Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH

Kongressbericht

Band: 12 (1984)

Artikel: Installation for runnability on long span bridge

Autor: Takayama, Akira / Tsuruta, Hiroaki / Goto, Mitsuru

DOI: https://doi.org/10.5169/seals-12288

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 18.10.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

VII - POSTERS

Runnability of Train on Transit Girder System.

For development of transit girder system, runnability of train had been studyed as mentioned

Runnability of trains at the transit girder system can be separately checked for sections of the expansion joint and the dispersion system for angular bend.

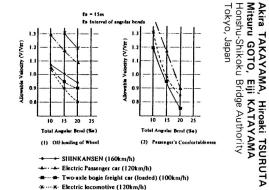
At the expansion joint, the structure is designed so that rail tracks may continue to secure a proper gauge line and wheelset load can be structurely supported.

Rail of the inserted girder type expansion joint is cut out partially to keep space for expansion, and the guardrails are arranged to prevent derailment.

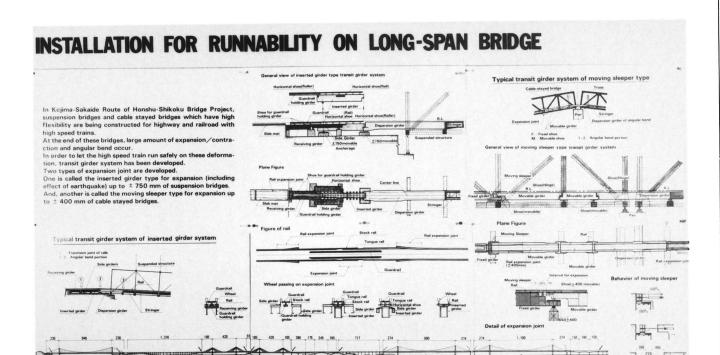
For the runnability on the expansion joint, running tests by actual cars were conducted in 1974 to certify safety of trains with speed up to 180 km/hr.

The runnability on the angular bend section is extreamely influenced by a vertical and horizontal angular bend. The safety against derailment when a train run on the transit girder with vertical, horizontal angular bend or composite angular bend of the both and passenger's comfortableness for vertical and horizontal vibration had to be investigated.

The investigations for derailment and comfortableness were carried out for criteria of the rate of off-loading of wheels and the lateral pressure and magnitude of the vibration, respectively, and they were numerically analyzed or simulated for various types of cars.


And, important items among them were confirmed by running tests of actual cars and model cars, and results of the running tests and the calculation were compared. As the result of these investigations, relation between the running speed and the limit of angular bend is established as shown in right figure.

Allowable velocity V/Vst alove is defined as the ratio of investigated result to standard running speed


Fig.

Allowable speed of various types of cars

For example, when the total angular bend is 10% and span of the dispersion girder is 15m, these figures show that allowable velocity (V/Vsr) of Shinkansen is 1.07 for the rate of off-loading of wheels, in other words, Shinkansen car can run with 1.07 times speed of standard running speed. As for an electric locomotive, it can run with 1.04 times speed of 120 km/hr.

X X Two-axle freight car (75km/h)

