Ergebnisse der metallurgischen Untersuchungen und Festigkeitsprüfungen, welche im Zusammenhang mit der im Winter 1945/46 in elektrisch geschweissten Stahlrohrkonstruktion erbauten Kossuth-Brücke in Budapest durchgeführt wurden

Autor(en): **Péter, Ludwig**

Objekttyp: Article

Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen

Band (Jahr): 9 (1949)

PDF erstellt am: 29.06.2024

Persistenter Link: https://doi.org/10.5169/seals-9710

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Ergebnisse der metallurgischen Untersuchungen und Festigkeitsprüfungen, welche im Zusammenhang mit der im Winter 1945/46 in elektrisch geschweißter Stahlrohrkonstruktion erbauten Kossuth-Brücke in Budapest durchgeführt wurden

Results of the metallurgical investigations and strength tests made in connection with the Kossuth Bridge in Budapest, which was erected in electrically welded steel tubular construction in winter 1945/46

Résultats des essais de résistance et des examens métallurgiques effectués à propos de la construction, à Budapest, du pont Kossuth en tube d'acier soudé électriquement en hiver 1945/46

Ludwig Péter, Budapest

Nach bisheriger Praxis war es nicht zulässig elektrische Lichtbogenschweissungen bei tieferen Temperaturen als —6°C ohne Vorwärmung durchzuführen — ohne Rücksicht auf die chemische Zusammensetzung des Stahlmaterials — obwohl diese Begrenzung auf —6°C unseres Wissens durch keinerlei wissenschaftliche Untersuchungen begründet ist.

Durch systematisch durchgeführte Versuche und Prüfungen gelegentlich des Baues obgenannter Brücke konnte festgestellt werden, dass Stahlsorten mit geringem Carbongehalt auch bei einer Lufttemperatur von — $15\,^{0}$ C ohne Vorwärmung des zu schweissenden Stahles mit Sicherheit zuverlässig geschweisst werden können.

Erwähnte Brücke ist 393.83 m lang und 15.90 m breit.

Zwei Öffnungen von je 55.28 m und eine von 78 m Weite sind in geschweißter Stahlrohrkonstruktion hergestellt.

Die Länge der durch elektr. Schweissung hergestellten metallischen Verbindungen beträgt schätzungsweise 2000 m. Davon sind ca. $65\,^0/_0$ in der Werkstätte der die Rohrkonstruktion liefernden Firma, die restlichen $35\,^0/_0$ aber an der Baustelle über dem Wasser durchgeführt worden, und zwar im November-Dezember 1945 und Januar-Februar 1946. Laut Angaben der Meteorologischen Anstalt betrug die mittlere Temperatur im erwähnten Zeitabschnitt — $6.9\,^0$ C, die am Bauplatz gemessene tiefste Temperatur aber betrug — $15\,^0$ C.

Da, wie eingangs bemerkt, zuverlässige Angaben über die Zulässigkeit von elektr. Schweissarbeiten unterhalb einer Temperatur von —6°C Lufttemperatur nicht vorlagen, andererseits aber von den zuständigen Stellen darauf gedrängt wurde auch bei grosser Kälte zu arbeiten, war es, um Klarheit zu erreichen, angezeigt, unter Temperaturverhältnissen, welche den am Bauplatz herrschenden gleichkamen, Probeschweissungen vorzunehmen und diese dann metallurgisch und bezüglich Festigkeit zu prüfen.

I. Beschreibung des Grund-Stahlmaterials, der Schweißelektroden und der Versuchseinrichtung

1. Die durch el. Schweißung hergestellten Probestücke bestanden: a) aus dem Grund-Stahlmaterial, so wie es aus dem Stahlwerk geliefert wurde (im folgenden mit G.-St.M. bezeichnet) und b) aus gehärtetem G.-St.M.

Die chemische Zusammensetzung der Probestücke nach a) und b) zeigt Tabelle I. (Siehe S. 385.)

Der Carbongehalt ist gering, nur 0.17% und beeinflußt die Schweißfähigkeit in günstigem Sinne. Der Si-Gehalt ist ebenfalls gering und dient neben anderen Gründen wahrscheinlich zur Bindung des im Eisen vorhandenen Sauerstoffs. Der 0,64-%ige Gehalt an Mn. entspricht der Menge, welche zur Erzielung der geforderten Festigkeit notwendig ist. Wie ersichtlich, wurde Mn. statt C gebraucht. Diese Legierungsmethode ist teuer, vom Standpunkt der Schweißung aber unbedingt vorteilhaft. Mn. vermindert die Abkühlungsdauer. P und S bewegen sich nahe der zulässigen oberen Grenzen. Der 0.27-% ige Mo-Gehalt ist von günstiger Wirkung auf die Schweißfähigkeit. Al ist nicht vorhanden. Das Vorkommen von Cr, Ni und V (wobei der Niund V-Gehalt nicht nennenswert ist) ist nicht absichtlich und ist vielmehr darauf zurückzuführen, daß diese Bestandteile im vom Stahlwerk verwendeten Alteisenmaterial vorhanden waren. Der Gehalt von 0.38% Cu kann auch so erklärt, kann aber auch anders gedeutet werden. Unter normalen Abkühlungsverhältnissen beeinflußt selbst ein 0,50-%iger Cu-Gehalt die Festigkeit und Härte des Stahlmaterials nicht. Bei raschem Abkühlen aber, was beim el. Lichtbogenschweißen der Fall ist, wächst selbst bei ärmerer als 0,50%-iger Legierung die Härte und Festigkeit. Schon bei 0,20-% igem Cu-Gehalt erhöht sich die Widerstandsfähigkeit gegen das Rosten. Zusammengefaßt kann gesagt werden, daß bei der Röhrenfabrikation die Schweißbarkeit gut berücksichtigt wurde.

2. Es wurde bereits erwähnt, daß wir zur Herstellung der Probestäbe Rohrmaterial in originalem Zustande, so wie es vom Stahlwerk geliefert wurde, und solches in gehärtetem Zustand verwendet haben. Die Härtung geschah durch Erwärmung des Rohrmaterials auf 900° C und plötzliche Abkühlung in Wasser von Lufttemperatur. Präziser ausgedrückt, haben wir das Kristallit-Gefüge des Stahlmaterials oberhalb der GOS-Linie fixiert.

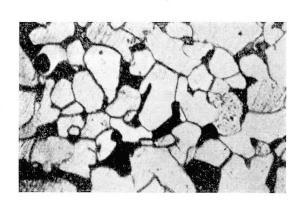


Fig. 1 (150-fach)

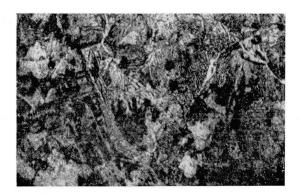
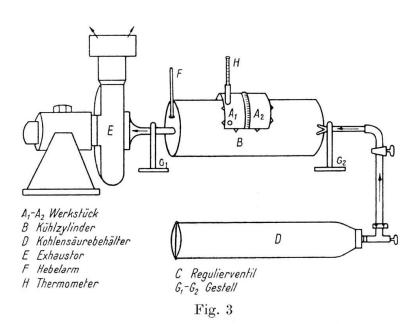



Fig. 2 (150-fach)

Bemerkung	9	Die Zeit der Analyse 13. II. 1946	4. VI. 1946	
Beme		Die Zeit o	4. V	
Al		0,00	0,00	0,00
1		0,06	90,0	90,06
Cu		0,38	0,00	0,38
$Ni \mid Mo \mid Cu \mid V \mid Al$		0,20	0,34	0,27
Ni		0,03	0,00	0,03
$P \mid S \mid Cr$	%	0,19	0,22	0,20
X			0,037	0,0305 0,037
Ь		0,035	0,026	0,0305
Mn		0,68	09,0	0,64
C Si		0,155	$0,197 \mid 0,253 \mid 0,60$	$0,172 \mid 0,204 \mid 0,64$
C		0,148	0,197	0,172
Benennung		Stahlrohrmaterial 0,148 0,155 0,68 d. Kossuth Brücke	do.	Mittelwert
		T. Iab	,	

T. Iab

Die Mikroaufnahme des Originalzustandes ist aus Abbildung 1 ersichtlich, die des gehärteten Zustandes aus Abbildung 2. Die erstere zeigt ein einem längeren Abkühlungsprozeß ausgesetzt gewesenes grobes, großes Kristallitgefüge, Ferrit und Perlit, mit wenig C-Gehalt, die zweite Abbildung zeigt die Fixierung des Gefüges oberhalb der GOS-Linie, also Martensit.

Das gehärtete Stahlrohrmaterial mit 0.17% C und ca. 0,64% Mn besitzt also ein rein Martensit-haltiges Kristallit-Gefüge, welches bei einer Abkühlungsgeschwindigkeit von 200—400°C pro Sekunde erreicht werden kann.

Während der Schweißung über der Donau bei —15°C ist wegen der Masse und der Form der zum Schweißen gelangten Stahlrohrkonstruktion in der Metallverbindung eine Abnahme der Temperatur von über 300°C pro Sekunde nicht vorgekommen.

Festhalten wollen wir, daß wir zur Herstellung der Probestücke G.St.M. und gehärtetes G.St.M. verwendet haben.

Aus den Materialien lt. Abbildungen 1 und 2 schweißten wir aus dem G.St.M. 2 Serien Probestäbe, aus dem gehärteten G.St.M. aber eine Serie. Die Probestäbe der einen Serie, aus dem G.St.M., wurden bei +10°C, die der zweiten Serie aus dem G.St.M. bei einer künstlich hergestellten Temperatur von —15°C hergestellt. Aus dem gehärteten G.St.M. wurde die Serie der Probestäbe ebenfalls bei +10°C geschweißt. Geschweißt wurde in gedeckter Werkstätte.

3. Die Kühlung des G.St.M. auf die tiefste Temperatur von — 15° C geschah mit Hilfe des in Abbildung 3 skizzierten Apparates. Die mit A_1 und A_2 bezeichneten, zweiteiligen, halbzylinderförmigen Röhrenstücke hefteten wir auf den Mantel eines Behälters B von entsprechendem Durchmesser an. Aus der Stahlflasche D ließen wir durch die Rohrleitung und das Ventil C flüssige Kohlensäure (Co_2) in den Behälter einströmen, wo sich dieselbe ausdehnte, also wärmeentziehend wirkte. Die expandierte Co_2 wurde dann durch den Exhaustor abgesogen. Die Temperatur der Stücke A_1 und A_2 konnte mittels der Thermometer H gemessen werden, welche in mit Salzwasser gefüllte Röhrchen eintauchten.

Die Daten der Abkühlung, resp. der Schweißung der einzelnen Lagen, sind in der Tabelle II angeführt. Aus der Tabelle ist ersichtlich, daß die 2 Röhrenstücke mittels 6 Nähten in 2,08 Stunden, bei einer mittleren Temperatur von —9,16° C zusammengeschweißt wurden. Vor Beginn der Schweißung dauerte es 30 Minuten bis die Temperatur von —15° C erreicht wurde. Die Schweißdauer der 1. Lage war 30 Minuten und während dieser Zeit erwärmten sich die Rohrstücke dabei von —15° C auf +75° C. Bei der Schweißung der übrigen Lagen sind die Rohrstücke von einer Temperatur von +81° C im Mittel auf —8° C im Mittel abgekühlt worden (während der Entfernung der Schlacke) und zwar in einer mittleren Zeitdauer von 19 Minuten. Die künstliche Kühlung mittels Kohlensäure hat während der ganzen Schweißdauer stattgefunden, doch wurde auf die Abkühlung auf —15° C bei jeder Naht verzichtet.

Tabelle II.

Lage	Temperatur bei Beginn der Schweissung der einzelnen Lagen	Schweisszeit in Minuten	Anzahl der verbrauchten Schweisstäbe Stk.	Erwärmung am Ort der Thermometer	Dauer der Schlackenent- fernung in Minuten
1	-15	30	9	+70 + 80	45
2	- 5	15	5	+90 +100	30
3	-15	15	5	+60 + 70	30
4	- 5	20	7	+70 + 80	40
5	-10	20	7	+80 + 90	40
6	- 5	25	8	+80 + 90	
Zusammen		125	41	<u> </u>	185

Aus den Versuchsdaten geht hervor, daß die Temperatur der Schweißstücke während der Schweißdauer zwischen —15°C und höchstens 100°C schwankte. An der Baustelle der Kossuth-Brücke schwankte die Temperatur von —15°C ausgehend sicher bis über 100°C, nachdem mit 41 Schweißelektroden à 3 m/m \varnothing eine V-Naht von 17 m/m Dicke und entsprechender Länge in einemfort hergestellt wurde. Während des Schweißens ist dann die Temperatur weder der Naht noch der Umgebung unter 0°C gesunken. Somit haben die Versuche bei extremeren Verhältnissen stattgefunden.

- 4. Bei der Schweißung sind Elektroden mit sehr dicker Hülle verwendet worden. Die chemische Zusammensetzung der Elektroden und des Schweißgutes (der Schweißnähte) ist aus der Tabelle III ersichtlich.
- C- und Si-Gehalt sind entsprechend, hingegen ist S in größerer Menge enthalten als 0,03%. Der Mn-Gehalt ist entsprechend. Das Mo und das Ni sind auf die Qualität des Schweißens von gutem Einfluß, der Cr- und W-

Tabelle III.

Benennung	- C	Si	Mn	s	P	Cr	Ni	Mo	V	W	
	%										
Draht	0,127	0,075	0,46	0,052	0,027	0,17	0,21	0,36		0,05	
Schweißgut	0,094	0,134	0,60	0,041	0,055	0,16	0,14	0,36		0,05	
Änderung der Legierung in %	25,98	+42,53	+23,33	-21,15	+50,90	-6,00	- 33,33	0,00		0,00	

Gehalt ist in der gefundenen Menge nicht von Bedeutung. Der C-Gehalt in der Schweißnaht zeigt gegenüber dem C-Gehalt des Drahtes eine Abnahme von fast 26%, was nicht von Bedeutung ist und auf den Mangel der entsprechenden chemischen Substanzen im Umhüllungsmaterial zurückzuführen ist. Der Si-Gehalt der Schweißnaht ist um 43%, der Mn-Gehalt aber um 24% höher als derjenige im Schweißdraht.

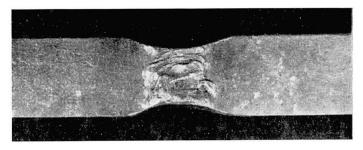


Fig. 4a

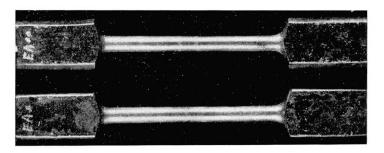


Fig. 4b

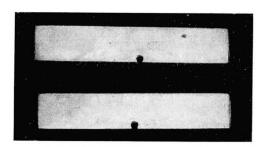


Fig. 5

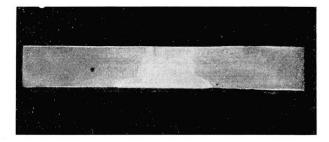


Fig. 6

5. Aus dem G.St.M. mit diversen Kristallitgefügen, ferner aus den bei den verschiedensten Temperaturen und Gefügen geschweißten Metallverbindungen sind für Zerreißversuche, Schlagproben und Härtemessungen Probestäbe hergestellt worden, um ein klares Bild über die vorliegenden Verhältnisse zu erhalten.

Es sind flache und runde Probestäbe von $10 \text{ m/m} \varnothing$ resp. Dicke für die Zerreißproben hergestellt worden. Die flachen Stäbe sind aus der Mantelfläche, längs der Erzeugenden herausgeschnitten worden. Weder die Oberfläche der Naht,

noch die des G.St.M.-s wurde bearbeitet, hingegen wurde der zylindrische Teil der runden Probestäbe glatt poliert. Die entsprechenden Bilder sind in den Abbildungen 4a und 4b ersichtlich.

Die Stäbe für die Schlagproben sind aus den entsprechenden Teilen wie die für die Zerreißproben hergestellt worden, jedoch so, daß bei den Schweißverbindungen die Querschnittsverminderung einmal in die Mitte der Naht, im anderen Fall aber in die Übergangszone gefallen ist. Abbildung 5.

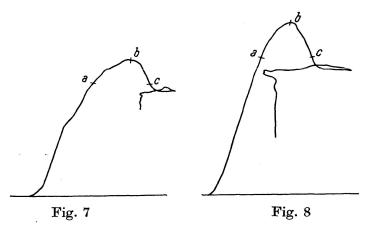
Die Probestäbe für die Härteprüfung zeigt Abbildung 6.

Diese Schweißverbindungen dienten auch zur Herstellung der Makro- und Mikroaufnahmen.

II. Zugfestigkeits-Untersuchungen

1. Ergebnisse mit den flachen Probestäben

Die ermittelten Festigkeitswerte der aus G.St.M. und gehärtetem G.St.M. hergestellten flachen, 110 mm langen Probestäbe zeigt Tabelle IV.


Bei den flachen Probestäben haben wir — um mit den Resultaten der metallischen Bindungen eine Vergleichsbasis zu erhalten — durch vorschriftsgemäße Ausrundung die Ausdehnungsmöglichkeit außein Mindestmaß begrenzt.

Ohne auf die Details der erhaltenen Werte der Festigkeitsproben näher einzugehen, wollen wir auf den Vergleich der Mittelwerte übergehen und konstatieren, daß bei dem gehärteten G.St.M. das σ_S um 26%, das σ_B aber um 22% größer ist als bei dem ungehärteten G.St.M., hingegen ist die auf ein minimales Maß begrenzte Dehnung um 10% kleiner.

 $artheta_{2.5}$ σ_B σ_s NrBemerkung Benennung kg/mm^2 0/0 28.50 37,60 Grundstahl-Material im Original-Zustande 48,00 1 2 do. 28,60 47,20 36,00 28,90 48,30 37,60 3 do. Bezeichnet mit 28,66 47,83 37,06 Mittelwert A.)42,50 62,50 33,60 Grundstahl-Material in gehärtetem Zustande 4 5 do. 37,70 60,40 32,00 36,00 61,80 34,00 6 do. Bezeichnet mit 38,73 61,56 33,20 Mittelwert B.)

Tabelle IV

Das Versuchsdiagramm eines Stabes aus dem G.St.M. zeigt Abbildung 7 und das des gehärteten G.St.M. die Abbildung 8. Die Diagramme sind charakteristisch für die auf kurzer Länge ausgesparten Stäbe mit geringem C-Gehalt. Beim Punkt a ist eine ausgesprochene Fließgrenze feststellbar, wohingegen a—b die Änderung der Zähigkeit, und b—c die der Bildsamkeit zeigt. Die zähe und bildsame Formveränderung ist neben größerer Fließgrenze kleiner als beim gehärteten G.St.M.

Die Festigkeitsworte der aus ungehärtetem und gehärtetem G.St.M. hergestellten Schweißverbindungen zeigt Tabelle V.

Tabelle V

	T.	σ_S	σ_B	$\vartheta_{2,5}$	D 1
Nr.	Benennung	kg/	mm^2	%	Bemerkung
7	Metallverbindung aus ungehärtetem G.St.M.	30,50	48,20	12,80	Gerissen im
8	do.	29,80	50,60	14,00	Überg.
9	do.	32,60	48,20	12,80	
	Mittelwert	30,96	48,93	13,20	Bezeichnet mit C.
10	Metallverbindung aus gehärtetem G.St.M.	37,30	51,10	12,80	Gerissen im Überg.
11	do.	39,10	49,80	13,20	
12	do.	39,00	54,20	14,40	
S-, 27	Mittelwert	38,46	51,70	13,53	Bezeichnet mit D.
13	Metallverbindung aus ungehärtetem G.St.M. unt. 0°C geschweißt	33,40	49,50	13,60	Gerissen im Schweißgut

Die Fließgrenze der aus gehärtetem G.St.M. hergestellten Schweißverbindung ist um ca. 8% größer als die des ungehärteten G.St.M., wobei wir die Festigkeitswerte, abgesehen von einer Differenz von rund 3%, praktisch als gleich bezeichnen können.

Die Fließgrenze der mit gehärtetem G.St.M. hergestellten Schweißverbindung ist gleich der Fließgrenze des ungeschweißten, gehärteten G.St.M., hingegen ist die Zugfestigkeit um 16% kleiner. Die Dehnung ist bei beiden Schweißverbindungen ziemlich gleich, natürlich ist aber die Dehnung der letzteren viel kleiner als die der entsprechenden Grundwerkstoffe.

Bei —15°C konnte aus dem G.St.M. wegen Materialmangel nur ein flacher Stab aus der Schweißverbindung hergestellt werden. Das Ergebnis dieser einzigen Probe bietet natürlich keine sichere Basis, doch geht daraus wenigstens soviel hervor, daß die Festigkeitswerte der bei einer tieferen Temperatur als 0°C hergestellten Schweißverbindung zwischen den Werten der Schweißverbindungen aus G.St.M. und denen des gehärteten G.St.M. liegen. Abbildung 9 zeigt die Diagramme der Bruchprobe der aus G.St.M. und gehärtetem G.St.M. hergestellten Schweißverbindungen, sowie dasjenige der bei künstlich hergestellter Tieftemperatur erfolgten Schweißung.

Das mit a) bezeichnete Diagramm bezieht sich auf G.St.M., das mit b) auf gehärtetes G.St.M. und c) auf bei künstlich abgekühlter Temperatur erfolgte Schweißung.

Die Fließgrenze und die zähe Formveränderung ist deutlich sichtbar, dagegen zeigen die Diagramme keine bildsame Formveränderung.

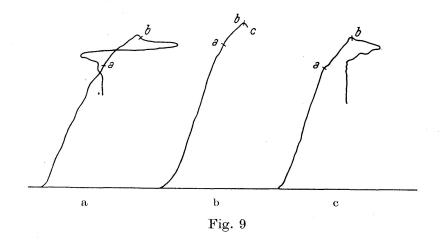
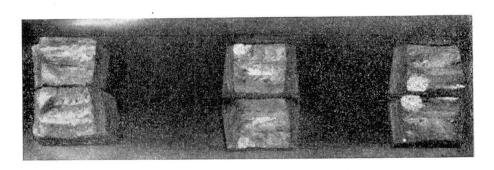
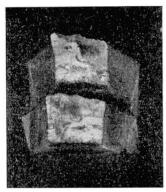




Abbildung 10 zeigt die Bruchflächen der aus G.St.M. und Abbildung 11 die aus gehärtetem G.St.M. hergestellten Schweißverbindungen. Bei a) und b) der Abbildung 10 sind zwischen den Nahtreihen einzelne, punktförmige Einschlüsse sichtbar, die Bruchfläche c) weist keine Einschlüsse auf. Abbildung d) zeigt die Bruchfläche der bei einer tieferen Temperatur als 0°C geschweißten Verbindung. Mit freiem Auge angesehen ist der Bruch vollkommen tadellos.

a

d

Fig. 10

Auf allen 3 Bruchflächen der Abbildung 11 sind zwischen den Nähten gut sichtbare Einschlüsse enthalten. Der Bruch erfolgte bei jedem der Stäbe im Übergang, infolgedessen ziehen sich die Einschlußlinien längs des Grundmaterials und den Nähten. Interessant ist, daß die Schweißnähte selbst mit ihren Berührungsflächen unter sich, wie auch mit dem Grundmaterial eine vollkommene Verbindung zeigen, somit versteckt sich der Einschluß zwischen den 3 Berührungsflächen. Trotz guter Festigkeitswerte ist es natürlich, daß infolge der Einschlüsse die Kraftlinien sich stauen und dadurch gewisse Spannungen auftreten.

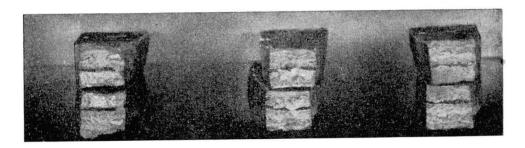


Fig. 11

2. Ergebnisse der Untersuchungen, welche mit Prüfstäben von kreisförmigem Querschnitt ausgeführt wurden

Die Versuchsergebnisse mit flachen Probestäben haben wir bereits besprochen, sind uns aber bewußt, daß mit Stäben solcher Form meistens nur die Zugfestigkeitswerte bestimmt werden. Bei den Schweißverbindungen benützt man diese Form der Probestäbe darum, damit der Bruch möglichst im Querschnitt der Naht eintreten soll. Bei der Zugbeanspruchung können natürlich neben den Werten der Zugfestigkeit auch andere damit in Zusammenhang stehende Werte festgestellt werden.

Um weitere Einsicht in die Festigkeitsverhältnisse zu gewinnen, sind auch mit Rundstäben von $10~\text{mm}~\varnothing$ und 100~mm Länge zwischen den Kerben Zugversuche durchgeführt worden.

Auch bei diesen Versuchen sind wir von den Untersuchungen mit ungeschweißtem G.St.M. und gehärtetem ungeschweißten G.St.M. ausgegangen. Die so erhaltenen Werte verglichen wir dann mit denen, welche durch Prüfung von Probestäben — hergestellt aus der Schweißverbindung — erhalten wurden und wobei die Schweißung einmal bei normaler Temperatur, dann aber auch bei tieferen Temperaturen als 0°C stattgefunden hat.

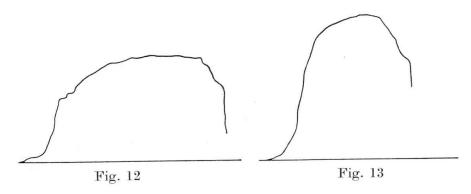

Nr.	Benennung	σ_S	σ_B	$artheta_{10}$	φ	A_{K}	Bemerkung
		$ m kg/mm^2$		%		mkg/cm^2	
14	Grundstahl-Material im Original-Zustande	26,70	44,10	25,80	62,90	13,20	
15	do. do.		43,70	25,80	62,90	17,00	
16			44,00	26,60	61,51		
	Mittelwert	26,70	43,93	26,06	62,43	15,10	Bezeichnet mit E.
17	Grundstahl-Material in gehärtetem Zustande	37,70	59,50	15,70	66,40	14,40	Gerissen
18	18 do. 19 do.		58,20	16.50	65,20	18,40	außerhalb
19			57,50	14,50	66,40		der Marke
	Mittelwert	37,66	58,40	15,16	66,00	16,40	Bezeichnet mit E.

Tabelle VI

In Tabelle VI sind die ermittelten Werte für G.St.M. und gehärtetes G.St.M. angeführt, und zwar für ungeschweißten Zustand. Die Werte entsprechen dem Gefüge, wie es dem verwendeten Material eigen ist. Die Kontraktion wie auch die spezifische Schlagarbeit ist wohl bei dem gehärteten Material größer als beim ungehärteten, doch können diese Werte praktisch als gleich groß angenommen werden. Trotz der Härtung hat das Grundmaterial keinen Verlust an Zähigkeit erlitten, die Wirkung der plötzlichen Abkühlung aber zeigt sich im wesentlichen in der Erhöhung der Fließgrenze und der Zugfestigkeit, ferner in der Abnahme der Dehnung.

Abbildung 12 zeigt das Versuchsdiagramm für das G.St.M. und es ist identisch mit einem Diagramm für einen Stahl mit geringem C-Gehalt.

Abbildung 13 zeigt das Versuchsdiagramm für das gehärtete G.St.M., entsprechend den Werten der Tabelle VI.

Zwecks Vergleich mit der Bruchfläche der Schweißverbindung zeigt Abbildung 14 unter a) die Bruchfläche des Probestabes aus dem G.St.M. und b) diejenige aus dem gehärteten G.St.M.

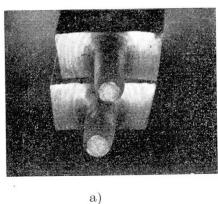


Fig. 14

b)

Tabelle VII enthält die Festigkeitswerte der aus dem G.St.M. und dem gehärteten G.St.M. hergestellten Schweißverbindungen.

Die in der Tabelle VII enthaltenen Festigkeitswerte der aus dem G.St.M. hergestellten Schweißverbindung sind mit Ausnahme der auf δ 10 und δ bezogenen Dehnungswerte vollkommen gleich mit den in der Tabelle VI angeführten Werten für das G.St.M.

Die Festigkeitswerte der andern G.St.M. bei einer tieferen Temperatur als 0°C hergestellten Schweißverbindungen zeigt VIII.

Für das Gebiet innerhalb der Schweißverbindung kann speziell für die Naht eindeutig festgestellt werden, daß bei der Zugbeanspruchung des G.St.M. von 43,00 kg/mm² die Schweißverbindung sich innerhalb der 100 m/m Kerbdistanz um 20% gedehnt hat, wobei auf die Naht selbst 6% fallen.

Bestand die Schweißverbindung aus gehärtetem G.St.M., ist bei $39,00\,\mathrm{kg/mm^2}$ Fließgrenze und 50,00 kg/mm² Zugkraft jede Schweißung beim Übergang gerissen. Bei dieser Beanspruchung, welche einen Mittelwert darstellt, hat sich die Schweißverbindung im Mittel um rund 7% gedehnt, die auf die Naht fallende Dehnung beträgt 20%, bei einer Kontraktion der Naht von 22%.

Die Festigkeitswerte der Tabelle VIII über Schweißverbindungen, welche bei einer tieferen Temperatur als 0°C ausgeführt wurden, beziehen sich

Tabelle VII

Nr.	Benennung	σ_S	σ_B	ϑ_{10}	θ	ψ	$A_{j} = \frac{A_{j}}{\mathrm{mkg}}$	$ m cm^2$	Bemerkung
		kg/ı	mm^2	%			Schweiß gut	Über- gangz.	
20	Metallverb. hergestellt aus Grundmaterial im Orig Zustande	26,70	44,30	21,80	6,70	61,50	9,40	4,50	Grundmaterial gerissen außerhalb der Marke
21	do.	26,00	38,80						Wurzel wurde nicht nachgeschw.
22	do.	26,50	44,80	21,20	6,70	61,50	10,10	9,20	Grundmaterial gerissen
23	do.	26,20	44,80	15,20	3,30	60,20			do.
	Mittelwert	26,35	43,17	19,40	5,56	61,06	9,75	6,85	Bezeichnet mit G.
24	Metallverb. hergestellt aus 24 Grundmaterial im gehär- teten Zustande		50,60	26,70	7,40	27,90	10,90	10,20	Schweiß-Material gerissen
25	do.	39,50	48,00	12,00			11,70	9,40	do.
26	do.	38,80	50,20	16,00	6,00	19,00			do.
27	27 do.		51,90	24,00	6,80	20,30			do.
	Mittelwert	39,12	50,15	19,67	6,73	22,30	11,30	9,80	Bezeichnet mit H.

Tabelle VIII

Nr.	Benennung	σ_S	a_B	ϑ_{10}			A_{j} mkg		Bemerkung	
		$ m kg/mm^2$		%		Schweiß- Überg- gut gangz.				
28	Metallverbindung hergestellt aus Grundstahl Material im Orig.–Zust. unterhalb 0°C	25,90	44,70	20,00	5,3 0	53,70	8,70	18,10	Grundmaterial gerissen	
29	do.	26,10	44,80	17,00	2,70	53,70	8,40	9.60	do.	
30	do.	26,90	44,70	18,30	2,70	53,70			do.	
	Mittelwert	26,30	44,73	18,43	3,23	53,70	8,55	13,85	Bezeichnet mit I.	

größtenteils auf das G.St.M., weil die Brüche der Verbindung im G.St.M. entstanden.

Die Festigkeitswerte der bei normaler Temperatur aus G.St.M. erzeugten Verbindungen wollen wir ebenfalls mit den Werten für das G.St.M. vergleichen.

Wenn wir also die Werte der bei einer tieferen Temperatur als 0°C geschweißten Verbindung, also die Tabelle VIII mit den Werten der Tabelle VII vergleichen, so finden wir für δ 10 eine Abnahme von 5%, bezogen auf die Naht eine solche von 42% und für die Kontraktion eine solche von 12%. Bei den unter 0°C geschweißten Verbindungen tritt also eine Verminderung der Zähigkeit ein. Bezüglich der Naht selbst kann festgestellt werden, daß diese sich bei einer Beanspruchung von 45,00 kg/mm² nur um 3% gedehnt hat, also spröder ist als bei einer Schweißung bei normaler Temperatur.

Tabelle IX

Nr.	Benennung	σ_S	σ_B	ϑ ₁₀ %	θ	φ %	A mkg	$\frac{K}{\mathrm{cm}^2}$
	·			%			Schweiß gut	Über- gangz.
1	Der Unterschied zwischen den Festig- keitswerten bezeichnet mit A—B	26,00 B>	21,80 B>		10,40 A>			
2	do. A—C	7,42 C>	2,24 C>		35,73 B>	The company of the control of the co		
3	do. BD	0,00	16,00 B>		53,26 B>	The state of the s	0,7	0.9
4	do. C—I	19,50 D>	53,58 D>		0,00		F	
5	do. E—F	29,10 F>	24,67 F>	40,29 E>	NOT COMMERCE AND A MARKET TO THE COMMERCE AND	5,99 F>		
6	do. E—G	0,00	0,00	25,55 E>	THE TAX A CONTINUE AND	0,00	36,09 E>	53,97 E>
7	do. FH	3,73 H>	14,14 F>	63,17 F>		66,21 F>	33,23 F>	38,10 F>
8	do. G—H	32,89 H>	13,97 H>	65,30 G>	71,72 H>	47,10 G>	11,87 H>	31,52 H>
9	do. G—I	0,00	3,48 I>	5,00 G>	42,90 G>	12,04 G>	30,32 I>	18,17 I>
10	do. H—I	32,77 H>	10,78 H>	63,48 I >	83,42 H >	58,47 I>	20,93 I>	17,54 H >

In Tabelle IX sind die erhaltenen Festigkeitswerte miteinander verglichen zusammengestellt und zwar sind die Unterschiede in Prozenten ausgedrückt. Diese prozentualen Angaben weisen ganz deutlich auf die Differenzen der auf verschiedene Art hergestellten Verbindungen hin.

Die Abbildungen 15 a) und 15 b) stellen Diagramme von auf verschiedene Art hergestellten Schweißverbindungen dar. Abbildung 15 b) weist scharf auf das Verhalten des Schweißgutes hin. Beim Punkt "a" ist ein entschiedenes Fließen feststellbar, a—b zeigt zähe, b—c bildsame Formveränderung.

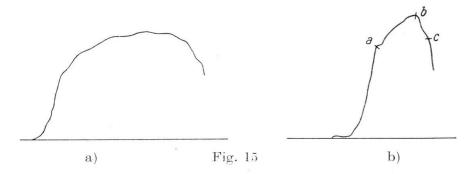
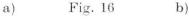



Abbildung 16 stellt Schweißverbindungen des G.St.M. dar. Stab a) ist im Grundmaterial, Stab b) im Übergang gebrochen. Die Ursache des Bruches an dieser Stelle ist in dem sich durch den Querschnitt ziehenden Einschluß zu suchen.

In der Abbildung 17 sehen wir Brüche von Probestäben, bei denen die Verbindung aus gehärtetem G.St.M. hergestellt ist. Jeder Stab ist im Schweißgut gebrochen. Beim Probestab a) ist der Einschluß, welcher vom Rande pfeilartig gegen einwärts läuft, gut sichtbar.

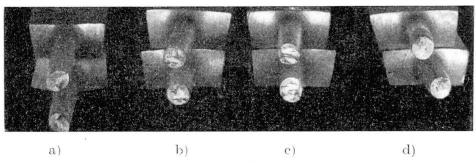
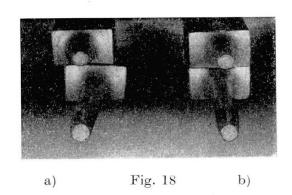
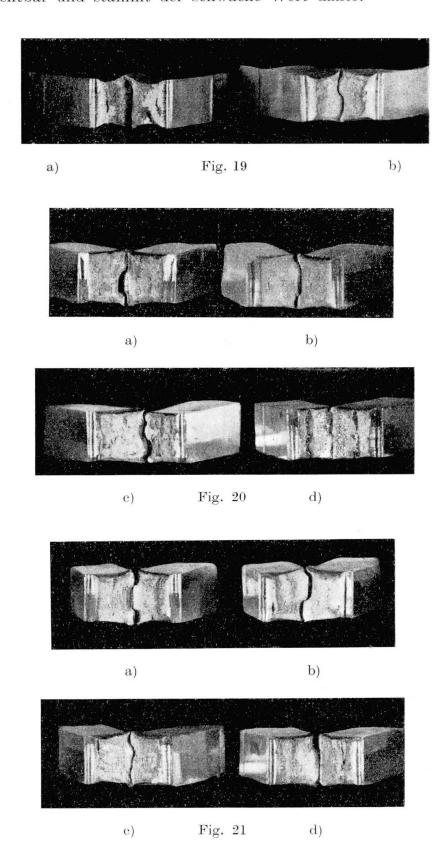



Fig. 17

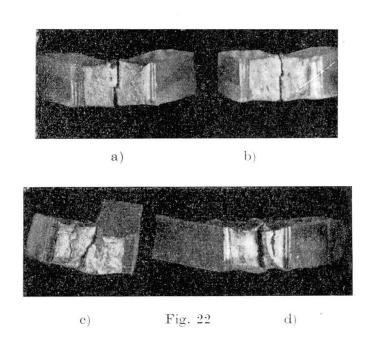
Mit Ausnahme des Stabes d) sind in den Brüchen die Einschlüsse gut erkennbar.

Abbildung 18 zeigt die Bruchflächen von Probestäben, deren Metallverbindung aus G.St.M. hergestellt wurde, aber bei einer tieferen Temperatur als 0°C. Jeder Bruch erfolgte im Grundmaterial.


III. Werte der spezifischen Schlag- und Biegungsarbeit

Die Werte der spezifischen Schlagarbeit haben wir, als Charakteristikum der Zähigkeit, zwecks Vergleich mit den bezüglichen Zugfestigkeitswerten in den gleichen Tabellen angeführt, befassen uns aber mit den Ergebnissen und deren Vergleich gesondert in diesem Abschnitt.

Bei der Untersuchung wurden die französischen Schlagprobenkörper Type Mesnager von der Größe $10 \times 10 \times 55$ mm verwendet. Der Vorschrift entsprechend hatten die Körper in der Mitte einen verminderten Querschnitt. Die speziellen Schlagarbeitswerte der Metallverbindungen wurden im reinen Schmelzgut und im Übergang gemessen. Es sind dies diejenigen Querschnitte, welche uns bezüglich des kohäsiven Anschlusses interessierten.


Die spezielle Schlagarbeit des G.St.M. beträgt 15,00 mkg/cm², die des gehärteten G.St.M. aber 16,00 mkg/cm², was praktisch als Gleichwertigkeit betrachtet werden kann. Es folgt daraus, daß die plötzliche Abschreckung des Stahles den Wert der speziellen Schlagarbeit nicht beeinflußt. Das Gefüge blieb zäh. Ähnliches konstatierten wir bei den Kontraktionswerten der Zugfestigkeit. Abbildung 19a) zeigt die Bruchfläche des G.St.M., 19b) aber jene des gehärteten G.St.M. Der spezifische Schlagarbeitswert des Schweißgutes der Metallverbindung bei Verwendung des G.St.M. und bei normaler Tagestemperatur ist 10,00 kgm/cm². Im Querschnitt beim Anschluß des Schweißgutes an das Grundmaterial aber 7,00 kgm/cm². Die Differenz der Werte des Schweißgutes und jenes vom Übergang beträgt somit 30%. Dieser extrem hervorspringende Wert stammt daher, daß am Übergang eines Probekörpers ein Wert von 9,20 mkg/cm², am andern aber ein solcher von 4.50 mkg/cm² gemessen wurde. Die Differenz zwischen beiden Werten beträgt

51%, ist also bedeutend, jedoch war im Querschnitt des minderwertigeren Probestabes ein durch den ganzen Querschnitt ziehender linienartiger Einschluß sichtbar und stammt der schwache Wert daher.

Der Schlagarbeitswert der mit gehärtetem G.St.M. bei normaler Temperatur hergestellten Naht der Verbindung ist 11,00 mkg/cm². Im Übergang beträgt diese Zahl rund 10,00 mkg/cm². Der Unterschied der beiden Werte ist gering. Aus den Aufnahmen der Bruchflächen des Schweißgutes a) und b), ferner des Überganges c) und d) ist ersichtlich, daß diese zäh gebrochen sind. Abbildungen 20 und 21.

Der Schlagarbeitswert der Naht der Metallverbindung, hergestellt aus G.St.M., aber bei einer tieferen Temperatur als 0°C, war ca. 9,00 kgm/cm², im Querschnitt des Überganges aber 14,00 mkg/cm². Die Differenz zwischen den beiden Werten ist 38%, also recht bedeutend. Dieser große Unterschied zwischen dem Wert der Naht und dem des Überganges stammt daher, daß der eine Probekörper, nämlich c) der Abbildung 22 mit vollem Querschnitt bei einem Wert von 18,00 kgm/cm² neben dem Übergang im Grundmaterial gebrochen ist. Diese Erscheinung ist auf einen günstigen Gefügezustand zurückzuführen und zwar auf den, daß auch der gehärtete Teil des Überganges nicht spröde war, sich keine inneren Spannungen angehäuft haben, sondern sogar erträgt, daß unmittelbar in der Nähe das G.St.M. bricht.

Zwecks besserer Übersicht sind die speziellen Schlagarbeitswerte mit den Differenzen, die sich ergeben haben, in der Tabelle X zusammengestellt.

Aus den zur Verfügung stehenden wenigen Resultaten kann festgestellt werden, daß die spez. Schlagarbeitswerte sehr verschieden sind, je nach den verwendeten G.St.M.-ien, den Temperaturen, bei welchen die Schweißungen stattgefunden haben und je nach dem Querschnitt der Verbindung, also z.B. einem Querschnitt im Schweißgut oder aber im Übergang und daß die Abweichungen ziemlich nennenswert sind.

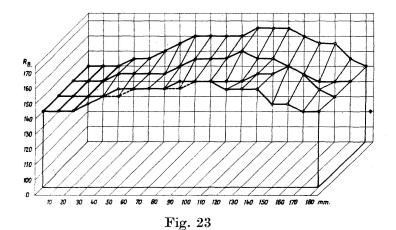
Tabelle X

Nr.	Benennung	$A = \frac{A}{\mathrm{mkg}_{\ell}}$		Diffe- renz		
		Schweiß- gut	Überg.	%		
1	Grundstahl-Material im Original-Zustand 15					
2	Grundstahl-Material in gehärtetem Zustande	1	6			
3	Metallverbindung hergestellt aus Material im Original-Zustande	9,75	6,85	30		
4	Metallverbindung hergestellt aus Material in gehärtetem Zustande	11,30	9,80	14		
5	Metallverbindung hergestellt aus Grundmaterial im Original-Zustande unterhalb 0°C	8,55	13,85	38		

IV. Härteprüfungen

Auf dem Gebiet der Prüfung des Materials ohne Zerstörung desselben macht die Feststellung der Härte beständig weitere Fortschritte. Das Bestreben, die Zerstörung zu vermeiden, ist besonders bei den Metallverbindungen auf der Hand liegend. Das Gefüge des Materials ist bei diesen von Ort zu Ort verschieden auch bei ganz nahe liegenden Stellen, die Härte ist verschieden, also auch die Festigkeitswerte. In diesen Fällen geben die verschiedenen aufeinander bezogenen Werte der Härte Aufschluß über Gefüge, Festigkeit und besonders über evtl. vorhandene Spannungen im Innern des Versuchskörpers.

Die auf kleinster Oberfläche vorkommenden Unterschiede im Gefüge können bis auf Abstände von $^3/_{100}$ mm, also fast kristallweise festgestellt werden. In der Praxis wird man sich auf Distanzen von 0,5—10 mm beschränken, je nach den Möglichkeiten des verwendeten Apparates. Bei unseren Untersuchungen haben wir den Apparat von Vickers verwendet.


Im Querschnitt der Naht sind die Härtemessungen so durchgeführt worden, daß die Rohrwand, resp. Schweißverbindung, in 5 gleiche Teile geteilt wurde und man dann längs den 4 Teillinien in Abständen von ca. 1 mm die Stiche ausgeführt hat.

In Tabelle XI und XII sind die Brinell-Härtezahlen eingetragen, gemessen im Querschnitt der bei normaler Temperatur hergestellten Schweißverbindung aus G.St.M.

Tabelle XI

Benen- nung	1. Lage	2. Lage	3. Lage	4. Lage
1	140	140	140	140
2	140	140	140	140
3	140	140	140	140
4	145	145	145	145
5	150	145	145	145
6	155	145	145	150
7	155	145	145	160
8	155	150	150	160
9	155	150	155	160
10	160	150	155	160
11	160	150	155	165
12	160	155	160	165
13	155	155	155	165
14	155	160	155	160
15	155	155	150	155
16	145	145	145	165
17	145	140	140	145
18	140	140	140	140

Aus der großen Menge der auf den ersten Blick fast gleich scheinenden Zahlenwerte können nach genauer Untersuchung die richtigen Schlüsse gezogen, die Zahlen richtig bewertet werden.

Stellen wir die Zahlenwerte der Tabelle XI in einem dreidimensionalen Diagramm dar wie in Abbildung 23, so sind an diesem der Härtezustand, Festigkeit und evtl. vorkommende Spannungen leicht und deutlich ablesbar.

Aus den Angaben der Tabelle sieht man, daß im Querschnitt der Schweißverbindung, innerhalb einer Fläche von 180—300 mm², die geringste gemessene Härte 140 ist, sie steigt dann um je 5 Einheiten langsam bis auf 165 an, dem höchsten Wert, und fällt dann wieder langsam um je 5 Einheiten auf 140 herab.

Die Brinellhärte des G.St.M. von 140 entspricht nach Dancrow und Herr einer Zerreißfestigkeit von ca. 48,00 kg/mm², die Zahl 165 aber einer solchen von 56,00 kg/mm². Zwischen den beiden Festigkeitswerten beträgt also der Unterschied 17%, ein minimaler Wert, wenn wir in Betracht ziehen, daß wir bei Stählen von ähnlichem Gefüge wie das hier gebrauchte G.St.M. eine Toleranz von 10% dulden.

Nach Angaben der Tabelle V beträgt die Differenz der Festigkeitszahlen bei den aus den Schweißverbindungen angefertigten Probestäben 6%, bei den Stäben mit rundem Querschnitt lt. Tabelle VII aber 13%. Die zwischen den Härtezahlen sich zeigenden Differenzen sind also vernachläßigbar. Abbildung 23 zeigt deutlich, daß das Schweißgut härter ist als das G.St.M. Von diesem ausgehend steigt die Härte langsam stufenförmig und fällt dann wieder langsam gegen das G.St.M. zu auf der anderen Seite der Naht ab. Im Übergang zwischen G.St.M. und Schweißgut ist keinerlei Sprung der Härte feststellbar, die Schweißverbindung scheint spannungslos zu sein. Diese Feststellung bedeutet natürlich nicht, daß wir nach entsprechender Wärmebehandlung nicht eine sanfter ansteigende Oberfläche erhalten würden.

Tabelle XII

Benen- nung	1. Lage	2. Lage	3. Lage	4. Lage
1	136	140	140	140
2	140	140	140	140
3	140	140	140	145
4	140	140	140	150
5	140	145	140	155
6	140	150	145	155
7	145	150	150	155
8	150	150	155	160
9	155	155	155	165
10	155	155	160	165
11	155	155	160	165
12	150	150	155	160
13	150	150	150	155
14	150	150	150	155
15	145	145	15 0	155
16	145	145	145	150
17	145	140	140	145
18	140	136	136	140

Die Zahlenwerte der Tabelle XII können als gleichwertig mit denen der Tabelle XI betrachtet werden. Nach der ersten Reihe ist die Härte des G.St.M.

136, wobei die Schweißverbindung eine Härte von 155 aufweist, die Differenz ist also 12%. In der 4. Reihe steigt die Härte von 140 auf 165, also um 18%. Die Oberfläche des zugehörigen Diagramms, Abbildung 24, ist noch sanfter ansteigend als in Abbildung 23.

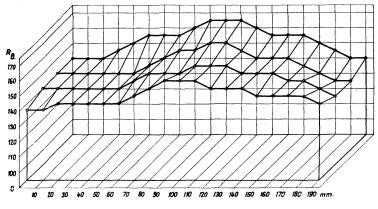
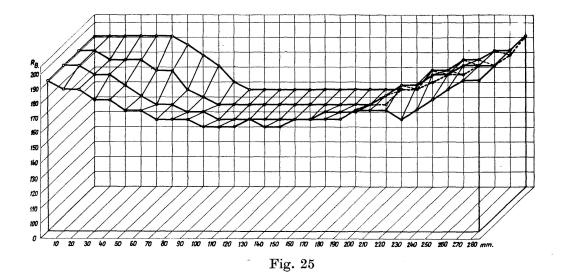



Fig. 24

Tabelle XIII

Benen- nung	1.Lage	2. Lage	3. Lage	4. Lage	Benen- nung	1. Lage	2. Lage	3. Lage	4. Lage
1	191	191	191	191	16	160	155	155	155
2	185	191	191	191	17	165	155	155	155
3	185	185	185	191	18	165	160	155	155
4	178	185	185	191	19	165	160	155	155
5	178	178	185	191	20	165	160	155	155
6	171	171	178	191	21	171	165	155	155
7	171	175	178	185	22	171	171	165	155
8	165	165	165	178	23	171	178	165	160
9	165	160	160	171	24	165	178	178	165
10	165	160	155	160	25	171	185	178	165
11	160	155	155	155	26	178	185	185	171
12	160	155	155	155	. 27	185	191	185	171
13	160	155	155	155	28	191	191	191	178
14	165	155	155	155	29	191	191	191	191
15	160	155	155	155					

Die Tabellen XIII und XIV zeigen die Härtewerte in Querschnitten aus Schweißverbindungen, welche aus gehärtetem G.St.M. hergestellt waren. Nach Tabelle XIII ist die Härte des gehärteten G.St.M. 191, also um 36% höher als beim G.St.M., welche 140 beträgt, die Härte der Naht ist aber 165, also gleich groß wie in den Tabellen XI und XII, mit dem einzigen Unterschied, daß vom Grundwerkstoff ausgegangen gegen die Naht zu die Härte eine fallende Tendenz aufweist.

Die Härtewerte für die Fläche 300—480 mm² zeigt Abbildung 25 sehr übersichtlich. Vom gehärteten G.St.M. ausgehend gegen die Mitte der Verbindung zu steigert sich eine stufenweise Abnahme der Härte. Beim gehärteten G.St.M. kann beim Übergang kein schneller Abfall der Härte festgestellt werdem, obgleich beim Schweißen eine höhere Temperatur als 1000° aufgetreten war. Die elektrische Lichtbogenschweißung hat also unter diesen Verhältnissen keinen größeren Einfluß auf das Gefüge des Grundwerkstoffes.

Tabelle XIV

Benen- nung	1. Lage	2. Lage	3. Lage	4. Lage	Benen- nung	1. Lage	2. Lage	3. Lage	4. Lage
1	185	185	178	185	12	165	160	160	191
2	185	191	178	185	13	165	155	160	185
3	185	185	185	185	14	165	155	155	178
4	185	185	185	185	15	165	150	155	171
5	185	185	185	178	16	178	150	150	171
6	185	178	171	178	17	178	155	155	171
7	178	178	165	185	18	185	165	160	171
8	178	171	165	185	19	185	165	171	171
9	171	171	160	185	20	185	171	178	171
10	171	165	160	185	21	181	178	178	171
11	171	160	160	185					

Bei den Härtezahlen der Tabelle XIV sind schärfere Differenzen feststellbar. Zwischen dem kleinsten und größten Wert der Reihe 1, also zwischen 165 und 185 ist eine Differenz von 10%, bei den Werten der 2. Reihe 21%, der 3. Reihe 21% und der 4. Reihe 10%. Mit Ausnahme der 4. Reihe sind die Differenzen annehmbar, weil die Härtezahlen gegen die Mitte der Naht hin eine stufenweise Abfallstendenz zeigen. Wenn wir aber im vorigen Fall

bei den parallelen Reihen zwischen den einander gegenüberliegenden Stellen keine größeren Härteabweichungen finden, so ist bei den Reihen 3 und 4 dies nicht der Fall, sondern es besteht eine Differenz von 16%, die Härte steigt also in einem Abstand von 3-4 mm von 160 auf 190 Brinell. Der Unterschied ist dessen ungeachtet trotzdem nicht groß oder bedeutend, kommt es doch in extremen Fällen vor, daß in einem Abstand von $^{3}/_{100}$ mm, also sozusagen von Kristall zu Kristall die Härtezahlen um 300-450 steigen oder fallen. All dies kann man schon durch sorgfältige Prüfung feststellen, Abbildung 26 aber zeigt dies schon auf den ersten Blick. Entgegen den bisherigen Diagrammen ist die Oberfläche dieses Diagramms nicht ruhig. Hauptsächlich die Werte der Reihe 4 übersteigen stark die Werte der Reihe 3. Im übrigen sind die Härtezahlen der Reihe 4 ziemlich gleich mit denen, welche sich auf das gehärtete G.St.M. beziehen.

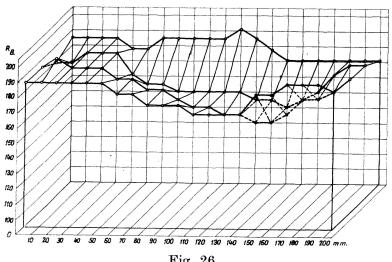


Fig. 26

In dieser Linie ist die Naht, und zwar die letzte, infolge Wärmeentziehung schneller als üblich abgekühlt und wurde also härter. Es scheint auch der Fall zu sein, daß der schon fertige Stab aus irgendwelchem Grunde an einer kleinen Stelle nachgeschweißt wurde. Das Diagramm ist jedenfalls interessanter als die bisherigen, weil es auf die Unterschiede der Härte der einzelnen Lagen hinweist.

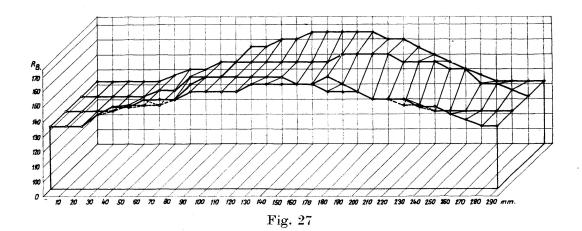

In den Tabellen XI und XVI sind die Härtewerte der bei tieferen Temperaturen als bei 0°C aus G.St.M. geschweißten Verbindungen eingetragen. Die Schweißung wurde am —15°C kalten G.St.M. begonnen. Während der 2 Stunden dauernden Schweißzeit war die mittlere Tieftemperatur der Schweißverbindung —9°C, die mittlere obere Temperatur aber ca. 100°C. Dabei ist mit 43 Schweißelektroden von 3 mm Ø eine 17-18 mm dicke V-Naht geschweißt worden. Aus diesen Angaben kann man schließen, daß die Wärmeableitung sehr intensiv war, die Wärmeansammlung aber in engen Grenzen blieb. Hätte also das G.St.M. für den Schweißzweck nicht entsprochen, so

Tabelle XV

Benen- nung	1. Lage	2. Lage	3. Lage	4. Lage	Benen- nung	1. Lage	2. Lage	3. Lage	4. Lage
1	132	132	132	132	16	160	150	155	165
2	132	132	132	132	17	160	150	155	165
3	132	132	132	132	18	160	155	160	165
4	140	132	132	132	19	155	150	160	165
5	145	136	132	132	20	155	145	160	160
6	145	136	136	136	21	155	140	160	160
7	150	136	136	140	22	150	140	155	155
8	150	140	145	140	23	150	136	155	150
9	150	150	145	145	24	150	136	155	145
10	155	155	145	145	25	145	132	150	140
11	155	155	155	155	26	145	132	150	136
12	155	155	155	155	27	140	132	140	136
13	155	155	155	160	28	136	132	140	132
14	160	155	155	160	29	132	132	136	132
15	160	155	155	165	30	132	132	132	132

müßten die Härtewerte der Messung besonders im Übergang sehr hervorspringen.

Aus der Tabelle XV kann man feststellen, daß der Unterschied der extremen Härtewerte in der 1. Reihe 18% beträgt, in der 2. Reihe 15%, in der 3. 18% und in der 4. Reihe 20%. In den Härtewerten der parallel laufenden Reihen 3 und 4 zeigen die Zahlen der gegenüberliegenden Stellen eine maximale Differenz von 18%, ist also unbedeutend.

Deutlicher zeigt dies Abbildung 27. Ausgehend vom G.St.M. zeigte die Härte eine langsam, flach verlaufende Zunahme in der Schweißverbindung. Der zwischen der 3. und 4. Reihe bestehende Härteunterschied von 13% ist im Diagramm nicht augenfällig. Vergleichen wir das Diagramm auf Abbil-

dung 27 mit denen der Abbildungen 23 und 24, so ist kein wesentlicher Unterschied zu konstatieren. Es sind also zwischen den Härtezahlen der Verbindungen, welche bei normaler Temperatur und jenen, welche bei tieferer Temperatur als 0°C geschweißt wurden, keine Unterschiede feststellbar.

Zwischen den Härtezahlen der Tabelle XVI bestehen aber bedeutende Unterschiede. Ist die kleinste Härtezahl der Tabelle XV nur 132, die größte aber 165, so finden wir hier als kleinste Zahl 140, als größte aber 198. Gegenüber der Differenz von 33 Einheiten haben wir hier eine solche von 58 Einheiten, was einem Unterschied von 20 kg/mm² der Zerreißfestigkeit entspricht.

Ta	belle	\mathbf{X}	V	I	

Benen- nung	1. Lage	2. Lage	3. Lage	4. Lage	Benen- nung	1. Lage	2. Lage	3. Lage	4. Lage
1	145	140	140	140	16	178	165	165	198
2	145	140	140	140	17	171	165	165	198
3	155	145	145	140	18	165	160	165	198
4	155	145	145	150	19	155	155	160	191
5	155	155	155	155	20	155	150	160	191
6	155	155	155	155	21	155	150	160	185
7	160	160	155	155	22	155	145	155	185
8	178	160	165	155	23	155	145	145	185
9	178	160	165	160	24	145	145	145	178
10	178	165	171	171	25	145	145	145	178
11	185	165	171	178	26	145	145	145	171
12	185	165	171	178	27	145	145	145	160
13	185	171	165	178	28	145	145	145	155
14	185	171	165	178	29	145	145	145	145
15	178	171	165	185					

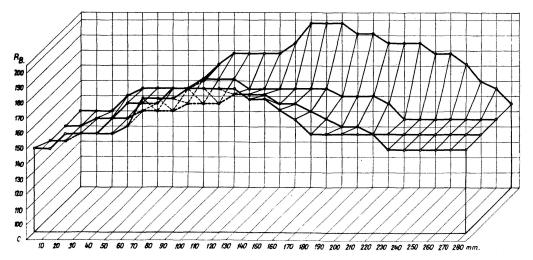


Fig. 28

Bei Bewertung dieser großen Differenz muß aber beachtet werden, daß die Härte 198 nur stufenweise entsteht, die Steigung der Härte beginnt auf der einen Seite von der Härte 140 in einem Abstand von 18 mm, auf der andern Seite aber von der Härte 145 ausgehend in einem Abstand von 11 mm von dieser. Gegenüber der Härte 198 finden wir auf der andern parallelen Linie, also in einem Abstand von 3—4 mm die Härte 160. Die Differenz der beiden Werte ist 38 Einheiten, beträgt also 20%, was in Zerreißfestigkeit ausgedrückt 14 kg/mm² bedeutet. Bezüglich Härte und Spannung ist dieser Unterschied nicht bedeutend.

Analysieren wir die Differenzen der Härtezahlen reihenweise, so konstatieren wir, daß die Differenz der extremen Werte in der 1. Reihe 11%, in der 2. Reihe 18%, in der 3. Reihe ebenfalls 18%, in der 4. Reihe aber 29% beträgt.

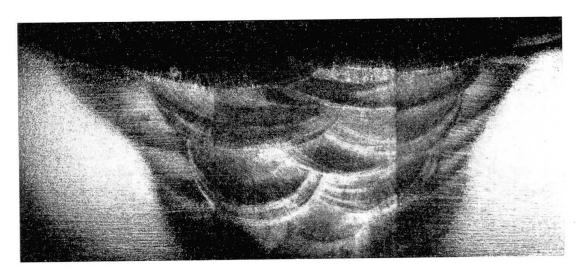
Deutlicher und einfacher wird die Situation auf Abbildung 28 ersichtlich. Die letzte Lage der V-Naht ist, wie es scheint, unter sehr intensiver Wärmentziehung hergestellt worden. Durch diese letzte Lage der Naht zieht sich die vierte Meßlinie und ist der hohe Sprung der Härte damit zu erklären. Jedenfalls sind solche Härtesprünge zu untersuchen. In unserem Falle sind sie aber nicht bedeutungsvoll. Bei einem Stahl mit größerem C-Gehalt wäre der Härtesprung jedenfalls viel größer.

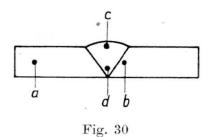
Abgesehen vom Härtesprung in der 4. Reihe ist das Diagramm ziemlich gleich mit jenen der Schweißverbindung bei normaler Lufttemperatur. Aus dem Diagramm ist auch zu entnehmen, daß der Cu-Gehalt von 0,38% und der Cr-Gehalt von 0,20% des G.St.M. keinen Einfluß auf die Härte hat. Auch bei den Schweißungen, welche bei einer tieferen Temperatur als 0°C erfolgten, konnte keine Wirkung des Cu und Cr auf die Härte festgestellt werden in der Übergangszone. Es muß aber betont werden, daß bei unserem Schweißungsvorgang die Geschwindigkeit der Wärmeentziehung im höchsten Falle 38°C pro Minute betragen hat, ein Wert der weit entfernt ist von jenem, welcher bei Abschreckung im Wasser vorkommt und wie schon erwähnt, 300—400°C per Sekunde beträgt.

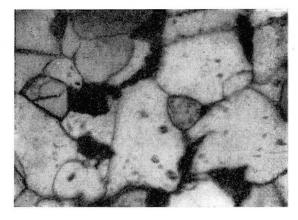
V. Makro- und Mikrountersuchungen

1. Makrountersuchungen

Abgesehen von den Makrountersuchungen der Schweißverbindungen von G.St.M. und gehärtetem G.St.M., weisen wir auf die Makroaufnahmen der bei einer tieferen Temperatur als 0°C hergestellten Verbindungen hin, siehe Abbildung 29. Auf der Aufnahme sind die einzelnen Nahtreihen und die Übergangszonen vorzüglich sichtbar. Ferner kann festgestellt werden, daß die Nahtreihen des Schweißgutes sowohl untereinander als auch mit dem




Fig. 29


Grundwerkstoff gut kohäsiv verbunden sind. In der Richtung des Wärmeentzuges ist bei den Nähten eine gewisse Orientierung des Schmelzgutes feststellbar.

2. Mikrountersuchungen

Von den Schweißverbindungen mit dem G.St.M. machten wir die Aufnahmen an den auf Abbildung 30 bezeichneten Stellen. Die mit a) bezeichnete Aufnahme zeigt die Mikrostruktur des G.St.M., es hat körniges Gefüge, Ferrit und sehr dicht gekörntes Perlit, an den Körnergrenzen ist wenig terziäres Cementit. Auch hat es Schlackenflecke. b) Die Übergangszone besteht aus Ferrit, in den wenigen Martensitflecken mit Troostit. Im mittleren Teil ist oben noch ungelöstes Ferrit sichtbar. Die Aufnahme ist vom Übergang, aber an einer Stelle, die näher dem G.St.M. ist, gemacht worden, und zwar von der Grenze der ersten Raupe. Die Temperatur dieser Naht hat gerade den Wärmegrad Ac_1 erreicht und infolge der raschen Wärmeentnahme entstand Martensit. c) Die Aufnahme wurde von der obersten Schicht der Naht gemacht und zeigt ein primäres Gußgefüge (Wildmannstetten'sche Struktur). Ferrit, Perlit, stellenweise mit Schlackeneinschluß. Die für das Gußgefüge charakteristische nadelförmige Ausbildung hat durch Hammerschläge auf die Schweißnaht eine Verzerrung erfahren. d) zeigt reines Schweißgut mit körnigem Gefüge mit ziemlich viel Schlackeneinschlüssen. Die feinen Kristallitkörner sind die Folge der Veredelung.

Die Mikroaufnahmen der Schweißverbindung mit gehärtetem G.St.M. zeigt Abbildung 31. a) zeigt das Grundmaterial. Martensit-Troostit. Trotz der Tatsache, daß die kritische Abkühlungsgeschwindigkeit erreicht wurde, daß also eine Härtung erfolgte, erhielten wir kein reines Martensit-Gefüge, weil der Carbon-Gehalt sehr gering war. b) Infolge der Wärmewirkung der in nächster Nähe des G.St.M. geschweißten Raupe hat sich das im gehärteten



Fig. 30 b

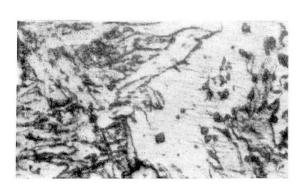


Fig. 30c

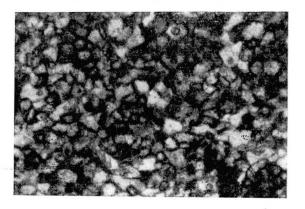


Fig. 30 d

G.St.M. ausgeschiedene Perlit teilweise gelöst und haben sich inzwischen das Ferrit, gelagertes Troostit und Hardenit umgewandelt. Wenn in der Übergangszone des G.St.M. infolge Wärmeableitung Martensit entstanden ist, so hat sich beim gehärteten G.St.M. das Martensit gelöst und haben wir ein Gefüge erhalten, das weniger hart ist als dies beim ungehärteten G.St.M. der Fall war und diese Tatsache ist als günstig zu bezeichnen.

c) zeigt die normale Struktur der obersten Naht, das Wildmannstetten-Gefüge. d) zeigt ein feines körniges Gefüge, Ferrit und Perlit mit Schlackeneinschluß.

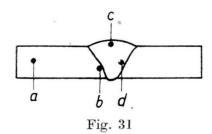


Fig. 31a

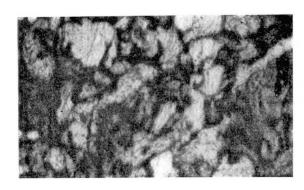


Fig. 31 b

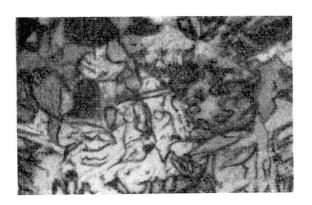


Fig. 31c

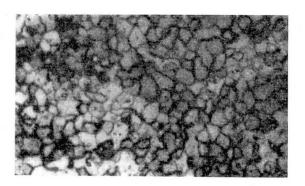


Fig. 31 d

Die Mikroaufnahmen der bei einer tieferen Temperatur als 0°C geschweißten Verbindung sind auf Abbildung 32 sichtbar. a) zeigt das Gefüge des G.St.M. und ist identisch mit a) der Abbildung 30. b) Die intensive Wärmeentnahme zeigt ihre Wirkung in nächster Nähe des G.St.M. bei Schweißung der ersten Naht. Von allen 3 Fällen ist die Martensitausscheidung hier am vollkommensten. Wäre genug Zeit zur Verfügung gestanden, um die —15°C vor Schweißung jeder Raupe zu erreichen, so wäre bei jeder Naht ein Martensitgefüge entstanden, aber auch in diesem extremen Fall löst sich das Martensit der unteren, wieder erwärmten Raupe. Ein solch extremer Fall kommt in der Praxis bei fortlaufender Schweißung nicht vor.

c) Wir finden das schon erwähnte Wildmannstetten'sche Gefüge wieder und zwar ähnlich dem Gefüge des Stahlgusses ohne Wärmebehandlung.

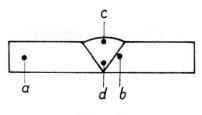


Fig. 32

Fig. 32 a

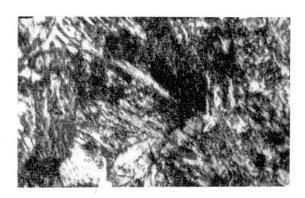


Fig. 32b

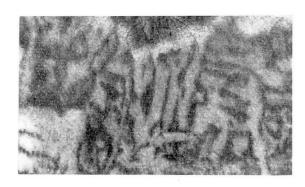


Fig. 32c

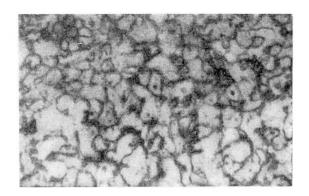


Fig. 32 d

d) zeigt wieder das Gefüge der mittleren obersten Raupe und zwar Ferrit-Perlit. Im wesentlichen unterscheidet sich dieses Gefüge von den übrigen, denn es kann, wie wir auch schon bei der Makroaufnahme gesehen haben, eine Orientierung in Richtung der Wärmeableitung konstatiert werden. Diese Orientierung zur Wärmeentnahme zeigt sich in der Aufnahme darin, daß die Kristallite nur teilweise den Veredlungsprozeß mitgemacht haben.

Zusammenfassung

Ohne weitere Details und weitere Zergliederung der Resultate kann kurz gefaßt gesagt werden, daß die Resultate aller Vergleichsversuche in jedem Fall eindeutig bewiesen haben, daß bei einer Temperatur der Luft oder des Stahles (G.St.M.) von —15°C das von uns benützte, C-arme Material, dessen Zusammensetzung durch unsere Versuche bestimmt wurde, ohne Vorwärmungmit elektrischer Lichtbogenschweißung zuverlässig bei voller Sicherheit geschweißt werden kann.

Summary

Without entering into further details or giving more minute particulars of the results, it may briefly be stated that the outcome of all comparative tests have shown clearly in each case that, at a temperature of —15°C of the air or of the steel (G.St.M.), the low-carbon material used by us — the composition of which was determined by our tests — can, without any preheating, be welded reliably and with perfect safety with the electric arc.

Résumé

Sans entrer dans le detail des resultats obtenus, il peut être indiqué ici que tous les essais comparatifs qui ont été effectués ont nettement montré que l'acier a faible teneur en carbone qui a été utilisé par nous et dont la composition a été fixée à la suite de nos essais, peut être soudé à l'arc en toute sécurité, sans chauffage préalable, sous une température ambiante de l'air ou du matériel de —15° C.