ .

Annealing conditions are set for relieving the welding residual stress as shown in Fig. 2.

5. THE TEST RESULTS

a) Tension Coupon Test

Test coupons with 20cm gage length for SM 50 and with 5cm gage length for HT 80 are cut out from the flange and web plates. The averaged values of static yield stress are listed below.

```
Beams \begin{cases} SM 50 : 3428 \text{ kg/cm}^2 \\ HT 80 : 7841 \\ HT 80 : 3810 \text{ kg/cm}^2 ( 8mm) \text{ and } 3236 \text{ kg/cm}^2 (10mm) \\ HT 80 : 7850 \\ HT 80 : 6610 \\ HT 80 \\ H
```

b) Lateral Buckling Test

Figs 3a and 3b show the load-deflection curves of a beam and a girder in HT 80, respectively, in which  $\beta$  = angle of rotation of the compression flange,  $u_1$  and  $u_2$  = lateral deflection of lower and upper flanges and v = vertical deflection at the span center. At the early stage of loading, the lateral and torsional deformations of the girder flanges are observed together with the buckled patterns in each web panel. Lateral deflection of the compression flange at failure is influenced considerably by the direction of the buckled deformation of the web in bending.

A summary of test results with the reference loads is listed in Table 3.

Fig. 4 shows a presentation of the test points plotted on the  $\sigma$  -  $(r_x/r_y)(L_p/d)$  axes<sup>3</sup>, in which r and r are the radii of gyration of cross section about x and y axes, respectively and d = the beam height. The test points for HT 80 indicate less scatter and the reduction of lateral buckling strength becomes less for HT 80 specimens compared with SM 50 specimens in the inelastic range.

Fig. 5 shows another presentation of the test points plotted for beamtype specimens on the  $\sigma_r/\sigma_y - (L_p/r_y)/(L_p/r_y)$  axes. Non-dimensionalized slenderness ratio  $\lambda$  is taken in the abscissa whereas  $(L_p/r_y)$  is the slenderness ratio at which the elastic lateral buckling stress reaches to the yield point, that is,  $\sigma_u = \sigma_y$ . The maximum experimental moments M<sub>u</sub> are non-dimensionalized by the yield moment

The maximum experimental moments M are non-dimensionalized by the yield moment M. In order to clarify the effect of residual stress distributions on the lateral buckling strength of steel beams, the comparisons are made between the annealed beams and the as-weld beams having the same sizes. Twelve pairs of specimens are tested and by taking the strength ratios M  $_{\rm annealed}^{/{\rm M}}$  for each pair, it is obtained that the average strength gains are of 11% for annealed beams compared to the as-weld beams for SM 50 and 6% for HT 80 steel. It may be concluded that the welding residual stress distributions may reduce the lateral buckling strength for about 11% average for SM 50 and 6% average for HT 80 against the beams without residual stresses. Experimental findings may prove that the residual stress effect upon the lateral buckling strength becomes less with the higher yield strength steel.

#### 6. COMPARISONS OF THEORY AND TEST

#### a) Inelastic Lateral Buckling Strength

Inelastic lateral buckling strength under uniform moment is determined for the arbitrary residual stress patterns using the numerical iteration technique for computing the cross sectional properties.<sup>5)</sup><sup>7)</sup> In Table 4 the calculated ideal critical elastic moment  $M_{\rm F}$  and inelastic moment M for the two different residual stress patterns (A) and (B) are given for girder-type specimens. Fig. 6 shows the theoretical results using the residual stress patterns 1 and 2 ( $\sigma$  = 0.3 $\sigma$  inset in Fig. 6) are compared with the test points for the asweld and annealed A-type beams.<sup>3)</sup>

#### b) Ultimate Bending Strength

Since the inelastic lateral buckling resistance is furnished mostly by the compression flange, the lateral buckling strength becomes very close to that of a column whose effective cross section is composed of the compression flange and one-sixth of the web<sup>6</sup>. In this analysis the ultimate bending strength of members with initial imperfections such as residual stresses and lateral deflection of the compression flange is determined by the beam-column concept using the numerical integration technique<sup>5</sup>. The residual stress patterns used for this analysis is shown in Table 4 as patterns (C) and (D).

In Fig. 5 the ultimate bending strength curves obtained by the beam-column concept are given for the D-type and C-type beams with the initial lateral deflection u = L/1000 and with and without residual stress pattern (C). Ultimate bending strength curves for the residual stress patterns (C) with,  $\sigma_{rc} = 0.3\sigma_{y}$  and initial lateral deflection u = L/1000 may explain the lower bound restimate against the plotted test results. In table 4 the numerical results by the beam-column approach are also given for the plate girders G-A~G-G.

|         | Tabl       | . 1(  | ) D    | mens            | kons o | d test | beams               |             |
|---------|------------|-------|--------|-----------------|--------|--------|---------------------|-------------|
| Text    | Storl      | 4     |        |                 | 1      | L      | Lad                 | Remarks     |
|         |            | (     |        |                 | p.m.m. |        | Ration              |             |
| A-1-0   |            | 250   | 100    |                 |        | 3000   | 10                  | anneled     |
| A-1-1   |            | 250   | 100    |                 |        | 3000   | 1.0                 |             |
| A-1-2   |            | 200   | 100    |                 |        | 4000   | 1.0                 | annual last |
| A-2-1   | SMORA      | 250   | 100    |                 |        | 4000   | 1.0                 | merti       |
| A-2-2   |            | 250   | 100    |                 |        | 4 000  | 0.5                 | as weld     |
| A-3-0   | 1 1        | 250   | 100    |                 |        | 4 500  | 1.0                 | annesled    |
| A-3-1   |            | 250   | 100    | 6               |        | 4 500  | 1.0                 | as weld     |
| A 3-2   |            | 250   | 100    | 6               |        | 4 500  | 05                  | as weld     |
| B-1-0   | -          | 250   | 120    |                 |        | 3 000  | 1.0                 | annealed    |
| 8-1-1   |            | 250   | 120    | 6               |        | 3 000  | 1.0                 | as weld     |
| B-2-0   | SMOA       | 250   | 120    |                 | 8      | 4 000  | 1.0                 | annealed    |
| B-2-1   |            | 20    | 130    | 1 :             |        | 4 000  | 1.0                 | a weld      |
| 8-3-0   |            | 200   | 120    | 1:              | :      | 4 500  | 1.0                 | an and      |
| 9-9-1   |            |       |        |                 |        | •      |                     |             |
| C-1-0   |            | 300   | 100    | 1:              | :      | 1000   | 1.0                 | annealed    |
| C-1-1   |            |       | 100    | :               | :      | 4000   | 10                  | and and     |
| C-2-1   | SMOA       | 300   | 100    |                 |        | 1000   | 1.0                 | -weid       |
| C-3-0   |            | 300   | 100    | 6               |        | 4 500  | 1.0                 | annealed    |
| C-3-1   |            | 300   | 100    | 6               |        | 4 500  | 1.0                 | a weld      |
| 0.1.0   |            | 750   | 100    | 17              | 10     | 2 500  | 10                  | encoded     |
| D-1-1   |            | 250   | 100    | 1               | 10     | 2 500  | 10                  | as weld     |
| D-1-2   |            | 250   | 100    | 1               | 10     | 2 500  | 05                  | as weld     |
| D-2 0   |            | 250   | 100    | 7               | 10     | 3000   | 10                  | annealed    |
| D 2-1   | HTBO       | 250   | 100    | 1               | 1 10   | 3 000  | 10                  | as wrid     |
| D 2 2   |            | 250   | 100    | 1               | 10     | 3000   | 05                  | an wrid     |
| 0.30    |            | 30    | 100    | 1 :             | 10     | 1500   | 10                  | an and      |
| 0.1.7   |            | 70    | 100    | ;               | 10     | 1500   | 05                  | at a reid   |
|         |            | -     |        |                 |        |        |                     |             |
| 2-10    |            | 20    | 130    |                 | 10     | 1900   | 1.0                 | as weld     |
| E-10    |            | 250   | 120    | ; ;             | 10     | 1500   | 10                  | marid       |
|         | 1.14       | -     |        |                 |        |        | -                   |             |
| -1-0    | UTD        | 300   | 100    | 1               | 10     | 100    | 1.0                 | as west     |
| F.10    | 11.00      | 100   | 100    | ;               | 10     | 3 500  | 10                  | marid       |
| d - bes | the bright | a. 2- | - bren | width<br>n leng | t-fa   | test   | ickness.<br>girders |             |
| Test    | Steel      | 1.    | d      | (mm)            | (      | -      |                     | Ration      |
| G-A     | 5360       | A   1 | 000    | 130             |        | 10     | 4 10                | 1.0         |
| G-B     | 5160       |       | 000    | 120             |        |        | 4 10                | 1.0         |
| C-C     | HT.        | 0     | 800    | 110             |        | 1 10   | 1 330               | 1.0         |
| G-D     | HT         | 0     | 800    | 110             | 6      | 10     | 280                 | 1.0         |
| C.E     | HTS        | 0     | 800    | 130             | 6      | 10     | 1 30                | 1.0         |
| GF      | HT         | 0     | 800    | 130             |        | 1 10   | 2 80                | 0 1.0       |
|         | Flang      | -1-   |        |                 |        | i      | 1                   | 1 -         |
| C C     | SMS        |       | 800    | 110             | ٠      | 10     | 1 330               | 10          |

| Table 2 | Initial | imperfections | of | flanges |  |
|---------|---------|---------------|----|---------|--|
|---------|---------|---------------|----|---------|--|

| Test Beams<br>and Girders | Upper flange<br>d <sub>u</sub> (mm) | Lower flange<br>$\delta_l  (\rm mm)$ | ð <sub>=</sub> /L | 81/L    |  |
|---------------------------|-------------------------------------|--------------------------------------|-------------------|---------|--|
| A-1-0                     | 0                                   | 0                                    | 0                 | 0       |  |
| A-1-1                     | 1.5                                 | 0                                    | 1/1 960           | 0       |  |
| A-3-1                     | 4.5                                 | 0                                    | 1/1 000           | 0       |  |
| B-1-0                     | 3                                   | 8                                    | 1/ 990            | 1/ 370  |  |
| B-2-0                     | 0                                   | 2                                    | 0                 | 1/1 985 |  |
| B-3-1                     | 0                                   | 6                                    | 0                 | 1/ 745  |  |
| C-1-0                     | 1.5                                 | 1.5                                  | 1/1 970           | 1/1 970 |  |
| C-1-1                     | 4.8                                 | 6.8                                  | 1/ 620            | 1/ 435  |  |
| D-2-0                     | 0                                   | 0                                    | 0                 | 0       |  |
| D-2-2                     | 0                                   | 0                                    | 0                 | 0       |  |
| D-3-1                     | 2.5                                 | 0                                    | 1/1 400           | 0       |  |
| D-3-2                     | 1                                   | 0                                    | 1/3 470           | 0       |  |
| E-2-0                     | 1                                   | 0                                    | 1/2 960           | 0       |  |
| E-3-0                     | 2.5                                 | 0                                    | 1/1 390           | 0       |  |
| G-A                       | 1                                   | 1.5                                  | 1/4 100           | 1/2 720 |  |
| G-B                       | 1                                   | 5                                    | 1/4 100           | 1/ 820  |  |
| G-C                       | 1                                   | 2                                    | 1/3 300           | 1/1 650 |  |
| G-D                       | 3                                   | 3                                    | 1/ 940            | 1/ 940  |  |
| G-E                       | 0                                   | 0                                    | 0                 | 0       |  |
| G-F                       | 2                                   | 0                                    | 1/1 400           | 0       |  |
| G-G                       | 0                                   | 1                                    | 0                 | 1/3 300 |  |

| Sectiments                      | M,<br>(t·m) | M,<br>(t-m) | Mmax<br>(t·m)        | (kg/cm <sup>2</sup> )   | Mmaz/My              |  |
|---------------------------------|-------------|-------------|----------------------|-------------------------|----------------------|--|
| A-1-0<br>A-1-1<br>A-1-2<br>8.18 |             | 9.45        | 7.69<br>7.00<br>9.70 | 3 218<br>2 929<br>4 069 | 0.94<br>0.86<br>1.19 |  |
| A-2-0<br>A-2-1<br>A-2-2         | 8.18        | 9.45        | 7.94<br>6.61<br>8.42 | 3 322<br>2 766<br>3 523 | 0.97<br>0.81<br>1.03 |  |
| A-3-0<br>A-3-1<br>A-3-2         | 8.18        | 9.45        | 6.33<br>5.75<br>8.54 | 2 649<br>2 406<br>3 573 | 0.77<br>0.70<br>1.04 |  |
| B-1-0<br>B-1-1                  | 9.47        | 10.78       | 9.40<br>8.00         | 3 406 2 899             | 0.99                 |  |
| B-2-0<br>B-2-1                  | 8.47        | 10.78       | 8.60<br>8.76         | 3 116<br>3 174          | 0.91<br>0.93         |  |
| B-3-0<br>B-3-1                  | 9.47        | 10.78       | 9.28<br>7.10         | 3 362<br>2 572          | 0.98<br>0.75         |  |
| C-1-0<br>C-1-1                  | 10.41       | 12.16       | 7.58                 | 2 493<br>3 026          | 0.73                 |  |
| C-2-0                           | 10.41       | 12.16       | 8.04                 | 2 645                   | 0.77                 |  |

12.16

25.08

26.08

26.08

29.84 29.84 29.84

2 461 2 266

7.48

21.16 20.89 27.90

20.68 18.54 23.10

19.21 16.24 21.84

26.46 24.42 22.79

0.72

0.94 0.93 1.24

0.92 0.22 1.03

0.85

1.01 0.93 0.87

0.92 0.78 0.73

0.61 0.57 0.57 0.73 0.75 0.83 0.58

т

de

Table 3 Summary of reference and experi

C-3-0 C-3-1

D-1-0 D-1-1 D-1-2

D-1-2 D-2-0 D-2-1 D-2-2 D-3-0 D-3-1 D-3-2

E -1-0 E -2-0 E -3-0

10.41

22.53

22.53

22.53

26.14 26.14 26.14

#### Table 4 Comparison of theory and test for girders

|              |       | Theoretical               |                          |          |                   |        |                           |      |                |      |  |
|--------------|-------|---------------------------|--------------------------|----------|-------------------|--------|---------------------------|------|----------------|------|--|
|              |       | Lateral Buckling Strongth |                          |          |                   |        | Ultimate Bending Strength |      |                |      |  |
|              |       |                           | Besidual Stress Patterne |          |                   | -      | Residual Stress Patterns  |      |                | -    |  |
| feet Cirdere |       |                           | (A)                      |          | (8)               |        | (C)                       |      | (D)            |      |  |
|              | "     | *****                     | H <sup>(tm)</sup>        | "cr/"mas | H <sup>(co)</sup> | */Maas | H(Cm)                     | *./* | * (CB)         | 1.0  |  |
| <b>6-4</b>   | 43.6  | 87.55                     | 56.63                    | 1.30     | 49.82             | 1.14   | 48.15-                    | 1.12 | 44.38<br>52.79 | 1.02 |  |
| 6-B          | 41.0  | \$5.52                    | \$1.32                   | 1.25     | 46.99             | 1.15   | 41.09                     | 1.00 | 34.17<br>44.46 | 0.93 |  |
| 6-C          |       | 69.53                     | 68.73                    | 1.07     | 48.25             | 1.06   | 53.27                     | 0.83 | 51.20          | 0.80 |  |
| 6-0          | 43.4  | 96.06                     | 83.60                    | 1.00     | 75.87             | 0.91   | 54.29<br>78.96            | 0.65 | 52.45<br>74.99 | 0.63 |  |
| 6-E          | 94.8  | 114.16                    | 93.83                    | 0.990    | 81.39             | 0.86   | 10.54                     | 0.14 | 83.43          | 0.10 |  |
| c-1          | 105.1 | 157.99                    | 99.31                    | 0.95     | 83.40             | 0.78   | 74.79<br>99.24            | 0.73 | 74.93          | 0.71 |  |
| ~            | 45.5  | 67.60                     | 67.10                    | 1.02     | \$4.62            | 1.02   | 40.65                     | 0.74 | 47.72          | 0.73 |  |

\* Upper line is for ô indicated in Table 2
\*\* Lower line is for infinitesimal small u
as u = Le/10,000

#### Assummed Residual Stress Patterns



| F-1-0 | 28.68   | 33.50  | 26.32 | 7 191 |
|-------|---------|--------|-------|-------|
| F-2-0 | 28.68   | 33.50  | 22.42 | 6126  |
| F-3-0 | 28.68   | 33.50  | 20.78 | 5 678 |
| G-A   | 71.68   | 106.32 | 43.6  | 1 968 |
| G-B   | 72.31   | 93.74  | 41.0  | 2 160 |
| G-C   | 113.90  | 128.81 | 64.4  | 4 436 |
| G-D   | 113.90  | 128.81 | 83.4  | 5 748 |
| G-E   | 126.15  | 140.23 | 94.8  | 5 899 |
| G-F   | 126.15  | 140.23 | 105.1 | 6 540 |
| G-G   | 113.90  | 128.81 | 66.5  | 4 514 |
|       | 1.1.1.1 |        |       |       |

M, =Calculated Yield Momen M, =Calculated Plastic Mom











Fig. 2







Comparison of the results by beam-column approach and test for beams



Fig. 5

#### REFERENCES

- 1) Fukumoto, Y.and Kubo, M., "Lateral Buckling Strength of Girders with Bracing Systems", Preliminary Report, 9th Congress IABSE, Amsterdam, 1972.
- 2) Fukumoto, Y. and Kubo, M., "Lateral Buckling of Braced Beams", Trans. of Architectural Institute of Japan, No. 206, April, 1973.
- Fukumoto, Y., Fujiwara, M. and Watanabe, N., "Inelastic Lateral Buckling Tests on Welded Beams and Girders", Proc. of Japan Society of Civil Engineers, No. 189, May, 1971.
- 4) Fukumoto, Y., et al, "Research Works on Ultimate Strength of Plate Girders, and Japanese Provisions on Plate Girder Design, "Design of Plate and Box Girders for Ultimate Strength", IABSE Colloquium, Proc. Volume II, London, 1971.
- 5) Fukumoto, Y. and Kubo, M., "Ultimate Bending Strength of Plate Girders with Longitudinal Stiffeners failed by Lateral Instability", to be published from Der Stahlbau.
- 6) Basler, K. and Thürlimann, B., "Strength of Plate Girders in Bending", Journal of Structural Division, ASCE Vol. 87, No. ST 6, August, 1961.
- 7) Yoshida, H., "Lateral Buckling Strength of Plate Girders", Publications, IABSE Vol. 35-II, 1975.

#### SUMMARY

This report presents the results of an extensive experimental investigation into the behaviour and strength of flexural members with high strength steels which are failed by lateral buckling. A total thirty-six beam-type and seven girder-type members is tested under uniform moment and moment gradient. Test results of as-weld and annealed specimes are compared with the inelastic lateral buckling theory with the specified residual stress patterns and also with the beam-column approach to ultimate bending strength using the effective compressive section with initial imperfections.

#### RESUME

Ce rapport présente les résultats d'essais détaillés sur le comportement de la résistance d'éléments en acier à haute résistance soumis à la flexion, et qui ont été détruits par déversement. Les essais de spécimens soudés et recuits ont été comparés selon la théorie du déversement, en fonction des contraintes résiduelles, ainsi que selon l'approche "poutres-colonnes" pour le moment fléchissant de rupture, considérant la section effectivement comprimée avec des imperfections initiales.

#### ZUSAMMENFASSUNG

Dieser Bericht enthält die Resultate einer ausführlichen experimentellen Untersuchung über das Verhalten und die Tragfähigkeit von Biegeträgern aus hochfesten Stählen, die durch Kippen zerstört wurden. Eine Gesamtheit von 36 Trägertypen und 7 Balkenträgern wurden unter konstanten, linear verlaufenden Biegemomenten getestet. Testresultate von geschweissten und spannungsarm geglühten Proben wurden mit der unelastischen Kipptheorie und den bezeichnenden Eigenspannungsverteilungen und ebenso mit einer Näherungsuntersuchung als exzentrischem Knicken verglichen, indem die effektiv zusammendrückenden Abschnitte mit anfänglichen Imperfektionen verwendet werden.