Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

Band: 11 (1980)

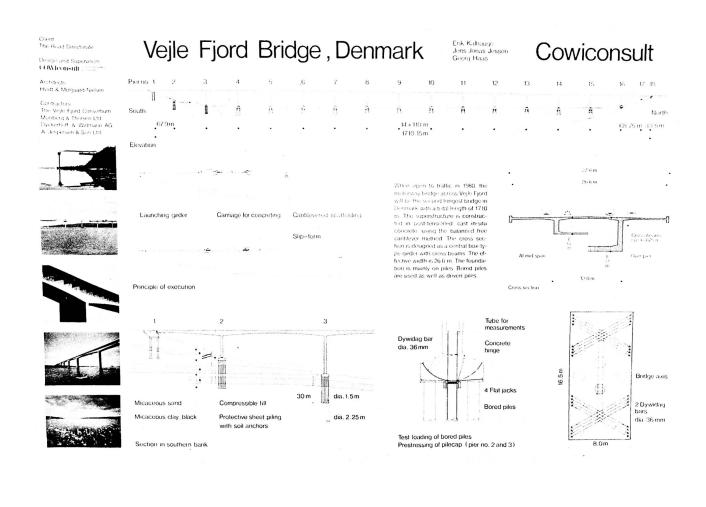
Artikel: Vejle Fjord Bridge

Autor: Kalhauge, E. / Jessen, J.J. / Haas, G. DOI: https://doi.org/10.5169/seals-11360

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation


L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 16.10.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

VEJLE FJORD BRIDGE - E. KALHAUGE, J.J. JESSEN, G. HAAS, COWICONSULT, DENMARK.

During the design phase and in the course of the erection of the bridge a number of special problems arose and were solved by somewhat unconventional means.

Two of these problems aroused special interest at the poster session and will be treated in detail in later publications: The Pier Foundations in the South Slope and the Temperature Gradient Problem of the Superstructure.

A decisive improvement of the stability of the potentially dangerous south slope was achieved by means of several stabilizing measures. In view of the difficult soil conditions it was decided to employ large bored piles, $\phi 1.50$ m, for the foundations of the three southernmost piers. The piles were up to 30 m long and were carried through alternating layers of tertiary clay and water-bearing sand. Their bearing capacity was established by testloading 3 piles with vertical loads of 11-17 MN each. The load-settlement relationships of the pile groups have been followed from the time of construction, also studying the influence of artesian pressure variations in the soil layers.

A close control of the temperature conditions of the superstructure concrete was necessitated, partly because an early striking of formwork was desirable in order to obtain a reasonable flow of work for the cantilever construction.

After a series of model calculations and correlating tests during the construction of the first segments, it was realized that temperature differences might lead to excessive tensile stresses - and ensuing cracks - in certain sections of the structure, especially during times of the year with adverse climatic conditions.

The temperature problems may be divided into the types as shown in the table below.

In order to avoid adverse affects from these temperature gradients, a special enveloping insulation carriage was developed covering $l^{\frac{1}{2}}$ section behind the form. The carriage is supported on the bridge deck and is connected to the construction carriage.

The envelope is constructed from 16 mm plywood boards, provided with 10-50 mm foam insulation. The distance between concrete surface and the envelope ranges from 0.6 to 2.0 m. Depending on ambient temperature, hot air is blown into the space. On the deck, however, the insulation is placed directly on the concrete.

Measurements have been made during the construction by means of Nickel-Chromium thermoelements embedded in the concrete. In the table is shown a comparison between maximum temperature differences measured.

Difference in temperature. Influence of Insulation.

Problem type	No Insulation \$\Delta T_{\text{max.}}\$	Insulation $\Delta^{\mathrm{T}}_{\mathrm{max}}$.
Local gradients in massive elements	65°C	12°C
Temperature differences between adjacent elements of the cross section	40 [°] C	15°c
Temperature differences across construction joints	60°C	30°C