

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. [Siehe Rechtliche Hinweise.](https://www.e-periodica.ch/digbib/about3?lang=de)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. [Voir Informations légales.](https://www.e-periodica.ch/digbib/about3?lang=fr)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. [See Legal notice.](https://www.e-periodica.ch/digbib/about3?lang=en)

Download PDF: 16.10.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

POSTER SESSION 4

Innovative Bridge Structures

Structures nouvelles de ponts

Neuzeitliche Brückentragwerke

Coordinator: R.S. Stilwell, Canada

, Jr.

Bridge Strengthening by Post-Tensioning

During the period between 1940 and 1960, a number of single span steel beam composite concrete deck highway bridges were constructed in Iowa and throughout the United States. Design criteria at that time resulted in most of the exterior beams of these bridges being significantly smaller than the interior beams. As a result of changes in design standards and increases in legal load limits, many of these bridges cannot be rated for legal loads due to the capacity of their exterior beams. Rather than posting or replacing the bridges, a more attractive and economical alternative is to strengthen them. With research grants from the Iowa Department of Transportation and the Iowa Highway Research Board, a method of strengthening these bridges by post-tensioning has been developed. This study was divided into three phases. Phase I involved the development of bracket designs and the post-tension strengthening and testing of a half-scale model bridge in the laboratory. Phase II - the majority of which was completed during the summer of 1982 - involved the strengthening and testing (before and after strengthening) of two actual bridges. The final phase of the study (Phase III) involves the periodic inspection of the two bridges, their retesting during the summer of 1984, and the development of a practical design methodology for the strengthening technique. The major finding of Phases I and II was that posttensioning is an economical and viable strengthening method. As may be noted in the graphs, there was considerable end restraint in both bridges (Bridge No. 1 and Bridge No. 2). Thus the post-tensioning was more effective in the laboratory models than on the actual bridges (due to the fact that there was no end-restraint). The end restraint on Bridges No. 1 and 2, however, also reduced the live load stresses. Thus in effect the end restraint effect on live load stresses and post-tensioning stresses compensate each other. Phase III of the study has been completed and the final report is presently being prepared. Both bridges previously strengthened were retested. Very little change was noted in their behavior from that noted during their initial strengthening two years earlier. The retesting made possible the determination of loss of prestress in both bridges; Bridges No. 1 and No. 2 had losses of approximately 5% and 7% respectively. This loss is primarily due to relaxation of the end restraint previously noted. Through the use of orthotropic plate theory and finite element models, a practical design methodology for determining the required post-tensioning forces has been developed for the design engineer and is included in the final report being prepared.

IV - POSTERS

Transverse Prestressing of Prestressed Laminated Wood Bridge Decks

B. deV. BATCHELOR K. Van DALEN R.J. TAYLOR Prof. of Civil Eng. Prof. of Civil Eng. Res. Eng. Queen's Univ. Queen's Univ. Ontario MTC Kingston, ON, Canada **Kingston, ON, Canada** Downsview, ON, Canada

^A form of construction which is well suited to short span bridges is the nailed-laminated wood deck. However, experience has shown the load distribution of this type of deck is severely impaired with time due to rusting and ultimate failure of the nails. A method (1) has been developed rusting and ultimate failure of the nails. A method (1) has been developed
for the rehabilitation of nailed laminated wood decks which involves for the rehabilitation of nailed laminated wood decks which involves
introduction of transverse prestressing. This method has also been introduction of transverse prestressing. successfully applied to new construction. Initially, no Standard method of design existed for such an application of prestress to wood systems and studies have been undertaken (1) to assess the behaviour of such systems and to determine the appropriate values of structural parameters for use in analysis and design. As shown in the figure, the details of the prestressing system vary depending on whether it is applied to rehabilitation of existing structures or to new construction. Typical details are provided in the Ontario Highway Bridge Design Code (2) which includes ^a section on prestressed wood Systems.

Laboratory and field studies have been conducted on the system (1). The objective of the laboratory studies was the determination of orthotrope plate parameters and prestress losses. The main variables were type of wood (hem-fir, white pine and red pine), type of wood treatment and level of initial prestress. Tests were conducted on laminated beams and plates and on axially loaded prisms formed from laminates. The results of these investigations have also been reflected in the provisions of Reference (2).

The prestressed laminated wood deck lends itself to prefabrication. Its superior load distribution over that of existing conventional nailed laminated decks has been demonstrated (1) as shown in the figure. The Hebert Creek Bridge which was rehabilitated in 1976, has been monitored regularly, and has confirmed that the system is feasible and economical. This has also been confirmed at other sites in Ontario.

REFERENCES

- 1. Taylor, R.J., Batchelor, B.deV. and Van Dalen, K., "Prestressed Wood Bridges", Procs. International Conference on Short and Medium Span Bridges", Vol. 2, August 8-12, Toronto, Ontario, pp: 203-218.
- 2. Ontario Highway Bridge Design Code, Ontario Ministry of Transportation and Communications, Downsview, Ontario, 1983.

 $\frac{11}{11}$

\overline{z} POSTERS

Tests and Analyses on the Pedestrian Suspended-Slab Bridge

Takao NAKAZAWA Mitsuhiro SEZAKI Assoc. Prof., Dr. Res. Assoc. Miyazaki Univ. Miyazaki Univ. Miyazaki Univ. Miyazaki, Japan

^A suspended-slab bridge (Spannband-Brücke) is essentially the same structural System as the suspended-roof in buildings. This type bridge is made by spanning of tendons which are lined with reinforced concrete to provide the rigidity as slab. Its advantage is not only applicable to long span, but also unnecessary to use the elements such as main towers, hangers and stiffened members in ^a conventional Suspension bridge, and almost free from the maintenance works. However, these bridges are very few, because we have only an insufficient knowledge on their characteristics of deflection or Vibration and the effects of cracking about such ^a structure.

For these reasons, authors have conducted following experiments; firstly, to construct two model bridges of this type for pedestrians with ^a span of 10m and ^a width of 0.7m which were designed by using the span/sag ratio, ¹⁰⁰ (Type A) and ⁵⁰ (Type B), respectively; secondly, to investigate the behaviour of these bridges due to temperature variations and pedestrianactions; thirdly, to measure the cracks relating to the sand-loading test; and finally, to execute the shaking test.

The main points obtained from the experimental results are summarized as follows; 1) cracks appeared in the slab near the bridge seat due to the mere change of temperature; 2) when static loading up to about $1.0t/m$, which is 4.1 times as large as the design load, were applied, the number of cracks appeared in the slab was ⁷⁷ in Type ^A per span length 10m (mean crack spacing ℓ_{mean} =13cm; maximum crack width w_{max} =0.8mm appeared near the bridge seat); and 71 in Type B ($\ell_{\text{mean}}= 14 \text{cm}$, $w_{\text{max}}=0.7 \text{mm}$), respectively, but all these cracks closed after removing the load; 3) although the vibration mode was close to bending Vibration in the case of no crack or few cracks, the mode approached to longitudinal Vibration of tendons as the number of cracks were increasing, and the resonance frequency had ^a tendency to decrease; 4) smaller span/sag ratio is not only favorable for all mechanical properties such as deflection, Vibration, cracking et al., but also economical.

 $\frac{12}{12}$

OCO-i rn zo

Cable-Stayed Bridge with New Vierendeel Type Girder

Yoshiaki NAKAYAMA Nippon Kokan K.K. Tokyo, Japan

An example of a two-dimensional section model in wind-tunnel. The results of the experiments of spring-mounted section modeis on torsional oscillation. Spring-mounted section modeis were stable against torsional oscillation. Flutter or vortex excited oscillation did not occur until the wind speed reached ¹¹⁰ m/s. This figure shows $\nabla-\delta$ (wind speed --- logarithmic decrement) curves at the torsional double amplitude of 2°. For reference, V-S curves for ordinary trusstype girders under the same conditions are also indicated.

The maximum and minimum bending moments of ^a Vierendeel-type girder against the changes in parameter ^K when ^a uniform load of 1.0 t/m is applied to the füll span. The cross-sectional area of the girder $A = 0.240$ m², the moment of inertia $I = 8.5054$ m^{*}; A_t of the main tower = 0.780 m²; I_t of the main tower = 7.250 m^{*}; $A = 0.5554$ m $'$, A_E of the main cower = 0.01893 m² (average); and the overall length of the girder $L = 0.94$ m 884 m.

```
K = EI/L^{2}ECACThe characteristics of the changes in maximum and mimimum bending moments due to
the changes in the flexural rigidity of the girder K, are illustrated. When K
is smaller than 10^{-3} \sim 10^{-4}, the changes in the bending moment are not so
remarkable.
```
The characteristics of the flexural rigidity of ^a Vierendeel-type girder observed when the flexural rigidity of the vertical members of the girder is changed. When parameters α and β are used, the equivalent moment of inertia of the girder Ie is expressed by

 $-1e = 2I_0 + \alpha A_0$ ($\frac{H}{2}$)a $\beta = \frac{2I_0}{I_0} \times 100$ (%)

Where, Io is the moment of inertia of upper and lower chord members, Ao is the cross sectional area of upper and lower chord members, ^H is the distance on centers of upper and lower chord members, and α is the equivalent section coefficient.

The design concept when the vertical members of ^a Vierendeel-type girder are connected to a box girder.

The vertical members receive both the bending moment action as the stiffening girder in the plane of the girder and the deformation resisting action of the cross section of the whole stiffening girder in the plane at transverse direction to the plane of the girder. Therefore, the connection between a vertical member and ^a box girder must be rigid and secure.

Innovative Design for Main Towers of Long Span Suspension Bridges

Yoshiaki NAKAYAMA Nippon Kokan K.K. Tokyo, Japan

Erection of main shaft

Generally speaking, when larger unit blocks are used to reduce the construction period of a main shaft or to speed up the work, not only is the unit weight increased but also larger manufacturing, transportation and erection equipment or facilities are required. The larger erection cranes (creeper cranes) which become necessary, in particular, will prove to be inconvenient.

It is proposed that the construction period be reduced by assigning many general-purpose cranes of relatively small capacity to each main shaft (for ample, four 30t jib cranes for each main shaft).

As sufficient flexibility can be obtained by selecting an appropriate rigidity ratio for columns and beams even if a slender shaft is used, a wider space which makes the work easier is produced.

Top saddle

The vertical loads of main cables concentrated on the center of the saddle must be distributed on the columns around ^a main shaft. If ^a saddle beam of which the supporting point is on the periphery of ^a main shaft is used instead of ^a saddle and several cross beams made of steel plates are installed at right angles to the saddle beam to support it, the reaction forces of the saddle beam made of steel plates are installed at right angles to the saddle beam to support it, the reaction forces of the saddle beam are transferred to the periphery of the main shaft. In this case, it is necessary to distribute uniformly the reaction forces of the saddle beam on the periphery of the main shaft through the cross beam. This can be made possible by changing the size of the cambers which are fitted to the cross beams --- larger cambers near the periphery of the main shaft and smaller ones near the center of the cross beam.

Observation tower

As the inside of the main shaft is very large, it may be used as an observation tower, leisure facility, or for some other purpose.

Struts and its connection

Although the width of ^a strut is necessarily large to match the width of the main shaft, struts should be of ^a rigid frame structure. When members are nected, the transmission of each members stress must be made certain.

Components of main shaft

The main members constituting a main shaft are called columns or column members. Since heavy H-shaped steel sections for columns are used as main members.

As the vertical loads of main cables working on the top saddles of ^a long span Suspension bridge are very large, columns with ^a large cross-section are necessary. Some catalogue size typical heavy H-shaped steel sections for columns are used.

Connaught Bridge Replacement, Vancouver, BC

The Connaught Bridge in Vancouver, Canada crosses ^a navigable tidal inlet which is approximately 165m wide. Other constraints such as property ownership, requirements of navigation and road and rail overpass clearances dictated the final bridge length of 1100m including a main span of 84 metres. Typical spans are between 33 and 39 metres in length.

Because the structure crosses ^a major urban redevelopment area which will also be the site for Exposition 86, i.e. ^a major "people" place, the clients were willing to pay ^a premium for an aesthetically pleasing structure. The chosen design utilizes ^a cast-in-place spine beam supporting precast, pretensioned "wing" elements which act as permanent cantilever forms for infill deck concrete. ^A typical cross-section is shown in Figure 1. After the infill concrete is placed, the structure is post-tensioned longitudinally using ^a combination of ¹² and ¹⁹ -15mm strand tendons. The composite deck is post-tensioned transversely to carry the applied live loads. The superstructure is continuous between expansion joints which are spaced between ²⁵⁰ and ³⁰⁰ metres apart.

Ground conditions at the site are generally poor with loose fills overlying soft clays and silts to ^a depth of ¹⁰ metres. Expanded base piles formed on glacial drift were used to support the structure. In ^a departure from conventional expanded base piles, ^a permanent steel liner was placed and filled with normal concrete to give better lateral resistance to seismic forces.

The cost of the structure based on tenders received is about C\$950 per m2.

1

Aerodynamic Stability of Twin Suspension Bridge Concept

J.R. RICHARDSON

Applied Fluid Mechanics Division, NMI Ltd Teddington, Middlesex, England

THEORY

I

When a conventional road deck is twisted the wind causes a negative aerodynamic moment, which reduces the torsional stiffness and frequency as the wind speed increases. At some critical wind speed this frequency coincides with that of bending, and the two modes couple together in an unstable oscillation called "flutter". This speed can be raised by increasing the torsional stiffness with ^a lattice-truss or steel box. Unfortunately this increases the dead load carried by the cables, and becomes uneconomic for very long spans.

If the still-air torsion frequency could be reduced to that of bending the two frequencies would never coincide in high winds, and flutter would be avoided. However, high torsional stiffness would still be needed because the torsion frequency would reduce to zero at some wind speed, leading to another instability called "static divergence". Such ^a Solution could therefore be achieved only by increasing the torsional inertia of the deck. Even if this' was practically possible, the torsional damping would be nearly zero because the aerodynamic lift due to pitch velocity acts at the centre of the deck, and so gives no damping moment.

Torsional stiffness can be achieved, without weight penalty, by spacing the cables much further apart. If at the same time, the two deck halves are also separated to hang directly under each cable leaving a huge "slot" between them,
three phenomena occur. With the understanding that the two decks are three phenomena occur. With the understanding that the two constrained to move as ^a Single body by rigid transverse beams at intervals along the span, then

- i) the destabilising aerodynamic moment remains exactly the same, so that no increase in torsional stiffness is needed,
- ii) the still-air torsional frequency is reduced to that of bending by the increased radius of gyration

and iii) the aerodynamic damping in the torsion mode becomes highly positive.

Such ^a bridge will not "flütter" at any speed, and has high aerodynamic damping in both bending and torsion modes. It can only become unstable in ^a static divergence mode, whose critical wind speed can be raised to any value by increasing the distance between the decks.

EXPERIMENT

The theoretical predictions of the aerodynamic forces on twin decks have been confirmed by tests on wind-tunnel models. Further tests on an aeroelastic section model with a wide range of transverse beam stiffnesses were then Very rigid beams gave the predicted divergence speed with high conducted. subcritical damping and no flutter. More flexible beams reduced the divergence speed, and very flexible beams led to independent flutter of the two decks as would be expected. These results are shown below.

The weight of beams sufficiently stiff to avoid significant reduction of the critical divergence speed can, however, be shown to be only a few percent of that of the superstructure.

REDUCTION OF DIVERGENCE SPEED DUE TO TRANSVERSE BEAM FLEXIBILITY AND COMPARISON WITH EXPERIMENT

PRACTICE

Various practical forms of twin bridge can be envisaged. A pair of supporting cables for each deck is the most likely configuration, with the transverse beams attached directly below the deck or connecting the four cables above it. Precise equality of the still-air bending and torsion frequencies has been shown by experiment to be unnecessary.

TRANSVERSE BEAM

 λ

3

 $\mathbf{1}$

Insulated concrete deck on ice during curing

 $\overline{<}$

POSTERS

 1130

STEEL-WOOD COMPOSITE BRIDGE INTRODUCTION AND OUTLINE OF THE PROJECT DECK DEFLECTIONS 25 day DECK DEFLECTION **MG PLATE AS SHEAR** $\begin{array}{c}\n\downarrow \\
\downarrow\n\end{array}$ Third \perp W Fine 1 \cdots FIIIIII 47 A. $\overline{\mathcal{M}}_1$ **6 Spaces**
DECK SECTION
ORIENTING THE ONE AXLE
AT 1:4 SPAN ONE AXLE
AT 1.2 SPAN ι DEFLECTIONS MEASURED AT
DUAL AXLE LOAD OF 127.5 kN

 $\frac{1132}{25}$

 $\frac{1134}{2}$