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Deflection Theory Analysis of Suspension Bridges

Untersuchungen über die Formänderungstheorie von Hängebrücken

Recherches sur la theorie de la flexion des ponts suspendus

Dr. S. O. Asplund, Örebro

Synopsis

To present a speedier and more accurate working method for the analysis
of the action of vertical loads on Suspension bridges is the object of this paper.
The assumptions made and equations solved are primarily the same as in the
ordinary form of the deflection theory, as developed or used by Rittee,1'2),
Müller-Breslau3), Melan4, Moissieff6), Steinman7'11), Martin8), Timo-

x) Ritter, W., Versteifungsfachwerke bei Bogen- und Hängebrücken, Zeitschrift für
Bauwesen, 1877, p. 189.

2) Ritter, W., Statische Berechnung der Versteifungsfachwerke der Hängebrücken,
Schweizerische Bauzeitung, 1£83, p. 6.

3) Müller-Breslau, Heinrich F. B., Theorie der durch einen Balken versteiften
Kette, Zeitschrift des Architekten- und Ingenieur-Vereins zu Hannover, vol. 27, 1881,

p. 58—79.
4) Melan, Joseph, Theorie der eisernen Bogenbrücken und der Hängebrücken, 2nd Ed.,

Berlin, 1888.
5) Godard, T., Recherches sur le calcul de la resistance de tabliers des ponts suspendus,

Annales des Ponts et Chaussees, vol. 8, 1894, p. 105—189.
6) Johnson, J. B., C. W. Bryan and F. E. Turneaure, The Theory and Practice of

Modern Framed Structures, 2nd vol., 9th Ed., John Wiley & Sons, New York, 1911,

p. 276, and succeeding editions.
7) Melan, J. and D.B. Steinman, Theory of Arches and Suspension Bridges, Mc Graw-

Hill Book Co., New York, 1913.
8) Martin, The Theory of the Stiffened Suspension Bridge, Engineering, 1927, vol. 123,

p. 506 (editorial).
9) Timoshenko, S., The Stiffness of Suspension Bridges, A.S.C.E. Transactions, 1930.

vol. 94, p. 377.
10) Krivocheine, G. G., La theorie exacte des ponts suspendus ä trois travees, Report

of the 2nd International Congress for Bridge and Structural Engineering, Vienna, 1929,

p. 617.
11) Steinman, D. B., A Practical Treatise of Suspension Bridges, 2nd Ed., John Wiley

and Sons, 1929.
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shenko9), and others. Consequently all results exactly agree with their findings.
Influence lines are employed in essentially the same manner as Godard almost
unnoticed introduced 1894 5>12>14).

In the present paper the approach to the Solutions is from a somewhat
different angle, resulting in more general formulas. The form of the Solutions
is also accomodated to suit practical computations in the best possible manner.
Minor effects in actual Suspension bridges, such as caused by cable extensions,
are systematically segregated to correction terms. The influence funetions are
also constructed with the intent that one and the same set of tables may be
used in the analysis of the largest possible class of bridges. Thus the tables
here published are adequate for the design of almost all Suspension bridges
with simply supported uniform stiffening girders, that is for the great majority
of all bridges hereto designed. Special constraint values are added, whereby
the same set of tables may also be used in the computation of bridges with
continuous uniform stiffening girders.

The angular deviations of the cable elements and the assumption of equal
suspender forces in the evaluation of the horizontal force cause small errors
that have previously not been generally recognized10)12). The angular deviations

generally reduce critical live load moments in actual bridges by less than
10 %. These minor effects are aecounted for in the equations and theoretical
Solutions below. Their numerical evaluation is obvious but not exemplified in
order to save space19).

The necessary brevity of the theoretical parts of this paper may cause a
non-mathematical reader some effort. Still, a practical designer need not neces-

12) Rode, Hans H., New Deflection Theory, Det Kgl. Norske Videnskabers Selskabs
Skrifter, No. 3, 1930.

13) Steinman, D. B., A Generalized Theory for Suspension Bridges, A.S.C.E. Trans-
actions, 1934, p. 1133.

14) Backet, M., Le calcul des ponts suspendus munis de poutres de rigidite, Travaux,
1936, p. 218.

15) Hardesty, Shortridge and Harold E. Wessman, Preliminary Design of
Suspension Bridges, A.S.C.E. Transactions, 1939, p. 579.

16) Stüssi, Fritz and Ernst Amstutz, Verbesserte Formänderungstheorie von Stab-
bogen und verankerten Hängebrücken, Schweiz. Bauzeitung, 1940, July 6.

17) Klöppel, Kurt and Kuo-Hao Lie, Berechnung der Hängebrücken nach der Theorie

II. Ordnung unter Berücksichtigung der Nachgiebigkeit der Hänger, Stahlbau 1941,

p. 85.
18) Asplund, Sven Olof, On the Deflection Theory of Suspension Bridges, Swedish

Academy for Engineering Sciences, Proceedings No. 184, 1945 (first published as disser-
tation, Upsala 1943).

19) Asplund, S. O., Influence Functions for the Angular Deviation Correction in
Suspension Bridges, Third Congress Preliminary Publication, Int. Ass'n for Bridge and
Structural Engineering, Liege, 1948, p. 415. — In a one-span bridge with flexibility c

between 10 and 20 the angular deviation correction for maximum positive moments at
x 0,2l is found to amount to -6 to -7% of 64 f2/l2 times the moment as calculated by
the classical deflection theory.
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sarily grasp all details of the theoretical exposition. The extensive numerical
examples have been elaborated with the aim of being self-explanatory for
similar practical computations. They contain all necessary references to the
equations and tables employed in actual design computations.

The theoretical part could have been made less mathematical— but at the loss
of such generality that unquestionably promotes a better insight into the
problem and that furnishes the clue to the treatment of non-uniform stiffening
girders. It can also be made more mathematical and general20), but the writer
considers that the form here used is most expedient for the present purpose.

Assumptions

1. All stresses in the bridge remain within the limits of proportionality.
2. The initial dead load w is carried by the cable without causing stress in

the stiffening truss at normal temperature. If the bridge is erected in such a
manner (for example with an upward bend of the truss) that the dead load
causes certain stresses in the stiffening truss, account may be taken hereof by
simply adding the initial stresses to those computed under the assumption 2.

3. The cables are assumed to be perfectly flexible.
4. In the ordinary forms of the deflection theory2"9), n-17) the magnitude

of the horizontal force (not the other statical quantities, as deflections and
moments) is determined under the assumption of equal pull in all suspenders.
The small error caused by this approximation may be corrected by the
application of the suspender pull correction explained in this paper.

5. The suspender forces instead of being treated as concentrated forces are
considered as distributed loads in the same manner as if the distance between
the suspenders were very small. In making this assumption it is obviously
necessary afterwards to correct the resulting quantities by positive and negative

moments, shears, etc. caused by the action of the stiffening truss as a
continuous beam supported at the suspender connections.

6. When establishing the differential equation of the elastic line of the
stiffening girder, the points of the cable are assumed to move along fixed verticals.

— Actually the cable points and their verticals also move longitudinally
along the bridge12), mainly as the effect of slight angular changes of the cable
elements as the cable deforms. The error caused by assumption 6 may be
corrected by the application of an "angular deviation correction load" touched

upon below. This correction is generally small and on the safe side for bridges
with simply supported stiffening trusses.

20) If the differential equation of the problem is solved by series expansions according
to the orthogonal eigenfunctions of a homogeneous equation of the boundary problem, the
angular deviation effect may be included in the homogeneous part of the equation and
continuous bridges be treated directly by influence lines18). Both these circumstances are
essential in the evaluation and use of model-determined influence funetions18).
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7. The suspenders are assumed to remain vertical during the deformation
of the bridge. The small error caused by this assumption may be evaluated
according to methods of Stüssi and Amstutz16) and others.

8. The small effect (generally only a fraction of one per cent6),11),17)) of the
suspender elongation and the tower shortening under live load is neglected.

9. The horizontal component of the cable pull is assumed to be alike in
all spans of the cable. — When fixed tower bases are used the horizontal force
in the side spans will differ from that of the main span, but usually by small
amounts if the towers are well designed. The modification of the Deflection
Theory for this complication offers no fundamental difficulties and has been
carried through by many authors, to whom the reader is referred. Klöppel and
Lie 17) in one specific instance find a decrease of moments in the stiffening truss
of 0,2 % due to the fixing of the tower bases.

Equilibrium of Cable and Truss

Ax
H„ Ay

«wl
H„+H 4J

Ay+Aq

Hw+H
'/>

*&

infe
wAs psJAs

m

l M w+p

VArj

Fig. 1

In Fig. 1 Aw(x,y)-Awl{x + Ax9y+Ay)
is a short piece A s of the cable when the
bridge is loaded by dead load w only. After
the bridge is also loaded by live load p and
is subjected to a change of temperature this
piece of the cable has moved to A (x + £, y
+ rj) -At(x + £ +Ax + __!£, y + rj + Ay +

A iq) and its length has increased to A s (1 + e),
eAs being the elastic and temperature
elongation of Aw Awl.

If Awl approaches Aw,

(A s)2 (A x)2 + (A y)2
and

(__ s)2 (1 + € )2 (A x + A |)2 + (Ay + A rj)2

A short consideration of conditions in actual bridges reveals that at least e2

may be disregarded without practical error. Subtraction and division by the
small quantity A x yields

2s'2e 2 f + fa + 2y t/ + i/2

f -2/V + *'2e-H2-H'2
In the last term the main term — y r[ may be substituted for f'

f -yr}+s2€-\s'2v;2 (1)
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Considering the coordinates x + g and y + rj of the cable curve at A as
funetions of the parameter x, the direction of the tangent to the cable curve
at A is given by

tan ^ <%!__ / _J?[+11 y' + i (2)Y dx ' dx 1 + £
v /

and the direction of the tangent at Ax by

/ _^ / ^tan 0 ^ •tan ip1 tan xp -\ -z—- Ax +
ax

r Using Assumption 7 the horizontal component of the cable pull increases
to Hw + H, alike at A and _4X. In equilibrium the algrebraic sum of the vertical
cDmponents at A and A1 must equal the total suspender load (w + ps) Ax in
the element A x of the stiffening truss:

(Hw -f H) (tan 0 — tan ipx) (w + ps) Ax (3)

Retaining only g — y rf in (1) one may write 1/ (1 + £') ^ _ + 7/2/. Hence (3)
and (2) give

^ (tan^y (^y) ^ »" + v"+ (2/' * ^Hw +

since 7/ may be dropped at the side of y in the small last term.

The stiffening girder carries the load pt p — ps, p being the live load on
the bridge and ps the suspender pull caused by it. The common theory of
beams asserts that the negative second derivative of the truss or girder moment
— EIrf' is equal to the load carried by the girder:

Vt - (- EIrf')" p-ps-w + w p + (Hw+H) [y" + rf' + (y2rj'f] - Hwy"

(EIrf')" - (Hw + H) rf' Hy" + p + (Hw + H) (y2v')'

Hy" + P(x) =0(x) (5)

remembering that the dead load of the bridge w(x) — — Hwy", cf. (4) for p, ps,
H, |, and rj 0. The term (Hw + H) (y'2 rf)' is referred to as the (angular
deviation) correction load. It is generally small and may be omitted in all
calculations of ordinary accuracy. In any case it can be taken care of by iteration.
The correction load causes "angular deviation corrections" in deflections,
moments, etc. These corrections may be evaluated separately by influence
funetions19).

The "fundamental equation" (5) could properly be attributed to Rode12),
who first established this equation, although in slightly less general form. Its
last term is the correction term for the angular deviations just mentioned of
the cable elements, cf. Assumption 6. If that term is omitted (5) becomes
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Melan's equation4'21), which is commonly used in the deflection theory of
Suspension bridges. The correction term may be combined with the second term
on the left side:

(EI,")" - (Hw + H) [ (1 + ,ß) ri ]' Hy +p (6)

If Hw + H is treated as a constant and the right hand side as a function
of x only, (5) or (6) may be recognized as a self-adjoint linear differential
equation of the fourth order. Its Solution is restricted by linear boundary
conditions: the cable condition and the support and continuity conditions for
the stiffening truss.

The Cable Condition

Both sides of (1) are integrated over all cable parts C that are elasticallv
affected by the cable tension

L€dx - \cV V dx + $cs2edx- |j>'27/2^r

jc£'dx - Scd£ obviously represents the increase A L in the horizontal
distance L between the cable anchorage points.

The effect of temperature is generally treated as an elongation _ co t of
the cable only, o> being the coefficient of thermal expansion and t the rise in
temperature. This yields an integral term tot$cs2dxin the above equation. But
also the towers and the suspenders are elongated by a rise in temperature.
While this in general complicates the Solution, it is simplified if the whole
structure above the straight line connecting both anchorage points is regarded
as subjected to the rise in temperature. This assumption 22) better conforms to
actual conditions than if only the cable elongates. It also results in simpler and
easier formulas, since the effect of a rise in temperature simply becomes
equivalent to a decrease of co t L in the distance between the anchorages.

When the influence of thermal elongation has now been taken care of in
the left side of the equation, only the elastic elongation Hs'jEcAc will remain
for €. Partial integration of — Jc y rf dx yields — [y rf]c + Jc y" rj dx where the
first term is zero, since rj 0 at the anchorages. Removing the last term to the
left hand side and all the other terms, the "cable yield", to the right hand
side, the cable condition becomes

jcyrj'dx -$cy"r]dx ßyLs + ojtL - AL - ±$c{srf)2dx AC (7)

where q H
'

i*\P Tj- (8)

21) "Melan's equation" was first established and solved by W. Kitter2) and MÜller-
Breslau3).

22) By J. M. Frankland, see 13), p. 1203.
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and the "cable factor"

EcAcO

and the "elastic length" of the cable

Ls=S^A'/3dx (10)

c

_4c0 denotes any suitable mean area of the cable.

An approximate expression for a constant cable section area Ac Ac0
and constant dead load w in each span is

L8 Zlv^tf av{l+% f2jl2) (11)

where av is the slope of the cable chord in the vth span. The sum should be
extended over all spans v of the cable23).

The term — JJ (s rf)2dx of (7) corrects the approximation made by Assumption

4 and therefore may be termed the suspender pull correction24).

General Solution of the fundamental equation

The live load horizontal force H or ß is a function (7) of ti This makes the
fundamental equation (5) or (6) very complicated and insolvable by known
funetions or finite methods. If, however, the variable H is treated as a constant,
the equation together with its boundary conditions, the support conditions
and the cable condition, may be recognized as a self-adjoint linear boundary
problem of the fourth order with variable coefficients in the differential equation.

Accordingly, one enters a plausible value ofHin the fundamental equation.
Erom its Solution rj, a value of ß or H is calculated according to (7). This value
is again entered in the fundamental equation. By iteration of the Solution with
successively corrected values of H the exact Solution of the fundamental
equation and its boundary conditions may be approached to any desired

accuracy. In practical bridge problems the convergence of this process is rapid.
More than one or two iterations are seldom required.

The Solution of the fourth order linear boundary problem may be effec-
tuated by series expansions of orthogonal eigenfunetions or, a little less general,
by the theory of Green funetions in the following manner.

23) Previously, the expressions Ls Slv (sec3 av + 8 fv2jlv2) and Ls Slv (sec3a1,+
+ 8 sec avfv2/lv2) have been used. The reader may verify that (11) is better, since it
includes more terms from the expansion of s'3 in j s'zdx.

24) Krivocheine10) gives the slightly less accurate correction — ^ j rjrj"dx.

Abhandlungen IX
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In an interval a ^ x ^ b in which p (x) is continuous the general Solution
of the linear differential equation

y" + p(x)y f(x) (12)

with the boundary conditions y(a) y(b) 0 may be written

x b

V -p- jyi(Jc)f(k)dk + ^~± jy,(k) /(„)_„ + Ciyi(x) + C2y2(x) (13)

a x

Here yx and y2 are linearly independent particular Solutions of the associated
homogeneous equation y" + py 0. Then the constant Wronskian W y1y'2 —

— y2y\ becomes 4= 0. Iiy1 and ?/2 are determined in such a manner that y± (a)
y2(b) 0 one obtains C1 C2 0 in (2).
These theorems are easily proved by differentiation twice of (13) and

Substitution in (12).
Introducing the moment M in the truss, (5) may now be split in two

equations M
71 ~ ET(x) <14>

M'-^j^M -0(x) (15)

Assuming that the stiffening girder of the nth span is simply supported at
its ends x 0 and x ln hence 77 (0) 77 (ZJ and M (0) M (ln) 0, assuming
that two linearly independent particular integrals M1 (x) and M2 (x), M1 (0)

0, M2 (ln) 0, have been found of the associated homogeneous equation to (4)

M'-—E+I—M ° (16)

and forming the Green function

K (x, k) M1 (x) M2 (k) for x S k

yyM2 (x) M1 (k) for x ^ k
(17)

with W MXM2 - M2Mf, the general Solution of (15) is by (13)

M(x) =-^ K(x,k)0(k)dk

Now M (x) is a known function by which rj may be similarly determined
from (14). The associated homogeneous equation rf\x) 0 is satisfied by the
two linearly independent Solutions 7^ x and rj2 ln - x, which also satisfy
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the boundary conditions rj2 (0) rj2 (ln) 0. The normalizing condition is
JPi Vi V2 ~ V2 Vi =-ln- Writing

K1 (x,t) — y- x (ln — t) for x ^ t

(ln — x)t for x ^ t

(13) will again furnish the Solutions of (14):

In In
C M 1 C

77 (x) - \ k2 (x, t) jßj— dt -g-^rg J Jxk 0 W dJc (18)

where

H.

In

^J** JEmKi(x't)K{t'k) dt

By a short deduction, subdividing the integration interval into three parts
(0 to x, x to k and k to ln for x S k), this integral is found to be

JXk y x(ln ~ k)* wMl^x) M^k) for x *

y- (ln - x) k + WM2 (x) M1 (k) for x ^ k

Noting by (4) that Hwy" (x) — w(x), (18) becomes

In

(19)

*?(*)
Hw + H jjxkP(k)dk-ßJx] (20)

with
in

Jx \ Jxk w (k) dk (21)

Now (20) is entered into the cable condition (7)

In

¦ J -^ #^V# [ JJ^ p (Ä;) ^" ^J*]dx JC

The first integral must be extended over all spans 1,2 .N suspended
from the cable. Using (21) one obtains
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(jkP(k)dk -ßS w(x) Jxdx HW(HW + H)AC
C 0

N lX

Abbreviating G 2 \w(x) Jxdx
v l J

(22)

with the sum extended from v 1 to v N (including all spans suspended from
the cable), and, see (7),

S=(l+ß)^AC (23)

one obtains

'-/* P (k) dk-S (24)

Remembering that Jxk 0in all spans except the wth (that of the sections),
(20) may be written

N U

V j^Th [5 j (J^ ~ J*w) P{k) dk + 8J*

Den°te 7«)-J(i)_J<*)^

fl ^ n _7J(,) dJx m dJ? IV
' * #,„ + # dx ' * dx ' x

dJ_
'x dx

rl _ ^xfc TU _ _ ^fo) gJ'fc rlll_u xk ~ o~. > u xk TT TT G ~ > u xk
dJll

dx

_^_
xk Tiv ° xk

'xk 8x > "** H„ + H dx ' ""* .„ ' xk dx xk

(25)

where exk has the value 1/2 e between k x — € and # + e, e^ 0, and is other-
wise zero. We finally obtain

Hw + H

V H,„ + H

jlxkP(k)dk + 8Jx~\

s

jllkP(k)dk + 8Jx~\

s

M =J/äP(„)_„ + 8J°
s

V=jlxklP(k)dk + 8J™
s

(26)
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for ~Pt dx

X—€

and f exkP(k)dk ~p(k)2e p(k).
k=x+e

Identical influence line expressions (26) are obtained also for the more
general case of continuous stiffening girders. This may be proved by an expansion

of the Solution of the boundary problem according to the characteristic
(orthogonal) funetions of the homogeneous fundamental differential equation
associated to (6)25). If so desired the correction load term can at the same time
be retained in the homogeneous part of the equation. This is made use of in
the case of model-determined influence funetions26).

Influence Functions Developed

Denoting for temporary abbreviation X xjln and K k\ln (19) and (25)
yield for the calculation of Jxll and J^ the following values in the nth. span:

(27)
funetions j^ kn — xn kn __; xn

hk =TJxk= j^M^M^k) + (l-X)K I 1^wM1{x)Mt(k) + __(!-__)

ji J1.
w ___(_)__!(„) -K

Jll Y Jll - j\y M2 (x) M1 (k)

7%=* Jlk - W M'i(x)M1(h)

.•IV _ j rIV _Jxk — hn,° xk —

1

F
i

W
i
w

M'1(x)M2(k) + 1 - K

M1(x)Mi(k)

M'1(x)M2(h)

^>^l^M%{x)M^k) Hw + H hMi{x)MAk)

Jxk

/xk

EI 1 IV
Hw + H ll Jxk

EI W

EI ll
H + H l2 ,xk

IV

.-in kJxk

hk -ßl + (l-X)K
and funetions jx1^

?lll + 1-K
jll +X(1-K)

(28)

Jx 6lJ*=jlxk ~~—dK (1

X 1

25) See 18), p. 31—37. Rudberg, see 18), p. 170, later outlined the Solution by Green
funetions of the equation [I(x)-q"]" — K2r)" F(x) with the conditions -q r]"=zQ at x
0 and l (no cable condition).

26) See 18), p. 110—137.
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x 1

M*(x) f i_- /n w its M,(x) f__ /lx w -_..

0 #
* 1

•i t-i M'2(x) f__ /7, w 7r_.
-M" i (#) f ,,_ /lx w 7T;r

0 a;

£C 1

- [k—AK + f(l-Z)—<MT
0 a;

0 cc

ix1^—«7"^-^ [Mx{k)™dK-^ß fjf.(_)^___
«>n*„ ^ J 1V 't«7n JF J "V '_>„

0 x
X 1

?T=—^v=-i?# f_fl(^eZ_:-S^f__2(*)^_:-^
AH ^J7^ JL L-iv !EM\lx Hw + H ll [lx +

wn _

0 x
X 1

?x =-j° + (i-z)fi^cur + zf(i-_r)^.__r
J wn J wn
0 ic

Here wn denotes a suitable mean value of the dead load w (k) in the nth span.
The property of M1 and M2 to satisfy (16) is used.

The fourth equations of (27) show that there is an increase of

-±M±(x)M2(x) + ~M'2(x) Mx (x) 1

in the funetions /™ and JxTk as k passes from
x — 0 to x + 0, and as x passes from k — 0 to k + 0 there is a decrease of 1.

dJUI
The derivative ——therefore has the value — exk at x k. This distinet

infinite influence ordinate is exactly nullified in the definition in (25) of J1^.
and in the definition in (27) bf jlj.

If further J
[ wix) 1 X „ 9 7o ,^v^ J ~u>7?x T> °v ^^ (29)

(22) gives £ö S öy (30)
v-1
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and if one writes
lv 1

(24) gives

ßv f^P(„)_„ f^*W_,A (31)
J Gv J gv wv iv
0 0

N
ß ^ 2>* ll 9*ßv -8 Z%ßv-8 (32)

The Precise Determination of the Critical Load Position

These Solutions have been established with the aim of referring all effects
of cable elongations to correction terms, the S-terms of (26). This offers a great
advantage since all influence funetions may be computed entirely independent
of the cables. For a given position of the live loading this method will yield
exact results. However, the zero-point of the influence line may be somewhat
displaced and cause some error in the establishment the critical position of the
live load. To ascertain the correct critical position the influence line may be
corrected near the zero-point27).

g ^w (Hw + H)

Equations (7), (23), and (24) yield

\yLs((^P{k)dk-8\+ojtL-AL-i [(s rj')2 dx\

c

r T TJ H2
S TJ ^F(k)dk + 80, T =YVrj, U (l+ß)-^yLs (33)

iJVt/)2^ (34)

c

)tL-AL
c

Thus for instance the third equation (26) may be written

M j(lll + TJ? ^ P(k)dk + S0 Jf

that is, the influence line Ix\ should be corrected with the influence line for
horizontal force Jk\G times T Jxl (35)

However, such exaetitude in the establishment of the critical load position
is seldom required (only for very meticulous computations of stiff bridges).
Then it may be confined to the correction of only one or two ordinates near
the zero-points.

27) By Bergfelt, see 18), p. 148.
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Computation of influence funetions for multiple-span bridges

from those for one-span bridges

The influence funetions for bridges with several simply supported spans

may be computed from those of one-span bridges according to the following
formulas (36) and (37). The first equation (25) may be written28)

Td) - rti) lW_!_j__/l _ __?*t\ TU) _ TU) _ rti) £lL (*fi\±xk — xxkn x Q \ Gl' kn ~~~ k G

Obviously I%kn here denote the influence funetions of the span n of the section x
when that span is the span of a one-span bridge. The expression (36) for the
influence funetions I{xl may be suitably used for the span n of the section x.
According to (19) or (27) J{xl is zero when the load k is in other spans m than
that of the section x. For these other spans (25) may be written

Gm j(i) Jjr1% ~ tt Jf 7^ (m * sPan of x) (37)

Analysis of multiple-span bridges with direct use of the influence funetions
for one-span bridges

However, in the analysis of multiple span bridges with simply supported
spans it is feasible and very often expedient to refer to the S-terms also the
effects of live loads applied to other spans than that of the section x2Q). Entering

(36) and (37) in for instance the first equation (26) and using (31) results in

77

H,n -f H

in

^IxknP{k) dk + Jxßn - Jx i SGvßv + 8 Jx
0

In

jf^7J[
I J Ixkn P (k) dk + Sn Jx\

0

where the sum should be extended over all spans and

K ßn~ \^0vßv + 8 ßn-ß (38)

Thus all equations (26) still are valid if S is replaced by 8n according to (38),
I%1 by Ixkn, and the integrals extended only over the span ln of the section x
considered (39)

28) Selberg, see 18), p. 150, first indicated an analogous procedure for spans of even
stiffness.

29) Hardesty and Wessman, see 14), p. 579, also treat such "span-interaction" sepa-
rately.
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The integral of (24) used in the determination of H and 8^, must still be
extended over all spans.

The accuracy of the results of this computation is not influenced for a live
load of a predetermined position, but in the determination of the critical live
load position an error may enter. To avoid such errors in the critical live load
position, the influence line I(xln may be corrected near its zero-points. Applying
(33), (36), and (37) to (26) one finds for instance

(Hu xkn
T k t /i fji\ n k+ J x ~n Jx l1 ~~ I) ~n ~pT P(k)dk-

S f^(l - T) % £¦ P(k)dk + S0 Jx
4= 6r 6r_

where the sum should be extended over all spans except that of the section x
considered.

This indicates that the influence line I^ln in the span of the section x should
be corrected by the influence line for the single-span horizontal force Jk/Gn times

J^ [ 1 — (1 — T) Gn/G] and that instead of the zero influence lines of other spans m
the respective horizontal force influence lines Jk\Gm times — J^ (1 — T)GmJG
should be considered (40)

These precautions in the determination of the live load position need not
generally be numerically completed other than for one value near the zero-
point^) of Ixkn. With the notation, compare (36),

?'(0 _ Jjii) _ j(i)xkn xk Jxk
A(i) Ik
1X

9n
(41)

the formulas (26) may be rewritten by (39), (36), (27), (28), and (29) in the
following form

Hw l + j8

_

''xk— *7" + önJx

v - Hw l+ß [)l*k •«
d ' +bnh

'.-I P(k)l±
w„

M

WJn

Jb.
w„

'•II Pß).k
"Xk ~ w~7 l- K J"d

;lll P (k) r k
xk «_""*. +Kjld-

Pß). k
xk w„ L nJ

(42)
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the integrals being extended over the span n only of the section x considered.
These formulas together with (32) for the horizontal force increment and (38)
for Sn may be suitably used in calculations according to this article.

In the accurate establishment of the critical live load position the influence
funetions i(yxk in the span n of the section x should be corrected by the influence
funetions for the single span horizontal force jkjgn times jx%) [1 — (1 — T) GJG],
and the ixkn 0 influence funetions of the other spans m by their respective
horizontal force influence funetions jk/gm times — f£ (1 — T) Gm\G (43)

(In using thus corrected influence lines for the complete analysis the 8^-
terms of (42) vanish, but one contribution to 77, rf, ete, is obtained for each

span. These contributions must be added.)

Tables for Uniform Stiffening Girders

All previous formulas are valid for variable stiffnesses EI. The influence
funetions I^)k are funetions of the variable coefficient (Hw> + H) \ EI of the
homogeneous equation (16) and may, if evaluated, be tabulated in groups, each

encompassing all spans of the same relative stiffness Variation.
For uniform stiffness in a span n, E In const., it is expedient to intro-

duce the notions of the proper flexibility cn0 and the incidental flexibility cn
of that span, defined by

C™ n —
HJl il(Hw + H)llLwvn
~ET y ]£j c«o (1 + ß) (44)

Particular integrals Mx and M2 of (16), M" - McJßJ 0, satisfying the
boundary conditions Mx (0) 0, _f2 (ln) 0 are obviously

X / X \
M1 sinh cn - —, M2 sinh cn I 1 — y- I

hence W — -~ sinh c

From these equations, the assumption of constant dead load in each span,
the lowest five formulas in each group (27) and (28), the first formula (29),
and from (41), the needed funetions jklgn, gn,jx\i(£l and their end slopes
d\{i)xk (see below under Continuous Stiffening Girders), have been numerically
dkjln
evaluated in the following tables30). Table 12 gives the positive and negative
areas of the influence diagrams i%k and the simultaneous areas of the jk\g-
diagram.

30) The writer has computed such tables for x/l=0, 0,1, 0,15, 0,20, 0,30, 0,40 and
0,50 18). However, for the present purpose it seems superfluous to publish other values than
those of Tables 1 to 11, since the maximum moment and maximum deflection in most
practical cases occur very close to #=0,2 Z, the maximum shear at the supports and the
maximum hanger reaction at mid-span.
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Deflection Theory Analysis of Suspension Bridges 23

Numerical Application to a Three-Span Bridge

The Mount Hope Bridge has three simply supported spans of constant
moment of inertia and can thus be analyzed with the tables of the preceding
article. Its dimensional and load constants are for the main span: l2 1188,33 ft.,
f2 118,795 ft., E I2= 123,511 109 ft.2 lbs.; for the side spans l± l3 498,33
ft., /x /3 20,891 ft., EI± EI3= 120,408 109 ft.2 lbs., sec ax sec a3

1,0424; and for the cable ECAC 29 106 lb./in.2 73,92 in.2 2140 106 Ib.,
elastic length Ls= 3138 ft., temperature length L= _TZV 2966 ft. and coefficient
of thermal expansion cu 6,5 • 10_6/deg. F. The dead load of the bridge is

w Wl w2 w3 2650 lb./ft., hence wxlx 1,321 106 Ib., wxl^ 658 106

lb. ft., w212 3,149 106 Ib., w2 Z22= 3,742 109 lb. ft. The live load is p 750

lb./ft.Ifthe load correction term in (5) is omitted one finds P(x)/w 750/2 650

0,283. A change in temperature of t +60 deg. F. should be regarded.
The dead load horizontal force figured in either the side span or the main

span is found to be Hw wn Zn2/8 fn 1480 w ft. 3940 103 lbs. (n 1 or 2).

The proper flexibilities of the spans become by (44) c01

-12,85 and c0
/394011882

123,5 106~

3940/2,14 106 1,84 10~3.

c03 1/
3940-4982
120,4-106

6,71. The cable factor becomes by (9) y

To find for example the maximum
moment at x2 — 0,2 l2 one may assume
tentatively ß 0,04, so that by (44)
c± cs 2,9 and c2 6,9. Table 1 (or a

diagram drawn from it) and (29) gives
G±= G3 w* 4983 0,038 4,68 106

-Vft.3, G2 w22. H883. 0,0683 113,6
106 w22 ft.3, G 123 106 w2 ft.3,

GJG 0,038, G2\G 0,924, G/H2W

123 106/14802 56,2 ft.
Now subdivide a unit base (span

two), Fig. 2, into ten equal parts. Erect

6.78 'W1269 ,c2=

53.29

6.88am OJLJr

C^7.M'o.*K

:_:s is
0.28 0.36k ^0.1 0.2

Fig. 2

Ä* 0£k/l

Note to Table 12

All areas refer to unit span length. The positive area of each influence diagram is
denoted by _4+. The negative areas equal the positive areas except for ixk and *™ at x — 0,51

that have two negative areas each equal to \A+.
H+ denotes the area of the jk/gn-diagram that is engaged at the same time as the

influence lines are loaded on their positive areas _4+. When the negative area(s) of the
influence lines is loaded, the corresponding area of the jk/gn — diagram is 1 — H+.

The total area of the jk/gn-diagram is one. The negative areas of the ixk, i\k, i^, and
i™ -diagrams equal the positive areas _4+. The ^J-diagram has the positive area one and
no negative area. All diagrams ?"* at x 0,5l have H+ 0,5.

Abhandlungen IX



24 S. O. Asplund

according to (31) on these subdivisons the influence ordinates for the span in
question, jk/g2 for ß2, plotted directly from the nearest figures in Table 1, that
is for c2 7. Interpolation is seldom necessary at this stage of the investi-

M
gation. Erect also according to (42) the influence ordinates ix\ for —z^ at the

section x2 0,2 l2 plotted directly from the figures for c2 7 in Table 6.

According to theorem (43) the correction of ix\ is negative (T < 1) in the side

spans. Hence the side spans should be left unloaded for maximum positive
moment at x2 0,2 l2. When the positive area of the influence line ig in span 2

is loaded, the "one-span" horizontal force increment is according) to (31 and

Table 12: ß2 fjk P(fc) d J P^C1 H+ 0,283 0,296 83,7 10"3 (this
J g2w2 lt w2

figure may also be evaluated by quadrature from Fig. 2).

Equation (32) becomes (load only in the main span) ß + 8 0,924.83,7.10_3
77,4 10~3. For a temperature rise of 60 deg. F (23) and (7) give

§ 1+^Q8. 1,84 10"3 3138 + 6,5 10"6 60 2966)
56-2 r '

8 (1 + ß) (102,7 ß + 20,6) lO"3 (45)

Assume (second trial) ß 0,050. This gives § 27,0 10"3 and ß (77,4 -
- 27,0) 10~3 50,4 10-3 and by (44) the incidental flexibilities c1 c3

2,85 yi50504 2,92 and c2 6,71 ^1,0504 6,88.
The influence line ix\ is redrawn for c 6,88 in Fig. 2. Its correction according

to theorem (43) at k2\l2 0,4 is 1,47 times 16 10~3 [1 - (1 - T) 0,924] or
1 05

3,9 lO"3, since by (33) U ^— 1,84 10~3 3138 0,108, T 0,097. The
ÖU,_

corrected influence line, used only in determining the critical live load position,
is indicated by a dashed line in Fig. 2. According to it the live load should be
extended to x2\l2 0,39. That adds 1,43 0,283 0,026 10,5 10~3 to the
above value of ß2 and 9,7 10"3 to ß + S making ß 27,3 10~3 by (45) and
ß (77,4 + 9,7 - 27,3) 10~3 59,8 10"3. The incidental stiffness now becomes

c2 6,71 yi,06 6,91. This does not noticeably change the horizontal force
influence lines nor any other results now obtained.

The extended live load applied to the (uncorrected!) influence line ix\ for
0,39 p fh) h

c2 6,91 gives J ig—[—dr 0,283 [7,91 10"3(byTable 12) - 0,026.2.10~3
o w2 l2

(by Fig. 2)] 2,224 10"3. Further, by (38), 82 ß2 - ß (83,7 + 10,5 -
- 59,8) 10-3 34,4 lO"3 and by (42): M\w2 l22 2,224 10~3 + 34,4 10"3

15,7 10-3 2,764 10~3, w2 l22 3,74 109 lb. ft., M 2,764 10"3 3,742
109 10,34 106 lb. ft. This result coincides with the value 10 391 ft. kips

figured by Steinman11). The present analysis discloses that only an unim-
portant error of 0,052/2,764 1,9 % in M would have entered if no correction
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of i*k had been considered and consequently the load carried only to the zero
point of ix\.

As a second example find the maximum shear at the support x2 0 of the
main span. According to theorem (43) the correction to _™ 0) is negative in
the side spans, which hence should be left unloaded. When the positive area
of _™ in the main span is loaded, Table 12 indicates that the simultaneous
area of the ^/^-diagram is H+ 0,159 (for c 7). Thus (31) gives ß2 0,283

0,159 45,0 10-3, (32) gives ß + § 45,0 10"3 0,924 41,5 10~3, and
(45) still approximately holds, whereby ß 18,6 10"3, 8 22,9 10"3, hence
by (44) cx 2,85 yi,02 2,88, c2 6,71 ^Iß2 6,78. Expressions (33) give to
T about the same value 0,097 as figured in the first example. The correction
(10,6) of ixf at k2 0,3 l2 becomes, see Tables 1 and 2, 1,269 times 0,148 [1 -
(1-T) 0,924] or 31,1 10~3. The i™-diagram for c 6,78 is drawn from
Table 8 in Fig. 2. The corrected influence line (dashed) near the zero-point
shows that the load should be carried to k2 0,28 l2 for maximum shear. Hence
0,28 P fh) h

f *™—~~dT 0,283[98,4. 10~3 (byTable 12) + 0,02. 11. 10"3(byFig. 2)]
0 w2 L2

27,9 lO"3. Equation (38) gives 82 ß2 - ß 26,4 10~3, Table 2 gives
7'™0 0,148 and (42) gives V\w2l2 0,0279 + 0,0264 0,148 0,0318, V

0,0318 3,149 106 10,01 103 lbs. If the load had been carried only to the
zero-point of ixf a quite unimportant error 0,283 0,22 10"3/0,0318 0,20 %
would have entered. The drawing of Fig. 2 and many of the above steps could
then have been omitted.

Determine (Example 3) the largest live load suspender pull at the center
xx 0,5 lx of the side span! A glance at Table 11 shows that the whole of that
span should be loaded. Since jxY is negative the corrections (43) to ixJ 0 in
the other two spans are positive. Hence also these spans should be fully loaded,
but the effect hereof will be carried to the 8-term according to (42). Equations

(31) and (29) give ft ft=ft ^-}^,-fc_* ^= 0,283. One finds

by (32) ß —^ 0,283 - 8 0,283 - 8, and, roughly using (45) with a minus

sign for 20,6 (temperature decrease), 8 9,5 10~3, ß 0,274. (This ß marks
the highest value of the horizontal force. The cables may be designed by it.)
The incidental flexibilities become by (44) c1 — c3 2,85 yi,274 3,21, c2

6,71 yi^74 7,57, which gives, by Table 1 and (29), Gx Gs w2 4983

0,042 5,2 106 w2 ft.3, G2 w2 11883 70,5 10~3 117,7 106 w2 ft.3,
G 128,1 106 w2ft.3, GjHl 58,7 ft. This new value of öshifts 8 to 9,5.10~3.

123/128,1 9,1 10~3, with only negligible changes in c. Equations (33) give
1 274

U —- 1,84 10-3 3138 0,125, T 0,111, and Theorem (43) and Table
Oo, /

2 yields the correction to ixJ in span 1: jkjgx times - 0,391 (1 - 0,889.5,2/128,1),
that is —0,377 jkjg1. This correction is nowhere larger than ixJ, see Table 11.
Thus the whole of span 1 should remain loaded. Equation (38) furnishes
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8X 0,283 - 0,274 0,009. Since the area of the ixJ-diagram is 1, (42) yields
psjw0 1 0,283 - 0,009 0,38 0,280. The largest hanger reaction in the side

spans thus is ps 0,280 2650 742 lbs./ft.
A short investigation shows that the maximum positive moments in the side

span (Example 4) occur when that side span is fully loaded and other spans
unloaded at highest temperature. For ß 0,04, cx c3 2,9, and c2 6,9 one
finds according to (31) ßx — 0,283 1 (area of ^/g-diagram), ß2 0, ß3 =0, and

by (32) and (45) 8 0,038 ß±-ß= 10,8 10~3 - ß (20,6 + 123,3)8) 10~3,

dismissing ß2. Thus ß 9,8 10~3/1,1233 - 9,8 10~3 and by (38) 8X 0,293.
A refiguring for the actual incidental flexibilities cx c3 2,85^0,99 2,84,
c2 — 6,68 would change the result unnoticeably. The third equation (42) for
x\lx 0,5 gives M/w11±2 0,283 0 (the total area of the i^-diagram is zero) +
+ 0,293 57,3 10-3 (for c± 2,84 by Table 2) 16,8 10"3, M 16,8 10~3

658. 106 11.1 103lb. ft.

Numerical Application to a One-Span Bridge

After the numerical application to a three-span bridge has been
demonstrated, it may seem superfluous to examplify the simpler case of a one-span
bridge. Still, a short example will be given to show at the same time how
concentrated loads are treated.

Top of Towers + 700'

Sag 55.2'
+47.9238.56

^mi HWEi * 22

53 23 panels oF 20= U60

Fig. 3

Fig. 3 shows an elevation of the Boden bridge (Sweden). It has a narrow
concrete deck and simply supported steel stiffening girders of uniform stiffness

EI2 4,64 106 lb. ft.2 (each girder) and dead weight w2 913 lb./ft. Its main

span is l2 460 ft. and the horizontal projections of the free cables in the side

spans 249 ft. The cable sag in the main span is f2 55,2 ft. and the secant of
the cable slope in the side spans is sec a 1,109. The elastic length of the
cable becomes by (11) Ls 460 (1 + 8 55,22/4602) + 249 1,1093 852 ft. Its
horizontal force is Hw w2 Z22/8 f2 w2 Z2/0,96 438 103 Ib., cable area Ac

8,7 in.2, ECAC 247 106 Ib., and cable factor (9) y 1,78 10-
14,1.1,61 ft. The proper flexibility by (44) is c20 =]/HJ22/ EL

Find the critical moment at x2 0,2 l2 caused by a sidewalk load of
p 126 lb./ft., p/w2 0,913, and three concentrated wheel loads of pdk

5500 Ib., pdk\w212 13,1 10-3 each at intervals of 3,94 and 15,7 ft., or in
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the unit of the span length 8,6 10"3 and 36,3 10~3 (Example 5). If ß is roughly
estimated at 0,06 the incidental flexibility will be by (44) c2 14,1 yi5i 14,5.
For that value of c plot in Fig. 4 on a unit base the influence lines jk\g2 from
Table 1, and from Table 6 ixl for x\l2 0,2. The latter influence line indicates
that the middle wheel load should be

placed at k\l2 0,2. The sidewalk load
carried to the zero-point of iH, and
the wheel load, both applied to the influl
ence line jk/g2, give the load integra-

%hU]0d k
0,138.0,239

g2 w2 l2

(from Table 12) + 13,1 10~3 [0,81 +
0,95 + 0,99 (wheel ordinates from Fig. 4)]

0,0690 ß + 8 by (32), since G2 G.

Table 1 and (29) give G 0,0792 w22l2s,
G w2 lsg

(31) *¦-/£

#2
W -(^-(t)*" 0,0731,

(23) and (7) give 8

ß 1,51 ft. 0,045 ß (l+j8).

1U.51.266 W c30.03*

25.7*0.99
0M
0.81

76x70

14.5'0.2, k,c

363 8.6*

131 *10 each
k/l

0.5OM0.30.2

Fig.

H2
w

33,6 ft.;

33,6 ft
For ß 0,65 one finds 8 3,1 10~3, ß (69,0 - 3,1) 10~3 65,9 10~3. This
corrects the value of the incidental flexibility to 14,1 y 1,0659 14,6. The
influence lines already drawn in Fig. 4 obviously do not need any redrawing
(which, if needed, would be easily effected from the main tables 1 and 6). The
influence line ix\ loaded with the same load as for ß gives the load integral (42)

0,138 3,05 lO"3 (from Table 12) + 13,1 10-3[(16,0 + 30,0 +jill^-(^dkxk
w2

w
l2

+ 25,7) 10~3 (wheel ordinates from Fig. 2)]
4,50 10"3, (38) 82 ß2 - ß 8 3,1'. 10

M w2 l22 1,374 10-3 266 103 lb. ft.

1,36

J °2/;

10~3. Table 2 gives j™
11 0,014 lO"3, and (42)

Continuous Stiffening Girders

For continuous bridges it is evidently posssible to evaluate tables of influence

funetions which are parallel to those here given for simply supported
spans.31) All bridges with the same span length ratios and the same relative
stiffness Variation may be covered with one set of such tables.

However, bridges with continuous girders of constant stiffness in each span
may be treated with the sole aid of the previous tables. For that purpose the
influence of an applied moment Ma to the stiffening girder, notably at its
supports, shall be considered. Since the internal work of shear is neglected,

31) Such influence funetions may also be evaluated by model tests18).
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M Msuch a moment may be replaced by two vertical forces -^- and + ~~ on
ZI IC LXiC

a distance A k near the point of application of the moment, making A k tend
to zero. These two forces applied to any influence line I(xl add

_ M^ M^ / Mä \
_ em

Aklxk + Ak yxk + ~d¥nic)" Ua~dF

to the load integral |/^P(Jfc) dk (46)

The moment Ma is counted positive when turning in a positive direction
(from that of x to y). To the right end of the (n — l)st span apply a moment
— MT and to the left end of the nth span apply the opposite moment MT. Both
these moments cause tension in the bottom of the stiffening girder. At a
continuous support the tower moments MT must be so chosen that the grades rj
on either side of the support become equal. Applying such conditions the
unknown tower moments may be solved from a linear system of equations.
This method may be used in the determination of individual statical quantities
(77, 7/, M, V, or ps) and also in the computation of influence funetions.

Numerical Application to a Continuous Bridge

Determine the tower moments M2 and Ms of the Mount Hope bridge if it
were continuous, for a live load extending from 1c\lx 0 to k\l2 0,35 (Example
6). If, tentatively, ß 0,6, (44) gives cx c^ 2,94, c2 6,91. In Fig. 5 the
influence diagrams jk\g2 and ixk for x2 0 and l2 are plotted from the tables 1

and 5.

By (31) and Theorem (46) is obtained ft ^^ 1 + S ^f^ -^-
U)-t C iCjt-t U)-t l^

M
0,283 + -5,047. lO"3, (for c 2,94 by Table 1)( 1) 0,283 + 7,67 m„
abbreviating 10"12 MTjit. Ib. mT, MTfwx lx2 1520 mT, MTjw2122 267 mT,
ß2 0,283 0,35 0,793 (that is the average height from Fig. 5 of loaded part

r mof the jk\g2-diagram) + 5,195 10~3 (for c 6,91 by Table 1)
w2l\ -(-

i) 1 78,5. 10-3 +1,39 (m2 + m3),ft 0.1 + 5047 _
10-sÄ =7,67m3,

w212/ J w31^
so that by (32) and the values of GV\G used for the simple span bridge
8 0,038 (ßt + j88) + 0,924^ - ß 83,3 10"3 + 1,58 (m2 + m3) - ß (20,6 +
123,3)8 + 103 ß2) 10"3, the last member being substituted from (45),j8 55,5
10-3 + 1,40 (m2 + m3).

Hence by (38) 8X ß1-ß= 227,5 10"3 + 6,27 m2 - 1,40 ra3, S2 23,0
10-3 - 0,01 (m2 + m3), S3 - 55,1 10~3 - 1,40 m2 + 6,27 m3.
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Equating the change of grade on either sides of the left tower, the second
equation (42) multiplied by Hw(l + ft yields 1,321 106 [0,283 0 (total area
of i^-diagram is zero) + 0,982 (from Table 5) {-M2\wx lx2) + (227,5 10"3 +
+ 6,27 m2 - 1,40 m3) (-0,194, from Table 2) 3,149 106 [0,283 0,35 0,168
(average height from Fig. 5 of loaded area of i\k for x 0) + 4,064 (from
Table 5) M2jw2122 + 0,860 (-MJw212) + (23,0 10~3 - 0,01 m2 - 0,01 m3)

0,355 (from Table 2)]. Hence - 1493 m2 - 44,1 10~3 - 1,2 m2 + 0,3 m3
2,384 (16,6 10-3 + 1085 m2 - 230 m3 + 8,2 10~3) or 4081 m2 - 549 m3

- 103,2 10-3.
The same steps for the right tower are 3,149 106 [0,283 0,35 0,109 +

+ 0,860 M2jw2 l2 + 4,064 (-MJw2 l2) + 23,0 10"3 0,355] 1,321 106

[0,982 MJw3 lr2 + (-55,1 10~3 - 1,40 m2 + 6,27 m3) 0,194], or -549 m2 +
+ 4081 m3 + 56,0 10~3. The Solution of these two equations is M2 23,9

106 ft. Ib., M3 10,5 106 ft. lb.
These calculations can be considerably

shortened if one observes that the tower
moments have a negligible influence upon ßv, ß,
and 8V. Then they read ft 0,283, ft 0,283

0,35 0,793 78,5 10"3, ft 0, 8 0,038
0,283 + 0,924 0,0785 - ß 83,3 10~3 - ß

(20,6+ 123,3 ft 10-3,ß 55,8.10~3, Sx 227,2.
10-3, S2 22,7 10-3, S3 -55,8 10~3, 1,321
106 [0,982 (rM2\wxl2) + 227,2 10~3 (-0,194)]

3,149.106 [0,283.0,35.0,168 + 4,064 M2\w212
+ 0,860 (- M3jw2 l2) + 22,7 10~3 0,355],
-1493 m2 - 44,1 10"3 2,384 (16,6 10~3 +
1085 m2 - 230 m3 + 8,1.10~3), 4080 m2 - 548 m3

-103,0, 3,149.106 [0,283.0,35.0,109 + 0,860

M2jw2l2 + 4,064 (- M3\w212) + 22,7 10~3

0,355] 1,321 106 [0,982 M3\w3l2 - 55,8.
0,194), - 548 m2 + 4080 m3 55,9 10~3, with
the same Solution M2, M3 as above.

On account of the large bending moments a
local increase in the strength and stiffness of the
truss at the towers is economically justified. A local increase in stiffness does

not need to change the stress distribution very much, but to be exact other
sets of influence tables for varying stiffnesses could be computed, departing from
(16), and used together with all formulas here given before (43). Such influence
tables may also be accurately determined by model methods18).

In a complete analysis of a continuous bridge with even stiffness in each

span, influence lines may be computed from the above tables or from a more
complete set of tables for even stiffness. The influence diagram for a tower
moment is, for instance, obtained by severing the girder at the tower and

1.Z6.

0.233

Vifll c

_<£_>/O.H.C

0.161

6.91

Wl
0.2 0.3 OA

Flg. 5
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applying an external tower moment MT of such a magnitude that the difference
in change in grade on both sides of the tower equals one, Then the deflection
of the truss becomes an influence diagram for the tower moment. This diagram
is to be determined for several values of the incident flexibility that may arise.

APPENDIX

Notation

All notation except that which is specific to this paper, is in conformance
with common usage in most American treatises on the theory of Suspension
bridges. References to the numbered equation where the magnitude is first
defined or used is given within parentheses. Refer also to Fig. 6.

Ac section area of cable, Ac0 a mean value of Ac (10),_4+ positive
area of influence diagram

C cable, A C cable yield (7)

cn incidental flexibility of span n (44)
c0n proper flexibility of span n (44)

E,EC modulus of elasticity of truss and cable (5), exk distinct unity
ordinate at x k (25)

/„ vertical cable sag measured from the cable cord at the center of the
vth span (11)

G bridge constant (22), Gv contribution to G from the vth span (29),
gv span constant in one-span bridge (29)

Hw horizontal force of dead load — y"/w, H increment of horizontal
force due to other causes, H+ area of the ^/^-diagram engaged at the same
time as another influence diagram is loaded on its positive area _4+.

I moment of inertia of truss at section x (5), Iv — constant value of /
in the #th span (44).

Ixk> Ilk> etc- working influence funetions (25), i^l working influence
funetions for one-span bridge (41)

Jxk> Jx> ?xk> jx> Jlk> etc- influence funetions (19) (21) (25) (27) (28)
k abscissa of live load elements, K kßtl (27)
L horizontal distance between cable anchorages (7), AL increase of L

due to anchorage displacement (7), Ls "elastic length" of cable (10), lv

length of v th span.
M moment in stiffening truss at section x (14), Mx and M2 particular

Solutions of homogeneous equation (16), Ma external moment applied to the
stiffening girder, MT tower moment in continuous girder.

m span not containing the section x (37), also subscript.
N total number of spans.
n span containing the section x (18), also subscript.
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P(k) load function (5), p, p(k) distributed live load at abscissa k (5),
pt (x) live load carried by the stiffening truss (5), ps (x) live load carried by
the suspenders (3).

s length of dead load cable are measured from left support or saddle to
section x (1).

t uniform rise in temperature (7), temporarily used abscissa (18).
T, U quantities used in ascertaining the critical live load position (33).
V shear in stiffening truss at section x (26).
w(x) variable dead load per unit of length of bridge (3), wn a mean

value of w in the n th span (28).
x abscissa measured from the left support of the n th span to the section

to be investigated, X xjln (27).

y ordinate measured downwards from a horizontal line to the cable
under dead load at section x.

av slope of cable chord in the vth span (11).
ß HjHw relative increment of horizontal force (8), ft ß in one-span

bridge with inextensible cables (31).

y cable factor (9).
8 cable yield constant (23), 80 same for corrected equations (34),

Sn same including all span interaction effects (38), see also (42).
e elastic and temperature unit elongation of cable.

rj vertical displacement of truss at section x due to live load, temperature,

and anchorage displacement.
| horizontal displacement of the cable point originally at abscissa x due

to same causes.
0 load function (5).
ifj direction of tangent of deformed cable (2).
oj coefficient of thermal expansion (7).

m,

3>7fin

Fig. 6

Summary

A general, systematic influence line method for the analysis of variable stiffness

Suspension bridges is deduced. Here minor effects, such as caused by cable
extension, span interaction, and angular deviations, are segregated to simple
correction terms. This makes possible the treatment by large classes, of bridges
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containing spans of arbitrary stiffness variations and arbitrary cable arran-
gements. In this treatment direct use is made of tabulated influence funetions for
inextensible cable, simple span bridges of the same stiffness variations as con-
tained in the bridge to be analyzed.

Such influence funetions for uniform stiffness spans are tabulated in the
paper. Constraint values are also tabulated, by which continuous bridges may
be treated according to methods deduced in the paper. Numerical examples
are elaborated with very complete cross-references, so as to make feasible,
without an absolute insight in the underlying theory, the practical computations
of one-span and multiple-span bridges. Practical examples solved should serve
as an incitement and a port of entry for gradually extended investigations in
the theoretical parts of the paper.

Zusammenfassung

Eine allgemeine, systematische Methode zur Berechnung von Versteifungsträgern

variabler Steifigkeit mit Hilfe von Einflußlinien wird abgeleitet. Kleinere

Einflüsse, hervorgerufen durch die Kabeldehnung, das Zusammenwirken
der verschiedenen Felder und die Kabelkrümmung, werden ausgeschieden und
zu einfachen Korrekturgliedern zusammengefaßt. Dies ermöglicht die gruppenweise

Behandlung der verschiedensten Typen von Hängebrücken mit
Versteifungsträgern beliebig veränderlicher Steifigkeit und beliebiger Kabelanordnung.

In dieser Berechnung werden tabulierte Einflußfunktionen für starre
Kabel direkt gebraucht für einfeldrige Brücken mit den gleichen Streifigkeits-
verhältnissen, wie sie die zu untersuchende Brücke aufweist.

Solche Einflußfunktionen für Felder mit konstanter Steifigkeit sind im
Beitrag zusammengestellt. Auch für die Form änderungswerte werden Tabellen
gegeben; damit können durchlaufende Versteifungsträger mit der gleichen, im
Beitrag entwickelten Methode berechnet werden.

Numerische Beispiele werden durchgearbeitet und ausführlich erklärt, um
die praktische Berechnung von ein- und mehrfeldrigen Brücken so
darzustellen, daß ein in das Detail gehendes Studium der zu Grunde liegenden
Theorie nicht nötig ist. Die gelösten praktischen Beispiele dienen als Anregung
und Einführung zum eingehenderen Studium der im vorliegenden Beitrag
entwickelten Theorien.

Resume

L'auteur etablit une methode generale, systematique, pour le calcul des

poutres raidisseuses de rigidite variable, a l'aide de lignes d'influence. II
considere separement les influences secondaires dues ä la dilatation des cables, ä

1'interaction des differentes travees et ä la courbure des cables, en les groupant
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sous la forme de termes simples de correction. Cette methode permet d'etudier,
en les classant par groupes, les types les plus divers de ponts suspendus, avec
poutres raidisseuses de rigidite variable et dispositions arbitraires pour les
cables.

Dans ce calcul, l'auteur utilise directement les fonctions d'influence presen-
tees sous forme de tableaux, pour cables rigides, en les appliquant a des ponts
ä une seule travee accusant les memes conditions de rigidite que le pont ä
etudier lui-meme.

L'auteur expose dans sa communication des fonctions d'influence de cet
ordre, s'appliquant a des travees de rigidite constante. II donne egalement des
tableaux pour les valeurs des deformations. II est ainsi possible de proceder
au calcul des poutres raidisseuses continues a l'aide de la meme methode.

Des exemples numeriques sont exposes d'une maniere detaillee; ils mettent
en lumiere le mode de calcul pratique des ponts ä une et a plusieurs travees,
dans des conditions telles qu'il devient inutile d'etudier d'une maniere appro-
fondie la theorie de base. Les exemples pratiques ainsi resolus n'en incitent pas
moins le lecteur ä pousser plus loin l'etude des theories exposees dans ce
memoire.



Leere Seite
Blank page
Page vide


	Deflection theory analysis of suspension bridges

