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Shear Deflections in Latticed Structures

Schubverformungen in Fachwerkkonstruktionen

Les deformations dues au cisaillement dans les ouvrages en treillis

Charles Doveton Crosthwaite, B.Sc;, M.I.C.E., Vron, Trefriw, Caerns, North Wales

General Introduction

An investigation carried out by the author on the effect of shear deflections

in the lattice stiffening truss of Suspension bridges resulted in a general
method of wide applicability to many classes of latticed structures.

In the following paper, which has been divided into two parts, part I deals
with the Suspension bridge stiffening truss, and part II with laced compression
members.

Part I. Stiffened Suspension Bridges

Introduction

Before the spectacular failure of the Tacoma Narrows Bridge in December,
1940, focussed attention on the importance of the aerodynamic characteristics
of Suspension bridge structures there was a tendency for progressive designers
to replace lattice stiffening trusses by relatively shallow plate girders without
limit of span. This trend has now been checked, the superior aerodynamic
stability of open lattice trusses having been conclusively established. It may
be stated with some assurance that few if any bridges of any magnitude will
be constructed in the near future with plate stiffening girders.

It has accordingly seemed advisable to look more closely into the question
of the effective stiffness of lattice trusses, and how best to carry out the
mathematical analysis of lattice stiffened Suspension bridges.

When analysing a girder stiffened bridge, there is no uncertainty about
the moment of inertia of the girder. This is not the case with the lattice truss.
It is well known that for truss bridges 'of normal proportions, any attempt to
calculate deflections from considerations of chord area alone would be wholly
fallacious. Making certain assumptions as to'the stress in the web and chord
members, it can be shown [1] that for shallow trusses with a very small depth/
span ratio, the effect of web distortions can be neglected. The lattice truss of
a Suspension bridge is generally regarded as Coming in this class and it has
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been stated by one of the greatest authorities [2] that he calculates the moment
of inertia very simply by multiplying the total chord area by the square of
half the depth. This procedure is however by no means universally accepted.
It has been suggested that an "equivalent" moment of inertia of a lattice
stiffening truss be derived from a consideration of its deflection under various
conditions of loading, but this results in an unsatisfactory "cut and try"
procedure. In the analysis which follows it will appear that the "equivalent
moment of inertia" of a lattice girder is a fictitious concept of no physical
significance.

The deflection of a lattice girder can be regarded as being made up of two
components, the flexural deflection, deriving from the extension of the chords,
and the shear deflection arising from the stressing of the web members.

^ ¦x .4

/A\r\TV\AAA1

—Aa
— L

* - a
«*

Fig. 1

In fig. 1 the simply supported truss has a web system consisting of members
of equal cross-sectional area Aw, set at an angle & to the longitudinal axis of
the truss. Any other system of truss panelling will respond to the same mathe-
matical treatment. The assumption of uniform web members from end to end
of the truss would be very near to the truth in modern Suspension bridge design.

Initially an expression will be derived for the shear deflection of a truss in
terms of the applied bending moment.

Let the truss be subject to any system of loading then the deflection q at
any section A—A from the extension of the web members only is given by
the summation:

q Z sul
E~Ä1 (1)

where s is the stress in any web member due to the external loading. u is the
stress in the same member arising from a unit load at the section A—A,
and l is the length of the member.

Now the unit load stresses in all the web members from x 0 to x a, are
given by:

l—a/Lu sin©

From x a to x L the unit load stresses are

¦a\Lu sin®
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At any section x, the contribution to the deflection at A — A from a length
eJi x at) x is ttt 7JlGudx

2£_l„sm0cos@

where FG is the shear at x from the external applied loads. The total shear
deflection at AA is therefore

x L
\(\-a\L)FGdx-a\L\FQdx

_ 0 x
E Aw sin2 0 cos 0
Mn

E A„, sin2 0 cos 0 (2)

This important result states that in any simply supported truss with
uniform web members the shear deflection at any section is directly proportional

to the applied bending moment Ma, and can be written as

EA. (3)

where Ae the "equivalent shear area" of the web members is Awsin2® cos©.
In a simply supported uniform beam we can write

rd2v
-EIU M°

where v is the bending deflection.

nr"-^=
V//////M

b»

Fig. 2

Comparing this with the expression just obtained for q the shear deflection,

_ d2v
dx2

(4)

The deflection due to shear follows therefore quite a different law to that
due to bending, being proportional to the second differential of the bending
deflection, and it is apparent that no "equivalent moment of inertia" can be
derived for lattice girders.

The effect of shear deflection on the behaviour of the stiffened Suspension
bridge must now be considered.



94 Charles Doveton Crosthwaite

Referring to fig. %, making the usual assumptions in respect of non-exten-
sion and close spacing of hangers, and vertical movement of truss and cable,
the fundamental equation of the Suspension bridge is

Ma ML-HL-y-(H + HL)v (5)

where MG the bending moment in the stiffening truss at any section x.
ML the applied external bending moment at the same section.
HL the horizontal component of the live load cable tension.
H the horizontal component of the dead load cable tension.
v the vertical deflection of truss (and cable), due to the bending

of the truss, i.e. the extension of the chord members.
HL is unknown and is best obtained from a consideration of the kinematics

of the deflected cable.

In the case of the lattice stiffened truss, the equation must be replaced by

M0 ML-HL-y-(H + HL)v-(H + HL)q (6)

where q is the shear deflection of the truss. Substituting from eq. (3)

(H + HL)MGM0 ML-HL-y-(H + HL)v- EA„

_ML-HL.y-(H + HL)vM°~ ; #+_% (7)
i + L

EAe

differentiating, the shear FG is given by

FL-HL.y'-(H + HL)v'Fg=— „,V " (8)H + HL
EAe

where "dashes" denote differentiation with respect to x.
Eqs. (7) and (8) can be resolved by any of the orthodox methods, but are

perhaps most readily dealt with by the series Solution [3]. For those not
familiär with this Solution it will be expounded in its simplest form before
taking into account the effect of web distortions.

The basis of the method is to express the variables MG, ML, y, v, in eq. (5)
as sine series.

In the expression for the live load cable tension as a function of the
deflection of the cable, the latter is also written as the sine series

v V1 sin 77 x/L + V2 sin 2 tt xjL +

In eq. (5) the coefficients of the terms of the series for MG are then equated
one by one to those on the right hand side of the equation. In the result the
terms of the sine series for the deflection v are given by
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V,= M*-W* ,A= 1,2,3. (9)

^^ 2xKxVx + Zxkx(Wx+Zx) (10)

In these equations:

M

for the loading indicated in fig. 2

2 7) L2
MLx ,3 3 (cosA7ra/__ - cosXirb/L) (11)

Iß/
G[A=^a-0O8A7r) (12)

7 is the moment of inertia of the stiffening trusses calculated simply from the
chord areas and the depth.

Ls is the summation j 1 + \~t^\ \ dx carried over the whole length of the

cable between anchorages. *

Ac is the cross sectional area of the cables.

Et is the modulus of elasticity for the truss.
Ec is the modulus of elasticity for the cable.

Kx — t y where A has odd values only.
A 77 L
Iß {

kx t— 7^ where A has odd values only.
A 77 &i

W\ and Zx are the deflection coefficients for the side spans corresponding to
Vx for the centre span.

These equations must now be modified to take into consideration the
effect of shear deflections.

Writing B for EtI, the rigidity of the stiffening'truss, eqs. (9) and (10)
become M u nV= MLX~'liLtrX /To\A \2tt2B l H + H^ [ '

H + HL+ L2

HTL
\ EAe

-n As 2\K\ (V\+Q\i + similar terms for side spans (14)
^cAc

Where from eq. (3),
M

q=UxQxsmXnxlL=w^- (15)

Zi^£vXBm\nzlL (15)

.*.in equation (14),
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Va_ _2__/a (16)

Having derived the coefficients Vx, v 2?;\ F^ sin A 77 ^/^ *s substituted in
eq. (7), to obtain the bending moment in the stiffening truss.

Worked Examples

The series Solution will now be applied to the case of a load on the central
span of the bridge depicted in fig. 3 giving the maximum moment at the
1/4 point of the span. The example is worked both with and without consideration

of shear deflections. It will be apparent how very little additional labour
is involved in taking account of web distortions.

VTZm WÜ7X&,

T-0"

T_*aH^NAirwki^ 3zk____________

32W-0" _ 1000'-0"

Eniargement of stiffening truss

6=UZ°30
30'

Fig. 3

For the Bridge Depicted in Fig. 3

Aw cross-sectional area of diagonals 25 sq ins (each)
Depth of truss centre to centre of chords 27.5 ft
Chord area 130 sq in (each truss)
/ 49,160 in2 ft2 (each truss)

7^^ 7^ 2.72 xlO6 lbs (both trusses)

where Et 29 X 106 lbs/sq in
0 42° 30'
Panel length 30 ft
EtAw sin2 0 cos 0 (both trusses) EtAe 493 X 106 lbs
Centre Span, "L" between bearings 3.220 ft
Side Span, "Z" between bearings 990 ft
Area (both cables) Ac 960 sq in
Sag Ratio 1/10

Hanger Spacing 60 ft
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Centre Span 3503
Side Spans 2417

Anchorages 370

EnAn
s

total 6,290 ft
28 xlO6 lbs/sq in
4.273 Xl06lb/ft
331
A3

31-22

Kx 0.5063

kx 0.156

3240 Ft. Span Suspension Bridge. Live Load on Centre Span from
a */16L to 6 5/16__, p 6050 Ibjft

Calculation of HL
2p L2/ a b\

ML*=J^[cosX7T-jr -COSA77. j-\

¦(cob^t-cos^A*).
4046.8 XlO6

H 58.07 X 106 lbs

HL 3.12 x 106 lbs (Ist Approxm.)
H + HL= 61.19xl06lbs

Centre Span Side Span

A MLX HLGX
MLX

-HLOx
\27T2B V\ K\T\ -HLgx AVZ?

+ V
wx kxWx

1

_»

1 1116.51 1029.91 86.60 63.91 1.355 .686 -97.41 89.9 - 1.084 -.169
3 117.698 38.15 79.55 85.63 .929 .157 -3.61 319.6 -.011 -.001
5 -37.981 8.24 -46.22 129.1 -.358 -.036 -0.78 789.0 -.001
7 -16.367 3.00 -19.37 194.2 -.100 -.007
9 7.767 1.41 6.36 281.0 .023 .001

11 3.528 .77 2.76 389.6 .007 —
13 -1.414 .47 -1.88 519.9 -.004 —
15 -.331 .30 -.63 671.9 -.001 —

HL .461x4.273XlO6 lbs
1.968xl06lbs

+ .844
-.043
+ .801

-.340
+ .461

.170

.170

.340
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Calculation of HL for Load on Bridge from 3/16 L to 5/16 L of Centre Span,
Including Shear Effects, p 6050 Ibs.jft.

2 p L2 / x a b
MLx= ^3_3 { cos A 77 -=- — cos A 77 y

4046.8 X 106

(COsA77y- — C0sA77y-J

(cosAA7r_.cos^A77)

H 58.07XlO6 lbs

HL 3.030 x 106 lbs (Ist Approxm.) 1 +

EA

H + HL

H + Hr 6l.l XlO6 lbs

2__lsin2@cos@

4.273 XlO6

-'+£"¦»«

Centre Span

X MLX HL9X
MLX

~HLGX
+ 1.124

X27T2B
X L2

^A
7T2X2B

L2EAe
Qx

(^A
+ 0a)

KX
Wx+Qx)

X27T2B

L2

X 1.124

1 1116.510 1000.2 116.3 64.151 1.813 .006 .011 1.824 .923 3.051
3 117.698 37.04 80.66 88.556 .911 .050 .046 .957 .161 27.456
5 -37.981 7.981 45.962 137.366 -.335 .138 -.046 -.381 -.039 76.266
7 -16.367 2.908 -19.275 210.581 -.092 .270 -.025 -.117 -.008 149.481
9 7.767 1.366 -6.401 308.20 .021 .446 + .009 .030 .002 247.100

11 3.528 .750 2.778 430.233 .006 .666 .004 .010 369.133
13

15
-1.414
- .331

.453

.293
-1.867
- .624

576.656
747.493

-.003
-.001

.930 -.002 -.005 515.556
686.3931.039

Side Span

X ~HL9X

X27T2B

X 1.124

+ 1.124
X27T2B

x
h2

WX
7T2X2B

h2EAe
Q'x (Wx+Q'x)

kx(Wx
+ Q'\)

1

3

5

94.597
3.503

.758

32.270
290.430
806.695

93.370
351.530
867.795

-1.013
-.01
-.001

.058

.524
-.059
-.005

1.072
.015

-.167
-.001

HL= .703X4.273XlO6 lbs

3.0039XlO6 lbs

-.168
-.168
-.336
1.039

.703

Let A HL=—.Ol XlO6 lbs
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MgU + r, a H\IlL r.) =ML-HLy-(H + HL)vG\ EAwsm2@cos&J l lu \ lj
1347.63 - 3.028 X 240.00 - 61.098 X 7.761

MLr° 1.124

1347.63 - 1200.901 146.729
130.521

1.124 1.124

MQ 130.521 XlO6 lbs ft
XttXFrl* + r, A

H+/iL—tt) =Fr-HLyf-{H + HL)S)^Vx
G\ EAwsm20cos@) L LU v Ll L A cos-

Ft

L
1.8264 - 3.028 X .2483 - 61.098 X 8.032 x 10~3

#3/16 i 124

.5667
1.124

X 106 lbs .5042 x 106 lbs 225.08 tons.

_ -.6088 - 3.028X .1491 + 61.098 X 7.880 X 10~3
^5/16 _ 1.124

.5788
1.124

X 106 lbs -.5149X 106 lbs -229.9 tons.

Magnitude of Corrections for Lattice Girder Web Distortions

The following table shows the percentage error in the maximum bending
moments and shears at various points along the centre span in the bridge in
question resulting from neglect of the shear corrections. The maximum error
in moment amounts to 6% and in shear to about 8%. These are not negligible
figures, but Omission of the correction is on the side of safety. The correction
is so easy to apply that there is no justification for not running out its magnitude

at some stage in the analysis.
It is the author's practice to analyse a Suspension bridge by the simplified

method given on pp. 94 and 95, and then to consider separately the various
corrections to the approximate theory due to such factors as:

1. Non uniform distribution of live load.
2. Non vertical motion of cable and hangers.
3. Hanger extension.
4. Non uniform truss moment of inertia.
5. Shear deflection of stiffening truss.

These corrections can be established on a percentage basis for one particular

make-up of truss and cable and can thereafter be applied throughout
the inevitable changes in design, one final check up being made when this is
settled.
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Conclusions

The author has presented what he believes to be a satisfactory treatment
of the effect of extensions of the web members of lattice stiffening trusses on
the moments and shears carried by the trusses. The effect of the web extensions

was found to be a relief of stress in the stiffening truss. The magnitude
of the corrections in the example investigated, which is perhaps typical of
modern practice in long span bridges, is of the order of 5% to 8%.

In bridges with a greater ratio of truss depth to span, the correction would
be even more substantial. The additional work in the analysis to take account
of the shear effect is small, and its neglect cannot be justified on structures
of any magnitude, particularly when, as is frequently the case, other corrections

to the simplified theory are considered at length.

Table Shewing Percentage Error in Moments and Shears on the Centre Span of a
3,240 Ft. Suspension Bridge Arising from Neglect of Shear Deflections

Position Mq without MQ including Fq without Fq including
of Shear Effect Shear Effect /o Shear Effect Shear Effect /o

Load ft lbs X 106 ft lbs XlO6 Tons Tons

0 to Vs 119.64 112.52 6 (0) 479.3 443.4 7.5

(Vi.) (Vs) 215.1 194.8 9.4

Vi. to Vi. 148.8 142.0 4.6 (Vi.) 272.6 254.8 6.5

(Vs) (3/16) 246.3 226.4 8.1

7i. to Vi, 136.29 130.52 4.2 (Vi.) 244 225.1 7.8

(V4) (5/ie) 248.5 229.9 7.5

7l6 tO '/l6 125.38 120.00 4.2 (5/ie) 245.9 228.9 7

(3/s) (Vi.) 247.1 226.6 8.3

Vi. to Vi. 121.9
(7a)

116.02 4.8 (Vi.) 241.3 226.9 7.9

Part II. The Strength of Latticed Compression Members

Introduction

In the first part of this paper the author has established a relationship
between the bending moment and the shear deflection in a simply supported
lattice girder.

This relationship can be shown to be applicable to the increased deflection
under load and consequent reduetion in strength of laced struts as compared
to struts of solid box section.
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The author's method will first be used to establish the Euler Load for a
pin-jointed laced column, and a correction to the Perry Strut Formula used
in B.S. 449, 1948, "The Use of Structural Steel in Building", will then be
derived.

Analysis

The column in fig. 4 has single or double lacing on both sides of the column,
with a total cross-sectional area Ad, at an angle © with the longitudinal axis.

x

Fig. 4 Fig. 5 Fig. 6

Let the lateral bending deflection of the strut when subject to a load P be v
at any section x (fig. 5). Then from Part I there will be an additional shear
deflection of

Mx
EAdsm2@cos0 F1

Mx.ir(*o!/) (17)

where Mx is the bending moment induced at x from the end loading.
If the flexural rigidity of the column in the plane of bending is B E I, the

differential equation of the deflection curve becomes therefore

Bd2v _, n PMX- =P(v + q) =Pv+ x
dx2

Pv-

Fn

PB d2v

Fn ax2'
Bd2v
dx2

8 Abhandlungen XII
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writing v V sin —
L

I 772 _ \ _
TT2 _

\ +FDl*)- l*
2 TD

^™- is the Euler Critical Load for a solid pin jointed strut and it will be
t

written as Fe.

Then P= F"
„ (18)

Dividing through by A, the cross-sectional area of the strut

/. - -4^ d»)

Thus the buckling load of the strut is reduced in the ratio

1 1
or

l+A !+___+
FD l+ FD

This result has been obtained in a somewhat different manner by Timo-
SHENKO [4].

In Great Britain the Perry strut formula (see Appendix I), has been

adopted in B.S. 449, 1948, as the basis for determining the permitted axial
stresses in struts; although it should be noted that for slenderness ratios Ijr
of less than 80, the tabulated stresses in B.S. 449 have been obtained by linear
interpolation between a stress equal to 59% of the yield stress, at l/r 0,
and the Perry strut value at l\r 80.

The Perry strut formula in the form in which it is used in B.S. 449 is
(see fig. 6):

zr V _fy+(V + l)fe i/\fv+(V+l)feY_4 /A2'Ja ~~ 9 1/ 2 \ y (20)

where Fa the permissible average stress in tons/sq in.
K2 load factor of 2.

fy guaranteed min. yield stress in tons/sq in.

fp Eulerian Value ll9l 9,3 e (l2jr2)
t, n t effective lengthl\r — slenderness ratio —T. » ^-.—' radius oi gyration

V =^£=.003 Z/r.
f V0 hypothetical initial central deflection of the strut.
| ax distance from neutral axis to outside fibre on compression side

of strut.
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In view of eq. (19) it would be anticipated that the effect of the laeing
correction on the Perry formula would be the replacement of fe by

f*
(20 a)

1 +
A-fe
FD

Analysis (Appendix I) shows this to be the case.

Magnitude of Correction

Assuming that the laeing is single, at 60° to the axis of the strut, and that
it is designed to resist at 4 tons/sq in a transverse shear of 2J% of the axial
load in the strut, il will be found that the reduetion of strength of a laced strut
as compared with a strut of solid box section is of the order of 3% to 4%
over the whole ränge of practicable values of l\r.

It is probably unnecessary to reduce the stress in laced struts designed by
the usual methods, but any unorthodox design, particularly if the laeing is
highly stressed, should be checked by the application of the correction (20a)
to the slenderness ratio, to see if its strength is substantially below that of a
solid section.

Appendix I

The Perry strut formula in the form in which it is used in deriving the
tablesin B.S. 499 is:

*A-Ji+^-yp¥^]'-u.
where the Symbols have the values ascribed to them in this paper.

The Perry formula will now be derived for a latticed strut.
In fig. 6, let v0, the hypothetical initial deflection of the strut, be given by

v0 V0sm7rxll.

Under the axial load P the bending deflection v will also be of the sinusoidal
form

v Vsm.7Txll.

In addition there will be the shear deflection arising from the distortion
of the bracing,
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The differential equation of the deflection curve becomes

Bd2v _ / B d*v\
~~dx^~r[Vo + V~ FDdT*)

Z? 2 / 7? 2 \
.-. —g- Vsunrxß — P\V0smTTxß + Vsinnxjl + -=- -j^Vaimrxßj

V
PVn

fe(l-PIFD)-P
Dividing through by the area A of the strut,

fv0v
/< ('-70-'

(21)

where / is the average stress in the column.
The applied bending moment at x l\2 is therefore

/ Bd*v\ PJV0

l"^--/e(l-^)-/ (22)

Writing
vQa1

where ax the distance from the neutral axis to outside compression fibre of
the strut. Then the total maximum conpressive stress in the strut is

k f
feV

4-40
+ i

/

If the maximum stress f± is taken as the yield stress fy,

fe'V

Solving for /,

/

/„ /

t (V + Vfe

('-tD-
+ 1

/

/» + feb + 1) 1

1 + A-fe
Fr,

fy'fe

i + A-fe
Fr> (23)

Comparing this with (20), it is seen that as anticipated, the only change is
the reduetion of fe in the ratio

1 + ___Fn
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Summary

From a critical examination of the concept of the "equivalent moment of
inertia" of the lattice stiffening truss of a Suspension bridge, a general treat-
ment of the web extensions of lattice structures is derived, applicable to a
wide class of structures.

The paper is in two parts. In Part 1, dealing with the lattice stiffening
truss, a simple method of correction for web distortions is set out, and the
magnitude of the corrections in a typical case is established. In Part II the
reduced strength of laced struts, as compared with struts of solid box section,
is considered.

Zusammenfassung

Ausgehend von einer kritischen Betrachtung zum Begriff des „äquivalenten

Trägheitsmoments" eines fachwerkförmigen Versteifungsträgers bei
Hängebrücken wird eine allgemeine Behandlung der Verformungen der
Füllungsglieder in Fachwerkkonstruktionen abgeleitet, die auf mannigfache
Systeme angewendet werden kann.

Der Aufsatz besteht aus zwei Teilen. Der erste behandelt den fachwerkförmigen

Versteifungsträger. Es wird eine einfache Methode angegeben, um
die Verformungen der Füllungsglieder zu berücksichtigen und die Größe der
Korrekturen wird für einen typischen Fall berechnet. Im zweiten Teil wird
die Festigkeitsverminderung bei Gitterstützen im Verhältnis zu Stützen mit
Kastenquerschnitt studiert.
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Resume

Apres avoir examine du point de vue critique la conception du ,,moment
d'inertie equivalent" de la poutre raidisseuse d'un pont suspendu, l'auteur
etablit un mode general d'etude de l'allongement des parties portantes des
elements en treillis, methode qui est applicable ä une tres large gamme
d'elements.

Le rapport est divise en deux parties. La premiere partie porte sur la
poutre raidisseuse en treillis et l'auteur y expose une methode simple pour la
correction des distorsions des faces portantes; il determine l'amplitude de

ces corrections dans un cas caracteristique. Dans la deuxieme partie, l'auteur
etudie la reduetion de resistance du treillis par rapport ä la section pleine en
caisson.


	Shear deflections in latticed structures

