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Shear Deflections in Latticed Structures
Schubverformungen in Fachwerkkonstruktionen

Les déformations dues aw cisaillement dans les ouvrages en treillis

CHARLES DovETON CROSTHWAITE, B.Sc:, M.I.C.E., Vron, Trefriw, Caerns, Nor'th Wales

General Introduction

An investigation carried out by the author on the effect of shear deflec-
tions in the lattice stiffening truss of suspension bridges resulted in a general
method of wide applicability to many classes of latticed structures.

In the following paper, which has been divided into two parts, part I deals
with the suspension bridge stiffening truss, and part II with laced compression
members.

Part I. Stiffened Suspension Bridges

Introduction

Before the spectacular failure of the Tacoma Narrows Bridge in December,
1940, focussed attention on the importance of the aerodynamic characteristics
of suspension bridge structures there was a tendency for progressive designers
to replace lattice stiffening trusses by relatively shallow plate girders without
limit of span. This trend has now been checked, the superior aerodynamic
stability of open lattice trusses having been conclusively established. It may
be stated with some assurance that few if any bridges of any magnitude will
be constructed in the near future with plate stiffening girders. :

It has accordingly seemed advisable to look more closely into the question
of the effective stiffness of lattice trusses, and how best to carry out the
mathematical analysis of lattice stiffened suspension bridges.

When analysing a girder stiffened bridge, there is no uncertainty about
the moment of inertia of the girder. This is not the case with the lattice truss.
It is well known that for truss bridges of normal proportions, any attempt to
calculate deflections from considerations of chord area alone would be wholly
fallacious. Making certain assumptions as to the stress in the web and chord
members, it can be shown [1] that for shallow trusses with a very small depth/
span ratio, the effect of web distortions can be neglected. The lattice truss of
a suspension bridge is generally regarded as coming in this class and it has
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been stated by one of the greatest authorities [2] that he calculates the moment
of inertia very simply by multiplying the total chord area by the square of
half the depth. This procedure is however by no means universally accepted.
It has been suggested that an “equivalent’” moment of inertia of a lattice
stiffening truss be derived from a consideration of its deflection under various
conditions of loading, but this results in an unsatisfactory ‘“‘cut and try’’
procedure. In the analysis which follows it will appear that the “equivalent
moment of inertia’’ of a lattice girder is a fictitious concept of no physical
significance.

The deflection of a lattice girder can be regarded as being made up of two
components, the flexural deflection, deriving from the extension of the chords,
and the shear deflection arising from the stressing of the web members.

Fig. 1

In fig. 1 the simply supported truss has a web system consisting of members
of equal cross-sectional area 4, set at an angle ® to the longitudinal axis of
the truss. Any other system of truss panelling will respond to the same mathe-
matical treatment. The assumption of uniform web members from end to end
of the truss would be very near to the truth in modern suspension bridge design.

Initially an expression will be derived for the shear deflection of a truss in
terms of the applied bending moment.

Let the truss be subject to any system of loading then the deflection ¢ at
any section 4 — A from the extension of the web members only is given by

the summation:
sul

_‘I=2“E*;1; (1)

where s is the stress in any web member due to the external loading. « is the
stress in the same member arising from a unit load at the section A —A4,
and [ is the length of the member.

Now the unit load stresses in all the web members from =0 to z=a, are

i by:
given by 1-aL

" §in@®

From x=a to x =L the unit load stresses are

_ —alL
Y= 5ne
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At any section z, the contribution to the deflection at A — A4 from a length
~dxat xis Foudz
EA,sinOcos®

where F is the shear at « from the external applied loads. The total shear
deflection at A4 is therefore

f(1l—a/L) Fadw—a/L{ Fyda
0 T

7= E A,sin2@ cos®
M
~ E A,sin?2@cos O (2)

This important result states that in any simply supported truss with
uniform web members the shear deflection at any section is directly propor-
tional to the applied bending moment M, and can be written as

— MG
q—EAe (3)

where A4, the “equivalent shear area’’ of the web members is 4, sin2@ cos O.
In a simply supported uniform beam we can write

d2v
where v is the bending deflection.
I
<= IF ==
! T -
!
7777777077
a T “IL-M——; 4 —_———
L 4 L 4
Fig. 2

Comparing this with the expression just obtained for ¢ the shear deflection,

d2v
L

e

The deflection due to shear follows therefore quite a different law to that
due to bending, being proportional to the second differential of the bending
deflection, and it is apparent that no “equivalent moment of inertia’’ can be
derived for lattice girders.

The effect of shear deflection on the behaviour of the stiffened suspension
bridge must now be c¢onsidered.
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Referring to fig. 2, making the usual assumptions in respect of non-exten-
sion and close spacing of hangers, and vertical movement of truss and cable,
the fundamental equation of the suspension bridge is

Mg=M;—H;-y—(H+Hp)v (5)

where M ;= the bending moment in the stiffening truss at any section .
M ; = the applied external bending moment at the same section.
H,; = the horizontal component of the live load cable tension.
H = the horizontal component of the dead load cable tension.
v = the vertical deflection of truss (and cable), due to the bending
of the truss, i.e. the extension of the chord members.
H; is unknown and is best obtained from a consideration of the kinematics
of the deflected cable.
In the case of the lattice stiffened truss, the equation must be replaced by

My=M;—H;-y—(H+H;)v—(H+H;)q (6)

where ¢ is the shear deflection of the truss. Substituting from eq. (3)

H+H )M
Mg=M;—H; - y—(H+Hp)v— (—Tj)—a
€
: _ M, —H,-y—(H+Hp)v
- Mg = gy )
' E A,
differentiating, the shear F is given by
. _Fp—Hy -y —(H+Hp)v
Fa= A+H, ®)

1+

E A,

where ‘““‘dashes’’ denote differentiation with respect to .

Eqgs. (7) and (8) can be resolved by any of the orthodox methods, but are
perhaps most readily dealt with by the series solution [3]. For those not
familiar with this solution it will be expounded in its simplest form before
taking into account the effect of web distortions.

The basis of the method is to express the variables M, M, y, v, in eq. (5)
as sine series. '

In the expression for the live load cable tension as a function of the
deflection of the cable, the latter is also written as the sine series

v = Vlsinwx/'L+ Vosin2ma/, +....

In eq. (5) the coefficients of the terms of the series for M are then equated
one by one to those on the right hand side of the equation. In the result the
terms of the sine series for the deflection v are given by
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Va= M“_J;I th a-123. (9)
H+Hyp+ ™ BT
H, L
2 = SN K0V + 2y ka (W + Z)) (10)
E.4,
In these equations:
M= 2}\31; (cosAmd/L—cosAmb/L) (11)

for the loading indicated in fig. 2.

. 16 f

GA=A37T3(1_OOSA7T) (12)

I is the moment of inertia of the stiffening trusses calculated simply from the
chord areas and the depth.

2)3
L, is the summation f{ 1+ ( 7 ) } / 2d x carried over the whole length of the

cable between anchorages.

A, is the cross sectional area of the cables.
E, is the modulus of elasticity for the truss.
E, is the modulus of elasticity for the cable.

: 16 f )

K= ST where A has odd values only.
16 f, —

ky=+—-+ where A has odd values only.
Am 1y

W, and Z, are the deflection coefficients for the side spans corresponding to
V) for the centre span.

These equations must now be modified to take into consideration the
effect of shear deflections.

Writing B for K, I, the rigidity of the stiffening’truss, eqs. (9) and (10)

become
M, ,—H,Q

Va= NS B[ HiH, (13)

it S (105, )
Hy L, =2\ K, (V)+ @,) + similar terms for side spans 14)

7,4, AT, » P (
Where from eq. (3),

_ : _ M,

2A227;£’A VysinAna/L (15)

. in equation (14),
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AN72 B

Q= LTE—A;V’\ (16)

Having derived the coefficients V), v=2V,sinA=wx/, is substituted in
eq. (7), to obtain the bending moment in the stiffening truss.

Worked Examples

The series solution will now be applied to the case of a load on the central
span of the bridge depicted in fig. 3 giving the maximum moment at the
1/, point of the span. The example is worked both with and without considera-
tion of shear deflections. It will be apparent how very little additional labour
is involved in taking account of web distortions.

3
- S / X
1000-0" ’ 3240'~0" | 1000'~0"
Enlargement of stiffening Fruss
8=42°30" 7
Fig. 3
For the Bridge Depicted in Fig. 3
A, = cross-sectional area of diagonals . . . . . 25sqins (each)
Depth of truss centre to centre of chords . . . . 27.5ft
Chordarea . . . . . . . . . . . . . . . . . 130sqin (each truss)
I . . . ... oo ... ... 49,160 in? ft2 (each truss)
mEI_ =B 2.72x 108 1bs (both trusses)
12 12 .
where £, . . . . . . . . . . . . . . . ... 29%x10%]bs/sqin
o 5 11
Panellength . . . . . . . . ... .. ... 30ft
E,A,,sin?0 cos O (both trusses) = B, A,. . . . . 493x10%1bs
Centre Span, ““L’’ between bearings . . . . . . 3.220ft
Side Span, “I’’ between bearings . . . . . . . 990 ft
Area (both cables) 4, . . . . . . . . . . . . 960sqin
Sag Ratio . . . . . . . . ... ... ... Y

Hanger Spacing. . . . . . . . . . . .. .. 60ft
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Centre Span 3503
Side Spans 2417
Anchorages 370

total .

L

6,290 ft
28 x 108 ]bs/sq in
4.273 X 10 Ib/ft

331
BYE
31-22
XB
0.5063
0.156

97

3240 Ft. Span Suspension Bridge. Live Load on Centre Span from
a=3/1g L to b="%/,s L, p=6050 Ib/ft

Calculation of Hy,

7)

16

2p L2 a
M= DYy (cos)\wf —COSAT + —
_4046.8 X 10° (cos 3 A 08 5 N )
P 16°7 16" 7))
H = 58.07 x 108 lbs

H, = 3.12x 108 lbs (1st Approxm.)
H+H,= 61.19% 108 Ibs
Centre Span Side Span
My, |E+HL H+Hy
Al Mgy | HrG) Na2B V) | KaVy |—Hpgy|  2«2B| W) | kyW,
—HpG) |+ 12 1,2
1/1116.51 |1029.91 86.60| 63.91| 1.355 .686 | —97.41 89.9 | —1.084| —.169
31117.698 | 38.15 79.55| 85.63 .929 JA57 | —3.61| 319.6 | —.011| —.001
5|-37.981 8.24!1—~46.22| 129.1 | —.358 | —.036 | —0.78| 789.0 —.001
7 -16.367 3.00|—19.37| 194.2 | —.100 | —.007
9| 17.767 1.41 6.36| 281.0 .023 001
11 3.528 77 2.76| 389.6 .007 —
13| —1.414 47| —1.88| 519.9 | —.004 —
15| —-.331 .30 —.63| 671.9 | —.001 —
+ .844 —.170
—.043 —.170
+.801 —.340
—.340
+.461

H, = .461x4.273x 108 Ibs
= 1.968 108 lbs
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Calculation of H, (contd.)
Let 4 H, = —0.2x 106 Ibs

, H+H, H+H,
A —AHLG/\ X272B AVL K)\A VA —AHLg/\ Xm2B AW/\ ]C/\A WA
' L L
1 66.02 63.71 1.036 524 6.244 89.7 .070 011
3 2.445 85.43 .029 .005 231 319.4 .001 —
5 .53 128.90 .004
.529 011
022 011
+.551 .022
+.461
+1.012
3.12—-1.968 = +1.152 H; =1.012x4.273 X 108 lbs
2.92—-4.32 =-—-1.40 = 4.32x 10% lbs
-.2x 1152  -.090
2.55 3.120 .*. Final value of
3.030 H; = 3.030x 108 lbs

Calculation of B. M. at 1], Pt. for Load on Bridge 3/,s L to ®[,q L on Centre Span

1347.63 — (727.2 +484.14) = 136.29

. My, = 136.29 % 106 Ibs ft

M, = 1347.63x 106 lbs ft
H, = 3.030x 106 Ibs
H,y= 727.20x10%1bs ft = y=240.00
A272 B
X = ML/\_HLG/\_ T 'V)\
H+ HL 2,2
A ML/\ H;G) —g;g,\ A2n2B Va /\—%—5@ Y X sin )‘Z’“ Xsin}\zx
12
1(1116.510 | 1000.2 | 116.3 63.80 | 1.823 4.95 111.3 7071 | 78.70
2| 387.119 387.119 71.95 | 5.380 58.41 328.709 1.0000 (328.709
31| 117.698 | 37.04 80.66 85.52 943 23.03 57.63 7071 | 40.75
4 0 0 — — — — 0 0
5|—37.981 7.981 | —45.962 | 128.94 | —.357 | —24.189 [—21.773 | —.7071 | 15.396
6 | —34.553 —34.553 | 158.80 | —.218 |—21.261 |—13.292 |—1.0000 | 13.292
7| —16.367 2.908 | —19.275 | 194.08 | —.099 |—13.206 6.069 | —.7071 4.291
8 0 0 — — — — 0 0
9 7.767 1.366 6.401 | 280.93 .023 5.012 1.389 7071 .982
10 7.391 7.391 | 332.50 .022 6.025 1.366 1.000 1.366
11 3.528 0.750 2.778 | 389.50 .007 2.332 .466 7071 315
12 0 0 — —— — — — 0
13| —1.414 | 0.453 | —1.867 | 519.77 | —.004 | —1.651 —.216 | —.7071 153
14| —1.150 —1.150 | 593.05 | —.002 | —1.011 —.139 | —1.0000 .139
15| —0.331 0.293 | —0.624 |.671.76 | —.001 —.550 —.074 | —.7071 052
484.14
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Calculation of H, for Load on Bridge from 3[4 L to %/, L of Centre Span,
Including Shear Effects. p = 6050 lbs./ft.

2p L? a b
M;,= e (cos)\rrf —cos)\rrf)
_ 40468108 3, 5, \
DD U S T M T i
H = 58.07 x 108 lbs
H+H 61.1
= 3.030 x 108 1bs (1st A : 1 & =14+——=1.124
Hy =3.030x bs (1st Approxm.) +EAsm2@eos@ +493
EA
H+ H;=61.1x10° lbs 7 = 4.273x 108
S
Centre Span
H+H A2n2 B
Ao, H,g My +1.124 p, (TXBL o (Vx K\ —ZT
A 2 2 A Temal @A
2 BN —H G XA%ZB L*EA, + Q0 [(VA+QN | 1124

1116.510|1000.2 | 116.3 64.151 | 1.813 | .006 .011| 1.824 .923 3.051

1
3| 117.698(37.04 | 80.66 | 88.556 | .911 .050 | .046| .957| .161 | 27.456
5|—37.981| 7.981| 45.962 | 137.366 | —.335| .138 | —.046 | —.381| —.039 | 76.266
7|—16.367| 2.908 | -19.275 | 210.581 | —.092 | .270 | —.025| —.117| —.008 | 149.481
9| 7.767| 1.366| —6.401 | 308.20 | .021| .446 | +.009| .030| .002 | 247.100

11| 3.528| .750| 2.778|430.233 | .006| .666 | .004| .010 369.133

13| —1.414| .453| —1.867 | 576.656 | —.003 | .930 | —.002| —.005 515.556

15| — .331| .293| — .624 | 747.493 | —.001 1.039 | 686.393

Stide Span

pLmy H+Hyp,
—— +1.124 72 2 B k)\(W/\
A | —Hggy L? 222 B Wx | 7554 Q) (WAt @')) ,
% 1.124 x’-\;—z LPEA, +Q'))

1
1 | 94.597 32.270 93.370 | —1.013 | .058 —.059 | 1072 | —.167
3 | 3.503 | 290.430 | 351.530 | —.01 524 —.005 .015 | —.001

5 758 | 806.695 | 867.795 | —.001

—.168
—.168
—.336
1.039
703

H, = .703x 4.273 % 106 lbs
= 3.0039 < 10° 1bs
Let 4 H; =—.01x 108 lbs
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Hi Az Ky\(V Tey(AW
+1.124 AV AAW)y
X | -H,@ av 40 —AH, G| 4w
LG\ AzzzzB A Yoy G N fagy
1| —33 | 64141 | .051 _ 026 3 .003 —
3| —.12 | 88546 | .001 _ —
026
703
729
3.030—3.004 = .026 H, = .729x 4.273 % 106 lbs
3.020—3.115 = —.095 = 3.115 x 106 lbs
.026
=27 % .01 = —.002
448y, 121 ¢

H; =3.030 —.002 = 3.028 X 10° lbs

Calculation of B.M. at |, L for Load on Bridge 3[4 L to 3[4 L Centre Span,

Allowing for Shear Effects

My, Mn®B H,\—;;Tgé‘ A AV ycos AV ycos

A G L2 +T Va V)sin T AV, A (&) \ (@)

LY | x1.124 % 1.124 16 16

1| 116.967 3.051 | 64.149 1.823 | 1.289 1.823 1.516 1.013

2| 387.119 12.202 73.300 5.280 5.280 10.560 4.041 —4.041

3 80.678 27.456 88.554 911 .644 2.733 —.533 —2.680

4 _ _ _ _ . _ _ _

5 |—45.975 76.266 | 137.364 | —.335 237 —1.675 1.643 —.327

6  —34.553 | 109.823 | 170.921 —.202 .202 —1.212 1.120 —1.120

7 1—19.280 | 149.481 | 210.579 —.092 .065 —.634 .352 —.527

8 - - — __ —_ _ _ J—

9 6.398 | 247.100 | 308.198 021 015 189 105 —.157
10 7.391 | 305.065 | 366.163 .020 .020 .200 .185 —.185
11 2.777 | 369.133 | 430.241 .006 .004 .066 .065 —.013
12 —_ — — — — —_ == —
13| —1.869 | 515.556 | 576.654 | —.003 .002 —.039 —.008 —.038
14 | —1.150 | 597.923 | 659.021 —.002 .002 —.028 011 —.011
15 —.625 | 686.393 | 747.491 —.001 .001 —.015 012 .008

. 7.761 8.059 —8.077
L L

=8.302 =-7.880

% 10—8 x 1073
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H+H
M(1+ — L )=M—H —(H+H;)v
¢ E A, sin20 cos® L—HLY (, z)
M. — 1347.63 — 3.028 x 240.00 —61.098 x 7.761
& 1.124
1347.63 —1200.901 146.729
= 1.124 = T1g¢ 130521
M, = 130.521 x 108 Ibs ft
H+H A ATx
F g —F, —H,y — AT AT
G(1+EAwsm2@cos@) p—Hpy —H+ Hy) 22 Vycos =
7 1.8264 — 3.028 % .2483 — 61.098 X 8.032 x 103
G316 — 1.124
.b667
= —6— % 108 1bs = .5042 x 108 1bs = 225.08 tons.
1.124 .
F —.6088 — 3.028 % .1491 4 61.098 x 7.880 xx 103
G516 — 1.124
= — %ﬁ % 108 lbs = —.5149x 108 1bs = — 229.9 tons.

Magnitude of Corrections for Lattice Girder Web Distortions

The following table shows the percentage error in the maximum bending
moments and shears at various points along the centre span in the bridge in
question resulting from neglect of the shear corrections. The maximum error
in moment amounts to 69, and in shear to about 8%,. These are not negligible
figures, but omission of the correction is on the side of safety. The correction
is so easy to apply that there is no justification for not running out its magni-
tude at some stage in the analysis.

It is the author’s practice to analyse a suspension bridge by the simplified
method given on pp. 94 and 95, and then to consider separately the various
corrections to the approximate theory due to such factors as:

Non uniform distribution of live load.
Non vertical motion of cable and hangers.
Hanger extension. ,

Non uniform truss moment of inertia.
Shear deflection of stiffening truss.

N

These corrections can be established on a percentage basis for one parti-
cular make-up of truss and cable and can thereafter be applied throughout
the inevitable changes in design, one final check up being made when this is
settled. -
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Conclusions

The author has presented what he believes to be a satisfactory treatment
of the effect of extensions of the web members of lattice stiffening trusses on
the moments and shears carried by the trusses. The effect of the web exten-
sions was found to be a relief of stress in the stiffening truss. The magnitude
of the corrections in the example investigated, which is perhaps typical of
modern practice in long span bridges, is of the order of 59, to 89%,.

In bridges with a greater ratio of truss depth to span, the correction would
be even more substantial. The additional work in the analysis to take account
of the shear effect is small, and its neglect cannot be justified on structures
of any magnitude, particularly when, as is frequently the case, other correc-
tions to the simplified theory are considered at length.

Table Shewing Percentage Error in Moments and Shears on the Centre Span of a
3,240 Ft. Suspension Bridge Arising from Neglect of Shear Deflections

Position M, without | M including F without | F including
of Shear Effect | Shear Effect | 9, | Shear Effect | Shear Effect %
Load ft 1bs x 108 ft 1bs x 108 Tons Tons

0 tol/s 119.64 112.52 6 (0) 479.3 443.4 7.5
(*/16) (g 215.1 194.8 9.4

1/16 0 3/16 148.8 142.0 4.6 (Y/16) 272.6 254.8 6.5
(*/s) (3/16) 246.3 226.4 8.1

3/16 YO /16 136.29 130.52 4.2 (3/16) 244 225.1 7.8
(*) (5/16) 248.5 229.9 7.5

5/16 1O "/16 125.38 120.00 4.2 (3/16) 245.9 228.9 7
(®/s) ("/16) 247.1 226.6 8.3

/16 tO %/1¢ 121.9 116.02 4.8 ("/16) 241.3 226.9 7.9
(*/2)

Part II. The Strength of Latticed Compressidn Members

Introduction

In the first part of this paper the author has established a relationship
between the bending moment and the shear deflection in a simply supported
lattice girder. )

This relationship can be shown to be applicable to the increased deflection
under load and consequent reduction in strength of laced struts as compared
to struts of solid box section.
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The author’s method will first be used to establish the Euler Load for a
pin-jointed laced column, and a correction to the Perry Strut Formula used
in B.S. 449, 1948, “The Use of Structural Steel in Building’’, will then be
derived.

Analysis

The column in fig. 4 has single or double lacing on both sides of the column,
with a total cross-sectional area A;, at an angle ® with the longitudinal axis.

Yy

Fig. 4 Fig. 5 Fig. 6

Let the lateral bending deflection of the strut when subject to a load P be »
at any section z (fig. 5). Then from Part I there will be an additional shear

deflection of
M Mz

1= FA,5m?000s0 ~ T, %Y

where M, is the bending moment induced at x from the end loading.
If the flexural rigidity of the column in the plane of bending is B= ¥ I, the
differential equation of the deflection curve becomes therefore

(17)

Bd2v _ P-M,
~ g ~Pero=Pus g
py_ LB dv_ _ Bd'v
Fy, ax®  da?

8 Abhandlungen XII
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writing v="Vsin 77l_:c
| B\ =B

P(1+ T ="

=B
Nz
written as F,.

is the Euler Critical Load for a solid pin jointed strut and it will be

Then P= £ (18)
14 e
Fp
Dividing through by A, the cross-sectional area of the strut
__ e |
fo = :Z—fe (19)
Fp
Thus the buckling load of the strut is reduced in the ratio
1 or 1
‘F:z ' A4- f e
L+ 5 L+

This result has been obtained in a somewhat different manner by Timo-
SHENKO [4]. ‘

In Great Britain the Perry strut formula (see Appendix I), has been
adopted in B.S. 449, 1948, as the basis for determining the permitted axial
stresses in struts; although it should be noted that for slenderness ratios I/r
of less than 80, the tabulated stresses in B.S. 449 have been obtained by linear
interpolation between a stress equal to 599, of the yield stress, at I/r =0,
and the Perry strut value at I/r =80.

The Perry strut formula in the form in which it is used in B.S. 449 is

(see fig. 6):
2
Ky By = Bt e e Jl DIy (20)

where F, = the permissible average stress in tons/sq in.
K, = load factor of 2.

f, = guaranteed min. yield stress in tons/sq in.
m E
(@/r®)
effective length
radius of gyration

f, = Eulerian Value =

lr = slenderness ratio =
Voay

n = T = .003 l/r .
and [ Vo = hypothetical initial central deflection of the strut.
| @, = distance from neutral axis to outside fibre on compression side

of strut.
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In view of eq. (19) it would be anticipated that the effect of the lacing
correction on the Perry formula would be the replacement of f, by

fo
:ﬂ (20a)
Fp

Analysis (Appendix I) shows this to be the case.

Magnitude of Correction

Assuming that the lacing is single, at 60° to the axis of the strut, and that
it is designed to resist at 4 tons/sq in a. transverse shear of 219, of the axial
load in the strut, il will be found that the reduction of strength of a laced strut
as compared with a strut of solid box section is of the order of 39, to 49,
over the whole range of practicable values of I/r.

It is probably unnecessary to reduce the stress in laced struts designed by
the usual methods, but any unorthodox design, particularly if the lacing is
highly stressed, should be checked by the application of the correction (20a)
to the slenderness ratio, to see if its strength is substantially below that of a
solid section. :

Appendix I

The Perry strut formula in the form in which it is used in deriving the
tables in B.S. 499 is:

K,F, = Fy+l—-—(77+ Ol ]/[f—”("“)f"]z—fy'fe

2 2

where the symbols have the values ascribed to them in this paper.
The Perry formula will now be derived for a latticed strut.
In fig. 6, let v,, the hypothetical initial deflection of the strut, be given by

vy = Vysinwzfl.

Under the axial load P the bending deflection » will also be of the sinusoidal

form
- v = Vsinnz/l.

In addition there will be the shear deflection arising from the distortion
of the bracing,
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The differential equation of the deflection curve becomes

Bd2v Y _Ii d?v
T dzr T\ T F, dat
2
. B =P I/;,sinwx/z+vsinm/z+£lvsinnx/z
e? F, 2

PV,

V=ra—Pry—p

Dividing through by the area 4 of the strut,

V= Vo (21)
(1 -52) -1
(1-%)-
where f is the average stress in the column.
The applied bending moment at x=1/2 is therefore
L U 314
(‘ da? )x=.z/2 B f (1 _ ﬂ) iy (22)
[ FD
. Vo
Writing ;2 1 —

where a, = the distance from the neutral axis to outside compression fibre of
the strut. Then the total maximum conpressive stress in the strut is

f1=f fe”’] +1

If the maximum stress f, is taken as the yield stress f,,
A -

f(1-57)
(-%,)

(n+1)f fe(n+1) |2
fy+1+A.,fe szﬁ"m _ _fyle

Solving for f,

Fp 1+Afe

2 (23)

Comparing this with (20), it is seen that as anticipated, the only change is
the reduction of f, in the ratio

1
A'fe
1+ 7,
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Summary

From a critical examination of the concept of the “equivalent moment of
inertia’’ of the lattice stiffening truss of a suspension bridge, a general treat-
ment of the web extensions of lattice structures is derived, applicable to a
wide class of structures.

The paper is in two parts. In Part 1, dealing with the lattice stiffening
truss, a simple method of correction for web distortions is set out, and the
magnitude of the corrections in a typical case is established. In Part II the
reduced strength of laced struts, as compared with struts of solid box section,
is considered.

Zusammenfassung

Ausgehend von einer kritischen Betrachtung zum Begriff des ,,iquiva-
lenten Triagheitsmoments’ eines fachwerkformigen Versteifungstrigers bei
Héngebriicken wird eine allgemeine Behandlung der Verformungen der Fiil-
lungsglieder in Fachwerkkonstruktionen abgeleitet, die auf mannigfache Sy-
steme angewendet werden kann.

Der Aufsatz besteht aus zwei Teilen. Der erste behandelt den fachwerk-
formigen Versteifungstriger. Es wird eine einfache Methode angegeben, um
die Verformungen der Fiillungsglieder zu beriicksichtigen und die GréBe der
Korrekturen wird fiir einen typischen Fall berechnet. Im zweiten Teil wird
die Festigkeitsverminderung bei Gitterstiitzen im Verhiltnis zu Stiitzen mit
Kastenquerschnitt studiert. '
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Résumé

Apres avoir examiné du point de vue critique la conception du ,,moment
d’inertie équivalent’’ de la poutre raidisseuse d’un pont suspendu, 1’auteur
établit un mode général d’étude de I’allongement des parties ‘portantes des
éléments en treillis, méthode qui est applicable & une trés large gamme d’élé-
ments.

- Le rapport est divisé en deux parties. La premiére partie porte sur la
poutre raidisseuse en treillis et ’auteur y expose une méthode simple pour la
correction des distorsions des faces portantes; il détermine I’amplitude de
ces corrections dans un cas caractéristique. Dans la deuxiéme partie, I’auteur
étudie la réduction de résistance du treillis par rapport & la section pleine en
caisson.
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