Network arches

- Autor(en): Tveit, Per
- Objekttyp: Article
- Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH Kongressbericht

Band (Jahr): 11 (1980)

PDF erstellt am: **12.08.2024**

Persistenter Link: https://doi.org/10.5169/seals-11363

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

CENTRAL CLAIMS A network arch with a simple slab lane usually saves half the steel com-pared to equal spans. spans. In the future, the world's most slender arch bridge will most likely remain a network arch.

FUNDAMENTALS For trusses and tied arches esthetic reasons F1

limit the distance between upper and lower chord.

chord. Thus saving of weight can be achieved mainly by reducing bending and by avoiding a high length/depth ratio of compression members. The most economical diagonals are tension members. When there is live load on part of the span, tension mem-bers can relax (dotted

bers can relax (dotted F2

F3

be introduced. This will allow more slenderness in arch and lane. The reduction of chord depth greatly reduces secondary stresses.

OPTIMAL DESIGN

High-strength materials should be used. Hangers

ann ann

lines) and thus trans-form part of the truss into part of a bowstring arch with inclined hangers.

NETWORK ARCHES

STEEL WEIGHTS OF ROAD BRIDGES

OAD BRIDGES 600°F. Weights of network arches from: Per Tveit te et al. Network Arches, 400 ± University of Houston, 1978. Weights of other 200 ± Didges from: Max Her-200 ± Didges from: Max Her-200 ± Stahlgewichte mo-30 derner Eisenbahn- und 5 Strassenbrücken, Der 300 m Stahlbau 9/1975.

should be placed equi-distantly along the arch and along the middle portion of the lane. F5. This gives the best sup-port of the arch and minimum bending mo-ments in the chords. Further all hangers can have the same cross-section, and nearly the same maximum force. For ease of fabrica-tion the arch should be part of a circle. This also contributes to e-qually small max. bend-ing moments along the eage beams. The lane should be a shab spanning between the concrete edge beams, which can be enlarged to act as traf-fic barriers protecting the hangers. These beams contain the pre-stressing cables that counteract the tensile force in the lower chord.

force chord.

ERECTION ERECTION The two network arch-es in Norway were built on a timber struc-ture resting on wooden piles, see photo. Cable-stayed erection has F4

(marting

been used many times in Japan. Better still it seems to thize the fact that the erch and hangers of the network arch, sup-plemented by a tempo-nary lower chord, will have enough strength and stiffness to support the lane while it is be-ing cast. This tempora-ty steel structure can be floated into place by big cranes. In cold climates ice can be used for erecting or moving the tempo-rary structure.

Per Tveit, dr.ing. Aalborg University Centre, Denmark

BOLSTADSTRAUMEN BRIDGE, Norway n m Built 1963 E 05 XXXX .6 5 .9 .8m Structural steel 44t Prestressed steel 7t 83.75 m/2 Length of span 83.75 Slenderness = $\frac{1}{\text{Depth of arch and lane}} = \frac{83.75}{.5+.42}$ = 91

> XXXXXX A 25× 3. ATEST RESEARCH Two bridges, F5, A and B, having the same cross-sections and span-ning 200 m, have been designed according to Danish codes to study optimal arrangement of hangers. Nonlinear calculation showed that the ten-sion in the lower chord caused a 15-20% reduc-tion of max. bending in the edge beam. The hanger arrange-ment A gave 8% smal-

25×3.9m

A

038-045 1.3m/2

016

.6/2.£

B B ler bending moment in the edge beam, 2% smaller max. stress in the arch, and 9% smal-ler max. hanger force. For bridge A live load on half the span with many hangers relaxing, is about equally criti-cal for the arch as max. load on the whole span. Steel weights are 416t structural steel, 1922 prestressing steel, 622 ribbed bars. Complete calculations will be published later.

24× 4.1m

F5

32	Hangers ($A = .0$	
1		oi Co
	$15 {\rm m}/2$.4.6

NETWORK ARCHES Per Tveit, dr.ing. Aalborg University Centre, P.O. Box 159, DK-9100 Aalborg, Denmark

Network Arches Made Exclusively from Concrete

In Vienna several engineers, most of them from Austria, asked why I was using steel in the arch of network arches, when stresses due to axial forces were about 9 times as big as the bending stresses. I answered that I had been using steel because I was afraid of high costs of scaffolding. Since the arch of a network arch is relatively light there is not much money to be saved by replacing the steel by concrete. The arch bridge with inclined hangers is the forerunner of the network arch. In the twenties and thirties concrete arches were used for more than 70 of these bridges.

While listening to the session on "Trends in big bridge engineering" it struck me that network arches with arches made of concrete could be competitive for long bridges like the "Long Key Bridge" and the "Seven Mile Bridge". For each span it would be best to cast the lane slab and traffic barriers in one piece reinforced in two directions by means of pre-tensioned wires. See fig. 1. To cut scaffolding costs it would probably be best to cast elements of arches with pre-tensioned windbracing on the ground. Joints would have to be cast after the arch elements were put in place above the lane.

Preliminary calculations for a 100 m span carrying a 10 m wide lane give .42 m³ concrete ($f'_{ck} = 50 \text{ N/mm}^2$) and 70 kg steel, mostly wire, per m² of lane. Such a span would weigh about 1000t, and after installing of hangers they can be lifted from the prestressing bed and rolled sideways to a quay. If sufficiently big floating cranes are not available for placing the spans on the piers, one pontoon at each end of the span could be used. If the lane of the bridge is to be less than 10m above sea level, it seems economical to slide the spans sideways from pontoons to piers, See fig. 2. During this sliding process, pontoon and pier must be fastened to each other, and the buoyancy of the pontoons must be adjusted to compensate for the shifting of the weight of the span. Finally the hydraulic jacks intended for possible changing of permanent bearings, would be used for removing the steel rail and installing the permanent bearings.

For a long bridge the above arrangement would have these advantages: Low weight and a high degree of prefabrication, which would give low labour and materials costs and good control of workmanship.

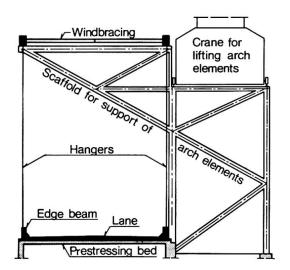


Fig. 1. Cross-sections of rig for casting of the lane, edge beam and joints in arches.

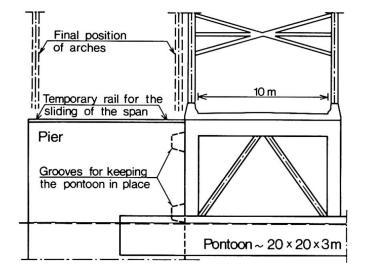


Fig. 2. Pontoon and pier with the span on the pontoon ready for transfer.