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Suspension Bridges. The Aerodynamic Problem and Its Solution

Les problemes aerodynamiques du pont suspendu et leurs Solutions

Die aerodynamischen Probleme und ihre Lösungen bei Hängebrücken

D. B. Steinman, Consulting Engineer, New York, N. Y.

This is the story of a baffling scientific problem with which the engineering
profession was dramatically confronted in 1940, and of the ensuing intensive
apphcation of the resources of science and invention for the urgent Solution of
the problem.

On July 1,1940theTacomaNarrows Bridge at Puget Sound was completed
and opened to traffic. Built at a cost of $6,400,000, with a main span of
2800 feet, it was the third longest span in the world. On November 7, 1940,
four months and six days after the official opening, the oscillations of the bridge
in a mild gale (fig. 1) increased to destructive amplitude until the main span
broke up, ripping loose from the cables and crashing into the water 208 feet
below (fig. 2) [1,2].

The engineering fraternity was startled by the catastrophe. The phenomenon

was not new, but had been unrecorded or forgotten by the profession.
A Century earlier, bridge after bridge had been similarly wrecked by wind
action, notably the Brighton Chain Pier in England in 1836, the Wheeling
Bridge over the Ohio River in 1854, the Lewiston-Queenston Bridge over
Niagara River in 1864, and the Niagara-Clifton Bridge at Niagara Falls in
1889 [4]. John A. Roebling (1806—1869) taught the profession the importance

of adequate stiffening of Suspension bridges; his bridges stood up while
those built by his contemporaries were wrecked by the wind. But a later gene-
ration of engineers, forgetting the lesson of the past, began to preach the virtues
of flexibility without recalling its hazards. This reversal of trend reached its
climax in the ill-fated Tacoma span [1,2],

15 Abhandlung XIV
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Fig. 1. Catastrophic Aerodynamic Oscillations of the Tacoma Narrows Bridge. Torsional
Oscillations, November 7, 1940. Maximum Double Amplitude, 28 feet.
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Fig. 2. Aerodynamic Destruction of the Tacoma Narrows Bridge. November 7, 1940.
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In fact, some twenty known bridges completed since 1930 have been subject
to disturbing or dangerous aerodynamic oscillations, and some of them have
required the application of corrective measures to make them safe. In 1945, a
contract of over $ 1,300,000 was let for additional stiffening and correction of
the 2300-foot-span Bronx-Whitestone Bridge [10]. The Golden Gate Bridge,
with the world's longest span of 4200 feet, has suffered dangerous aerodynamic
oscillations and in 1953 a contract for over $ 3,000,000 was let for stiffening the
structure against aerodynamic action.

The decade ending in 1940 witnessed more rapid progress in bridgebuilding,
as measured by lengthening spans, boldness of proportions, and increasing
magnitude of projects, than all the centuries preceding. The five longest spans
in the world were all completed during this decade, and the reeord span length
was more than doubled, from 1850 feet to 4200 feet. The starthng problem to
which the profession was awakened in 1940 threatened to halt further progress
in long-span bridges.

Recognizing that a complete, scientific Solution of this challenging problem
was desperately needed, I dedicated myself to the task. In fact, I discovered
the aerodynamic action in 1938 and promptly commenced my intensive studies,
two years before the Tacoma Bridge failure [1,2]. I have devoted fifteen years
of my professional life (1938 to 1953) to the Solution of this problem. It has

required the creation of a new science, combining the essentials of three different
fields of specialized knowledge — the deflection theory of Suspension bridges,
the science of aerodynamics, and the mathematical theory of Vibration analysis.
Even existing knowledge in aerodynamic science proved inadequate, necessitat-
ing new research, new invention, and creative mathematical analysis [12,13].

Aerodynamic Instability

The aerodynamic action of wind is something new in the thinking and science
of bridge engineers. Their prior thinking (since the failure of the Tay Bridge
in Scotland in 1879) had been limited to the aerostatic action of wind [3].

On July 29, 1944, another bridge disaster occurred. A two-span continuous
truss bridge (fig. 3) over the Mississippi River at Chester, Illinois, was blown
off its piers by the wind [3].

The failure of the Tacoma Narrows Bridge dramatically exemplified the
aerodynamic effect of wind, while the Chester Bridge failure exemplified the
aerostatic effect. The two are related; and both disasters had their lessons for
the profession.

Since the Tay Bridge disaster in 1879, bridges have been designed for the
horizontal pressure of wind. But bridge specifications and textbooks made no
mention of wind uplift. Aeronautic engineers, of course, knew the significance
of the vertical component, or lift. But the bridge engineer continued to work in
a separate, insulated compartment of technical knowledge [3,9].
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Fig. 3. Continuous Truss Bridge over the Mississippi River at Chester, Illinois. Destroyed
by Wind, Jury 29, 1944.

The Tacoma Bridge failure should have directed the attention of bridge
engineers to the significance of the vertical component of horizontal wind

pressure. In 1941 (in a published discussion [8] a year before the Chester Bridge
was built), I called attention to the fact that wind uplift on a bridge may amount
to three or four times the horizontal pressure, but that fact was overlooked by
the designers of the Chester Bridge [3, 9].

The aerostatic problem, as exemplified by the Chester Bridge failure, is

comparatively simple and elementary. The aerodynamic problem, as exemplified

by the Tacoma Bridge failure and by the alarming oscillations of other
Suspension bridges, is one of much greater difficulty and complexity.

The Tacoma Bridge was adequately safe for all of the loads and forces for
which it had been designed, namely dead load. live load, temperature, and the
static effect of wind load. ft had not been designed .however, for the aerodynamic
effect of wind load [1, 2].

By aerodynamic instability we mean: the effect of a steady wind, acting on a
flexible structure of conventional cross-section. to produce a ßuctuating resultant
force automatically synchronizing in Urning and direction with the harmonic
motions of the structure so as to cause a progressive amplification of those motions
to dangerous or destructive amplitudes [4].

On the morning of the Tacoma Bridge failure. the gale of 35 to 42 miles an
hour meant a horizontal wind pressure of little more than five pounds per square
foot of vertical surface. The bridge had been designed for a horizontal wind
pressure of fifty pounds per square foot and was structurally safe for a static
wind load of that magnitude. It was destroyed. however, by the cumulative

dynamic effect of the vertical components produced by a horizontal wind pressure

of only five pounds per square foot [1. 2].
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Thus the Tacoma span was the victim of its extreme flexibility and of the
vulnerability of its cross-section to the creation of resultant wind forces pro-
ducing cumulative amplification of oscillations. This combination constitutes
aerodynamic instability [4].

Related Phenomena of Instability

The problems of aerodynamic and hydrodynamic stability include such

instability phenomena as the "singing" of telephone wires; the "galloping" of
electric transmission lines; the transverse vibrations of submarine periscopes,
of towing cables, and of other submerged parts of naval equipment; the lateral
vibrations of tall smoke Stacks; the wind-induced vertical oscillations of sus-

pended pipe lines; the flutter of airplane wings and control surfaces; and the
wind-induced oscillations of flexible bridge spans. All of these phenomena are
related in that they all involve vibrations initiated or amplified by drawing
energy from the relative flow of the surrounding fluid medium.

These stability problems are challenging to the engineer because the atten-
dant vibrations may have serious effects, including impairment of usefulness

(as in periscopes), increase in drag (as in airplane parts), fatigue failure (as in
telephone wires), rupture from abnormal stress (as in transmission lines), and

physical destruction (as in the catastrophic oscillations of a bridge) [10].
The instability problem of bridge oscillations has probably been the most

complex and the most challenging. Its comprehensive Solution has contributed
to the Solution of some of the related instability problems.

In the Classification and differentiation of these Vibration problems, two
categories of instability phenomena need to be distinguished: forced vibrations,
and self-excited vibrations [10,11].

In a forced Vibration, the alternating force that initiates, amplifies and sus-

tains the Vibration exists independently of the Vibration and persists even when
the vibratory motion is stopped. Moreover, the frequency of the alternating
force is independent of the natural frequency of the Vibration, and amplification
depends upon accidental resonance or proximity to resonance. Hydrodynamic
vibrations of cylinders (vibrations identified with vortex shedding) belong in
this category.

In a self-excited Vibration, the alternating force that amplifies and sustains
the oscillation is created or controlled by the oscillation itself. In this case, the

alternating force is automatically resonant with the natural (or forced) frequency
of the oscillations. In such automatic resonance, the relative phase or direction
of the alternating force created by the Vibration determines aerodynamic
stability or instability. The galloping of ice-coated transmission lines, the flutter
of airplane surfaces, and the oscillations of flexible bridge spans belong in this
Classification [5,10,11,12].
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Hydrodynamic Oscillations of a Cylinder

When a cylinder moves transversely at a uniform velocity through a fluid,
or when a fluid moves steadily past a stationary immersed cylinder, eddies are
shed periodically from the cylinder, forming the Kärmätst vortex trail. Each
time an eddy is released, an unbalanced lateral force acts on the cylinder. If the

cylinder is free to vibrate laterally, the alternating lateral forces may impose
on it a forced Vibration with a frequency equal to the eddy frequency. If the
eddy frequency / is in a critical ränge related to the natural frequency N of the
cylinder, the Vibration of the cylinder may attain a high amplitude [10].

The eddy frequency / depends only on the diameter d of the cylinder and on
the relative stream velocity V, by the simple relation

/ 4 (i)

where S is a dimensionless ratio, first determined by V. Strofhal in 1878. For
Reynolds numbers between 500 and 200,000, the Strouhal number S may be

taken as practically constant at $^0.20. This dimensionless ratio fdjV or
V/(fd), or the corresponding expression for other cases, is the basic parameter
in the formulation of all Vibration phenomena related to the velocity of fluid
flow. (In self-excited oscillations, as in bridges, the corresponding parameter is

NbjV or V/(Nb), where N is the natural frequency of the structure and b is the
width of the cross-section.)

The circulation r of an eddy in the vortex trail is given by

T^l.71 Vd (2)

The circulation about the cylinder at any instant is the algebraic sum of the
circulations of all the vortices in the wake. When the steady state of V is reached

the circulation about the cylinder is not + T, but + JJ1. (This point has been
missed in prior literature on the subject.) The resulting alternating lateral
force L acting on the cylinder is [10].

Lfvl.ll (\pV2)d (3)

This transverse lateral force L is nearly twice as large as the direct
horizontal drag D. As alternate eddies are shed and trail off in the double-row wake,
L is a periodically alternating force, with frequency /, acting on the cylinder.
This force L acts downward when the eddy is shed from the top of the circular
section, and upward when the eddy leaves the bottom of the circular section.
This periodically alternating force L is capable of initiating oscillations from a

state of rest, also of amphfying them until a steady state of oscillation is

reached.
A common misconception needs correction. The oscillations of the cylinder

(or other section) are not caused or produced by the vortices. The vortices in the



Suspension Bridges. The Aerodynamic Problem and Its Solution 215

wake are merely counters, markers, or footprints providing a convenient phy-
sical and mathematical trail from which the circulation about the cylinder and

the consequent lateral forces acting on the cylinder may be inferred, formulated,
and computed [10,13].

Recent test results indicate significant modified relations when the immersed

cylinder is actually oscillating: If the cylinder is in transverse Vibration due to
the action of its vortex trail, it sheds an eddy at or near each end of its ampli-
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Fig. 4. Vortex Trail in Wake of Oscillating Cylinder.

tude ränge (fig. 4). Consequently the normal width (h) of the vortex street is

augmented by the total amplitude (2 a), or in the ratio.

q=(h + 2a)/h (4)

The stability geometry of the vortex trail requires the wave length between

eddies to be increased in the same ratio. Hence the drag D, the circulation T,

and the lateral force L are all increased in the same ratio q; and the Strouhal
number S and the eddy frequency / are reduced in the inverse ratio [10].

Upon substituting for L and / their changing values in terms of the values

L0 and f0 at zero amplitude, my derived equation for oscillation amplitudes
becomes:

~±-**¥&. <5>

where K is the "spring constant'' (the force of restitution per unit displacement).

Eq. (5) is here given in simplified form, with the damping term omitted. In
eq. (5), q is a function of the unknown amplitude a. For convenience of numerical

or graphical Solution, eq. (5) is resolved into a pair of simultaneous equations.

My graphic Solution, applied to a typical example, yields the results

plotted in fig. 5. In fig. 5, BF and DD are the stable steady states, and EE is

the unstable steady state. The problem of predicting the stability or instability,
and the amplitudes, of a cylinder (such as a periscope) vibrating in a relative

stream flow at varying velocities V had previously defied mathematical Solution.

Fig. 5 checks and explains the test results previously obtained in hydraulic
laboratories. It also explains an observed anomaly that had always puzzled
naval experts, namely the fact that, at certain speeds (in the instability ränge),
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Fig. 5. Amplitude — Response Graph for Oscillating Cylinder by Vortex Theory.
(Author's Solution of the Periscope Problem.)

a periscope is sometimes violently oscillating (as at F in fig. 5) and, at the same
speeds on other occasions, it is virtually free of Vibration (as at D in fig. 5). [10]

In 1951, I was retained to stabilize a pipeline bridge of 700-foot span over
the Coosa River in Alabama. Dangerous vertical oscillations at low wind velo-
cities threatened to destroy the suspended pipeline through fatigue failure;
such an accident would have been catastrophic from the Standpoint of the
natural-gas-pipeline transmission Company. The contractors had apphed various
damping and restraining devices, including suspended sea-anchors and dynamic
(spring-type) Vibration absorbers, but vertical oscillations of serious amplitude
persisted [11].

My Solution was to install a light System of diagonal wire-rope stays (fig. 6)
so as to form trussing between each main cable and the suspended pipeline.
This economical Solution proved highly successful, virtually eliminating the
aerodynamic oscillations. The amplitudes were reduced from the prior
observed values as high as three feet to the present maximum of a fraction of an
inch (with the dynamic Vibration absorbers and emergency sea-anchors dis-
carded) [11].

Included in my studies on this engagement were tests of various methods
of modifying the exposed sections of the cylinders so as to break up the
aerodynamic circulation (J1), represented by the Kärmäst vortex trail, and thus
remove the cause of the instability of the span. Several shapes of vanes and
fairing were tested on my office modeis and in the wind-tunnel of the Virginia
Polytechnic Institute. In this case, however, the estimates of cost indicated
that such installations would cost two or three times as much as the simple
cable-stay System adopted [11].

The aerodynamic instabihty of a cylinder must be distinguished from the
aerodynamic instability of conventional bridge cross-sections. The two are
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contrasting phenomena, although the manifestations and catastrophic conse-

quences may be similar. Different test criteria apply and the mathematical
analysis is quite different. The instabihty problem for the conventional
Suspension bridge is more difficult, and the mathematical Solution is far more
complex.

Some attempts have been made to explain the aerodynamic oscillations of
Suspension bridges in terms of "vortex-shedding" or "vortex-buffeting", but
such investigations or speculations have not yielded any useful contributions
toward the scientific and practical Solution of the problem [12].

Self-Excited Oscillations

The self-excited oscillations of shapes or sections of relatively narrow width
are first considered. This is the problem typified by "the galloping" of ice-
coated transmission hnes.

Certain shapes or sections, when exposed to a steady wind (or other steady
fluid flow), will build up rapidly amplifying oscillations which, oddly enough,
are transverse to the wind. Such shapes or sections are called unstable. Examples
(fig. 7) are a half-round with flat face toward the wind, a ^-section with head
toward the wind, a flat vertical plate, a deep //-section, a deep ?7-section,
etc. [5,10].

When upward inclined wind (R, fig. 7) strikes the flat vertical face of such
section, the Stagnation point is above mid-height. This point determines the

r
Unstable Sections

Instability

f

D -
Spring Mounted Steinman

Model Pendulum

3-L

Lanchester
Tourbillon

Stahle Sections

Fig. 7. Aerodynamically Stable and Unstable Sections. Explanation, Identification, and
Elementary Demonstrations.
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division of theairflow, and hence the greater part of the flow has to pass around
the lower edge of the section. This crowding of the flow lines represents increased
flow' velocity and, consequently (by Bernoulli's Theorem), a reduction of
pressure. Accordingly, we have the paradox: Upward inchned wind (R1, fig. 7)
produces a downward inchned resultant (R2, fig. 7). This paradox is always
identified with aerodynamically unstable sections [10].

In the case of these elementary sections, downward motion of the section
compounded with horizontal flow of the fluid produces a relatively upward angle
of incidence (R, Rlt flg. 7). This, in turn, produces a downward resultant pressure

(R2, fig. 7). Hence an unstable section is subjected to a downward resultant
wind action whenever the section is moving down and an upward resultant
wind action whenever the section is moving up; consequently the oscillation
is amplified. The amplifying force of the wind is thus created and controlled
by the oscillation, so that it is automatically synchronous with the oscillation,
always in the same direction as the oscillation, and always in perfect phase with
the oscillation velocity [5,10].

Ice coating on transmission lines tends to form a vertically elongated
section which belongs to the unstable category (Rx, R2, fig. 7). This explains
the violent oscillations or "galloping" of such hnes in high wind, with potential
amplitudes of destructive magnitude. Vertical motions of 20 feet have been
recorded. Various damping devices have been developed to reduce or prevent
such oscillations. The high amplitudes help to show that these oscillations
(self-excited) and those of cyhndrical sections (vortex action) are quite different
phenomena; the latter have amplitudes limited to approximately 1.5 diameters.

For the self-excited oscillations (fig. 7), the oscillation frequency is the
natural frequency of the oscillating System, and is independent of the wind
velocity. Any increase in wind velocity increases the amplification. At high
wind velocity, the oscillation may become catastrophic [10].

It is important to note that these self-excited oscillations are always trans-
verse to the direction of the fluid flow. Oscillations in the direction of the flow
are damped (by the air flow).

An effective demonstration (fig. 7) is provided by mounting the section
model between hght Springs. When the steady wind from a fan or blower is
apphed head-on, the slightest Vibration, even an imperceptible tremor, is

rapidly amplified (at a logarithmic rate) to a violent oscillation of maximum
amplitude.

The "Steinman pendulum" (fig. 7) affords another striking demonstration.
The section model is mounted vertically on a rigid pendulum rod suspended
from an axis parallel to the wind. The oscillations, initiated seemingly from a
state of rest, are soon built up to pendulum Swings of startling magnitude.

A still more instructive demonstration is the "Lanchester tourbillon"
(fig. 7). If the section model of an unstable section is pivoted at the center and
mounted as a pitchless propeller, exposure to the head-on breeze of an electric
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fan will develop a rapidly accelerated spin in a direction opposite to the spin of
the fan.

The distinguishing feature of unstable sections, as illustrated by the paradox
of the Lanchester pinwheel, is the reversed direction of the resultant. An
upward inchned fluid flow against the stationary section will produce a downward
resultant. Any section having this hydrodynamic characteristic is an unstable
section [5,10].

On the other hand, certain other shapes or sections, when similarly mounted
with spring or pendulum to permit transverse oscillation, will not be set into
amplified oscillation by exposure to a steady wind or other steady fluid flow.
Any imposed initial oscillation will be aerodynamically damped. Such shapes
are aerodynamically stable sections. Examples (fig. 7) are a half-round with
convex side toward the wind, a T-section with stem toward the wind, a
horizontal flat plate, a shallow i7-section, a shallow [/-section, or any streamlined
or airfoil section. Any of these sections, when mounted as a pitchless propeller
and exposed to the head-on breeze of an electric fan, will develop a normal
uniform spin in the same direction as the spin of the span. If the wind is without
spin, the pitchless propeller of stable section will not be self-starting, and any
rotation artificially imparted to the propeller will be brought to rest by the wind.
The distinguishing feature of stable sections is that an upward inchned fluid
flow against the stationary section will produce an upward resultant [5, 10].

Wind-Tunnel Tests

A convenient scientific method of determining the aerodynamic charac-
teristics of a section, including its Classification and behavior as a stable or
unstable section, is by means of wind-tunnel tests. In a static wind-tunnel test,
the section model is held stationary, at successive angles of incidence. The
aerodynamic reactions are lift, drag, and moment of hft. By plotting the
dimensionless coefficients CD, CL, and CM, against angle of incidence (x), one obtains
the static drag, hft, and moment (or torque) graphs, respectively (fig. 8) [10].

The ordinates CD, CL, and CM of the respective graphs are defined by the
three fundamental equations of aerodynamics: [12]

'D=Cc(iPV2b) (6 a)
L=CL(\PV2b) (6 b)
M^GM(\pY2b2) (6 c)

The "slopes" (or angular gradients) of the static hft and torque graphs
(after correction for drag) are significant. They are defined by [12,13].

H - >g (7a)

«. -^ et»
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Fig. 8. Drag, Lift, and Torque Graphs for üT-sections. Identification of Stable and Unstable
Sections.

The slope of the static lift graph determines the vertical stability or instability
of the section (fig. 8). A static lift graph with a central ränge of positive slope
identifies an aerodynamically stable section. The steeper this positive slope, the
greater will be the vertical stability of the section. A static lift graph with a
central ränge of negative slope identifies an aerodynamically unstable section.
The steeper the negative slope, the greater will be the vertical instability of the
section [10,12].

Similar relations of the static moment graph (supplemented by the
corresponding graphs for a curved model, a new concept introduced by me) determine
the angular stability or instability of wider sections [13].
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Aerodynamic Instability of Narrow Sections

The relative increase per cycle in the amplitude (a), or the logarithmic
increment per cycle, is denoted by 8:

Aa_AW8--^-w (8)

where W is the total energy in the oscillating System. The logarithmic increment
or rate of amplification § is the measure of instability. The logarithmic increment
8, applied to any initial amplitude, is like a rate of Compound interest, com-
pounded at each oscillation [12].

For pure vertical oscillations of a narrow section (or of a wide section at very
high wind velocities V), the logarithmic increment or rate of amplification is

given by: o62 y^-i-^-t-NB (9)

where N is the frequency of the oscillations, 6 is the width of the section, m is
the mass per linear foot of span, andp is the air density in mass per unit volume.
Each factor in eq. (9) is dimensionless [12].

The dimensionless factor pb2\m is the "density-mass ratio". Upon substi-

tuting Standard values of p and g, this factor reduces to 0.0766 b2\w in units of
feet and pounds [12].

The dimensionless factor Vj(Nb) is the "reduced velocity" or the "velocity
ratio". It is the Controlling parameter in all aerodynamic studies [5,12].

The minus sign in eq. (9) corresponds to the identification of unstable
sections. If the slope sx is negative, the logarithmic increment Sj is positive,
denoting amplification.

Aerodynamic Instability of Wide Sections

This is the problem of the aerodynamic instability of flexible bridge spans,
flexible towers, and other structures [5,10].

The problem is properly and logically separable into two parts:
1. The Solid Mechanics Problem: To determine (predictively) the normal

modes and natural frequencies of potential oscillations, and the amplification
producible by any given energy input.

2. The Fluid Mechanics Problem: To determine the net energy transfer
from a given steady fluid flow to a specified oscillating boundary surface, and
to devise fbrms of boundary profile that will minimize or reverse the energy
transfer.

The elastic or solid mechanics phase of the problem is comparatively easy.
All parts of it are readily answered by known fundamental relations of
Suspension bridge analysis and Vibration mechanics, and the final equations for
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practical apphcation can be expressed in very simple, convenient formulas.
Simple Integration yields formulas that will answer all questions on oscillation
modes and frequencies more accurately and expeditiously than the most ela-
borate and spectacular large-scale model tests. Unfortunately much valuable
time and effort have been misdirected by investigators to this elementary part
of the problem, in costly experimentation and in voluminous and needlessly
formidable mathematical analysis, to the neglect of the more basically impor-
tant and more difficult part of the study — the aerodynamic problem [10].

The aerodynamic or fluid mechanics phase of the problem has been
challenging. It has involved not only new and illuminating apphcations of known
concepts, but also the extension of the field to the exploration and estabhsh-
ment of new relations and new concepts. To say that the problem was too com-
plicated for scientific formulation and predictively vahd Solution was not help-
ful. The problem was critical and had to be solved. I outlined and finally deve-
loped, on a scientific foundation, a comprehensive Solution that explains the
phenomena and permits predictive design and control. My complete Solution
yields coefficients of rigidity, natural oscillation periods and modes, velocity
relations, energy relations, critical wind velocities, rates of amplification, limiting

amplitudes, design criteria and specifications, and methods of predicting,
testing, checking, and preventing aerodynamic instabihty [12,13].

Effect of Phase Difference

In comparison with the elementary sections previously discussed, the new
feature introduced with the wider sections is the time required for the fluid
flow, or for any disturbance in the fluid flow, to traverse the width of the
section. This introduces a new factor — phase difference. A flow disturbance,
initiated at the leading edge, takes time to traverse the width and encounters
a progressively increasing difference of phase as it traverses the oscillating
section. As different points of the width are reached, different stages of the
cycle of oscillation are encountered, including differences of velocity and even
differences of direction of motion [10,12].

Strange as it may seem, this seemingly obvious basic concept was missed by
other investigators. Without it, the problem could not be solved.

The elementary expression for energy input per cycle is

A W 77.P.a.cos(f> (10)

where a is the amplitude, P is the harmonic amplifying force, and <f> is the phase
difference between amplifying force and velocity of displacement. The multi-
plier cos <f> is the correction factor in multiplying two vectors differing by the
angle <f> in direction or phase (illustrated by the "power factor" apphed to the
product of volts by amperes in alternating current) [10,12,13].
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In the wider sections here under consideration, if the horizontal fluid flow
is at high velocity so as to make the phase difference across the width of the
section relatively negligible, the same governing relations will obtain as in the
elementary sections of narrow width. An unstable section (s1 negative) will be

subjected to a downward resultant whenever it is moving down and an upward
resultant whenever it is moving up. Amplifying force will be in phase with
velocity of displacement, yielding a maximum value for energy input (<f> 0 in
eq. 10). This high velocity ränge in which the phase difference becomes negligible

has no upper limit and is therefore called the catastrophic ränge. In the
same high velocity ränge (<f> negligible) a stable section (sx positive) will be
subjected to an upward resultant whenever it is moving down and a downward
resultant whenever it is moving up. The energy input will be negative (P negative

or <f> ir, in eq. 10), so that any oscillation will be damped [10,12].
Hence there is one vitally important difference between stable and unstable

sections, namely: A basically unstable section (s negative) will have an upper
critical ränge that is unlimited, and therefore potentially catastrophic.

Both categories of sections, however, have lower critical ranges of minor
potential instability (fig. 9). Since <f> varies across the width of the section, from

Third critical ränger Second critical ränge
r-Firslt critical ränge

Critical V/Nb

V/Nb

-Fourih critical ränge
-Third critical ränge
•-Second critical ränge/ Calojtroptiic

ränge

V/Nb

Critical Range3 Fora Stable Section

'rilical V/Nb

Critical Ranges For an Unstable Section

Fig. 9. Critical Ranges for Stable and Unstable Sections. Catastrophic Range in Unstable
Sections and Lower Ranges of Minor Potential Oscillations.

zero at or near the leading edge, where the aerodynamic disturbance is initiated,
to a maximum at the trailing edge, the total energy input over the section is
obtained by integrating the expression of eq. (10) over the entire width. If the
positive contributions of A W (representing energy input) dominate in the
summation, the section will be unstable. If the negative contributions of A W

(representing energy withdrawn) dominate in the summation, the section will
be stable [5,10,12].

Accordingly, the stability or instability of a section depends not only upon
the shape and proportions of the section but also upon a function of the wind
velocity V. The over-all phase difference across the section, i.e., the fraction
or multiple of a cycle required to traverse the width of the section, is
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where V is the horizontal velocity of the fluid flow, N is the frequency of the
oscillations, and b is the width of the section. (Compare the Strouhal number,
S.) Reciprocally, V/(Nb) is the fraction or multiple of the width traversed per
cycle. It is a convenient dimensionless ratio, commonly termed the "reduced
velocity"; I refer to it as the "velocity ratio". All critical velocities and critical
ranges of velocity are expressed in terms of V/(Nb). A critical value of V/(Nb)
marks the lower limit of the catastrophic ränge (fig. 9) [10,12].

As affecting the velocity ratio (V/Nb), infinite V or zero N represents the
same limiting case of zero phase difference. This explains why stabihty or
instability at very high fluid velocity V corresponds directly to stabihty or
instability as given by the wind-tunnel test on a stationary model (zero N) [12].

The foregoing relations and conclusions, which I derived and predicted
analytically, have now been confrrmed experimentally by other investigators [19].

Angular Stability and Instability

When we pass from the elementary sections of narrow width to wider
sections, such as .H-sections having the proportionate ratios of actual bridge
cross-sections, their potential torsional instability must be considered as well as
their vertical instability. The foregoing Classification is simply extended, as
indicated in fig. 10. A wind inchned upward, represented by R, may produce a

vi Li

Fig. 10. Aerodynamic Instability of Wide Sections. Lift Resultants for Three Categories
of Aerodynamic Stability.

resultant hft represented by Lx, L2, or L3, corresponding to three different
categories of instability, as follows: Lx (the ideal case), vertically and torsionally
stable; L% (the most common case), vertically stable but torsionally unstable;
and Lz (the least common case), vertically and torsionally unstable. [5,10] The

proportions of the section (using the ratio of depth d to width b in the case of
sohd-web if-sections, and the reduced ratios of the equivalent if-sections in the
case of open-web sections) determine the category of stabihty: Lx for djb < 0.08,
L2 for d/f> 0.08 to 0.24, and Ls for dfb> 0.24 [12].

16 Abhandlung XIV
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The static wind-tunnel graphs (fig. 8) will yield the same Classification: Lx,
positive slope of lift graph and of torque graph; L2, positive slope of hft graph
but negative slope of torque graph; and L3, negative slope of both hft graph
and torque graph. These classifications determine the basic stabihty or instability

of the section with respect to vertical and torsional oscillations.
For the study of vertical oscillations, the foregoing concepts require no

further modification or refinement. For the study of torsional oscillations, the
foregoing concepts serve for preliminary Classification and analysis, but are
supplemented and modified for greater refinement by the additional concept
of curved section modeis, presented below [10,13].

Use of Stationary Section Models

By a principle of relativity, the motion of the section (regarded as an
immersed boundary surface) may be translated into a relative tilt or distortion
of the flow hnes in the fluid, or into a contrary relative tilt or distortion of the
boundary surface, so that in either case the boundary surface may then be
treated (and tested) as stationary [10,13].

For parallel vertical motion of the section with downward velocity v, the
graphic representation (fig. 11) consists of the simple composition of horizontal
flow lines with spacing 1/V and relative (upward) vertical flow lines with
spacing ljv. By this graphic composition, the horizontal flow lines in the fluid
are simply tilted up to a positive angle of incidence v/V. Instead of tilting the
horizontal flow lines upward, an equivalent procedure is to tilt the section

Fig. 11. Tilting of Field of Flow for Vertical Motion of Section. Tilting of Model in Static
Wind-Tunnel Tests.

downward the same angle v/V; this is also given (fig. 11) by the graphic composition

of the same superimposed flow lines with the direction of the vertical
hnes reversed. Accordingly:
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*v

Fig. 12. Curving of Field of Flow for Angular Motion of Section. Derivation of Curved
Models for Static Wind-Tunnel Tests.

Analogue 1. The tilting of the stationary model in a wind tunnel takes the
place of a vertical velocity of the section.

When the same deductive procedure is applied to angular velocity of the
section, the graphic representation (fig. 12) consists of the simple composition
of the horizontal flow lines with spacing 1/F" and a series of concentric circular
flow lines with graduated spacing \bj(cv), in which v is the linear downward
velocity at the leading edge and c is the distance of any flow filament from the
center. This graphic composition yields a series of concentric circular flow lines,
convex upward. The angular velocity of the section is thus translated into a
curved field of flow, as in an arching wind tunnel, with the immersed section
model kept stationary and unchanged. Instead of curving the field of flow, an
equivalent procedure is to curve the immersed section model an equal and
opposite amount. This curvature is also given (fig. 12) by the graphic composition

of the same superimposed flow lines with the direction of the rotational
flow lines reversed. The equivalent warping of the immersed section model is
symmetrical about the center of angular rotation, with horizontal tangent at
this center and with slope change v/V at each end; the radius of curvature is
\bV\v. Accordingly [13]:

Analogue 2. The curvature of the stationary model in a wind tunnel takes
the place of an angular velocity of the section.

With a curved section model, as in the more familiär tilted section model, the
added angle of incidence at the leading edge remains —v/V.

For wind-tunnel duplication of this condition, the section model must be

warped to the circular (or parabolic) curvature defined above, with horizontal
tangent at the center of rotation and the curvature changed for different
desired values of the slope ß at the leading edge (angle of incidence at the
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leading edge equivalent to angular velocity of section). This curvature is called
the "dynamic camber". A simple analytic derivation yields a parabola for the
aerodynamic camber [15].

The first wind-tunnel tests on curved modeis of bridge sections were made
for me in 1947 at the Virginia Polytechnic Institute by F. J. Mäher [13].

In the absence of such tests on curved modeis, my analysis for the effect
of angular velocity had previously been based on the static torque graphs
obtained from straight section modeis (simply tilted instead of curved). Quali-
tatively, the results and conclusions are substantially unchanged, since the
major disturbance of the incident stream flow is determined by the effective
angle of incidence at the leading girder. Quantitatively, the correction from
straight section modeis to curved section modeis is in the direction of reducing
stability torque or intensifying instability torque [13].

It should be noted that the straight, tilted section model has a dual signi-
ficance. It represents the effect of angular position, a, also the identical effect
of vertical velocity, v. Accordingly, in aerodynamic formulas, the two are inter-
changeable; the conversion relation is simply x —v/V. The two contributions
may be bracketed, as (x —v/V), with the same factors and coefficients applied
to both.

The curved section model represents solely the effect of angular velocity, dt.

The conversion relation is ß —vfV — bxj(2 V).

.,0.2

Curved modeis

V-12 -4-a
Lift curve, S3

0.2--

0.4

Fig. 13. Static Lift Graphs for Straight and Curved Models of an H-Section (d/b 0.20).

Fig. 13 shows the static lift graphs obtained from straight and curved
section modeis, respectively, for an If-section of section ratio d\b 0.20 (appro-
ximately the section of the original Tacoma Bridge) [13].

Fig. 14 shows the static moment graphs obtained from the same straight and
curved section modeis [13].
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Fig. 14. Static Torque Graphs for Straight and Curved Models ofan Ä-Section (djb 0.20).

Pressure Variation Across the Section

The curves of pressure distribution across the width of the section may be
obtained experimentally by manometer readings on the stationary section
model in the wind tunnel. Such graphs, plotted from tests made for me in 1947

by Dr. Huntes. Rotjse in a miniature wind tunnel at the Iowa Institute of
Hydraulic Research, are shown in figs. 15 and 16 [10]. The Integration or
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Fig. 15. Aerodynamic Pressure Distribution on an H-Section (d/b 0.16). (Section
Vertically Stable and Torsionally Unstable.)



230 D. B. Steinman

"" I I T i I t fl I-,

(a 5°) i ^/•///S//-?///,';/;//.

,-

T7777Z

7-05
Net Negative Pressures

10 Vertically Unstable
Torsionally Unstable

Fig. 16. Aerodynamic Pressure Distribution on an H-Section (d/b 0.33). (Section
Vertically and Torsionally Unstable.)

algebraic summation of the pressures over the total width b gives the positive
or negative lift L, which checks the value given by the ordinate of the static
lift graph (after correcting for the drag component). Similarly the Integration
or algebraic summation of the moments of these pressures about the center of
rotation gives the positive or negative torque M, which checks the value given
by the ordinate of the static moment graph. The direction and the point of
apphcation of the resultant L of the graph of net lift pressures may be compared
with the identification of the different categories of aerodynamic instability,
assembled in fig. 10 [14].

Prediction of Aerodynamic Behaviour of Bridges

My analysis is reduced to very simple working formulas for predictively
Computing the instability response curves of any given bridge cross-section for
all wind velocities [14].

For vertical instability,
§1 0.02 B-A _V_

Nb
(12)

where B is the (constant) width-factor of the section (B b2\w) having a mean
normal value of 0.25 (in units of feet and pounds); V\(Nb) is the relative wind
velocity, that is, the velocity measured with the width 6 as the unit of length
and the period of oscillation (1\N) as the unit of time; and A is the (variable)
aerodynamic factor, also given by a very simple formula:

A — I p-eos(j>-dx (13)
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where the Integration extends over the width of the section. Here p is the
variable ordinate of the pressure distribution curve (figs. 15, 16) per unit angle
of incidence; and the multipher cos <f> is the correction for phase difference, as
explained above. The phase difference (f> increases in a straight-line ratio from
zero at the leading edge to a maximum of <f>x NbfV at the far edge of the
section, so that <f> x. <f>x. This correction factor for phase difference, introduced
by me, is significant. It explains the otherwise mystifying Variation of
aerodynamic response at different wind velocities [12,14].
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Fig. 17. Vertical Instability Graphs for Three i?-sections. Stable Section, d/b — 0.16;
Neutral Section, d/b 0.24; Unstable Section, d/b 0.33.

In fig. 17 are plotted the vertical instability graphs computed for three
different If-sections: a stable section (d/b 0.16), a neutral section (d/b 0.24),
and an unstable section (d/b 0.33). These curves are computed directly from
the respective pressure-distribution curves, figs. 15, 16, using the simple
Integration formula, eq. (13). The abscissas are the relative velocities VjNb and the
ordinates are the coefficients of aerodynamic instability, AV/Nb, the variable
term of eq. (12) [14].
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A section is here termed vertically or torsionally stable, neutral, or instable
to designate its aerodynamic response at high wind-velocities, in the critical
high-velocity or "catastrophic" ränge. The same sections will usually have
minor alternating ranges of stability and instability at low wind velocities, as
shown in the calculated response graphs illustrated by fig. 17 [12,13,14].

For the section ratio 0.16, the graph shows assured vertical stability in the
high velocity ränge, above a critical VjNb of 2.7. Above this value, any increase
in wind velocity V makes the bridge more stable, quickly damping any initiated
oscillations. Below this velocity-ratio there is a ränge of limited instability,
preceded by minor alternating ranges at lower velocities. These minor instability
ranges explain the vertical oscillations of the Tacoma Bridge at low wind
velocities.

For the section ratio 0.33, the graph shows a catastrophic ränge of vertical
instability starting at a critical V/Nb of only 1.40, with minor alternating ranges
at lower velocities.

For torsional instability (before correction for curved section modeis), the
logarithmic increment is given by [14]

b2 V
S2=0.02—;• B-A^r (14)2 2r2 Nb '

Here only one factor is added to eq. (12), namely 62/2 r2, with a mean normal
value of 4.0, where r is the polar radius of gyration of the mass of the cross-
section; and the formula for A becomes

i
A — p (\ — x) cos </> ¦ dx (15)

o

with the new factor (^ — x) representing the lever arm of each ordinate about
the center.

In fig. 18 are shown the torsional response graphs computed by eq. (15) for
three different sections [14].

For the section ratio d/b 0 (a flat plate), the graph shows assured torsional
stability at all wind velocities. (This section is also vertically stable at all wind
velocities. The only possible instability is that of coupled vertical and torsional
oscillations; the analysis for this condition has also been published by me [13].)

For the section ratio 0.16, the graph (fig. 18) shows a steep catastrophic
ränge like that which destroyed the Tacoma Bridge), starting at a critical
VjNb of 4.0, with alternating ranges of stabihty and minor instability at lower
velocities.

For the neutral section ratio 0.08, the graph shows assured stability at all
velocities above a low critical VjNb of 1.0, with minor humps at lower velocities,
representing neghgible instability that is easily overtopped by normal structural
damping. In this case, the asymptotic ränge for the neutral section is below the
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Fig. 18. Torsional Instability Graphs for Three H-Sections. Stable Section, d/b 0;
Neutral Section, d/b 0.08; Unstable Section, d/b 0.16.

axis, representing stability, whereas in fig. 17, it was above the axis, representing

(hmited) instability.
It is possible to get the answer, with sufficient accuracy for all practical

purposes, without requiring pressure-distribution curves. An alternative method
of deriving and plotting the aerodynamic response curves is to use the simple
static lift and torque graphs of the section [15].

Valuable series of such graphs, for H-sections and for deck sections, also for
various modified sections, have been obtained for me and generously contri-
buted by Prof. F. J. Mäher, using the wind tunnel at Virginia Polytechnic
Institute. In figs. 19 and 20 are assembled typical hft and torque graphs, respectively

for iZ-sections. The slopes (angular gradients) of these graphs, at any
angle of incidence, provide the criterion and the measure of aerodynamic
stabihty [15,16].

If sx is the slope of the hft graph and s2 the slope of the torque graph, s1 is a
measure of the lift resultant on the section, and e s2lsx is the eccentricity of
the resultant, its distance from the center line [15].
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Fig. 19. Typical Static Lift Graphs of H-Sections (d/b 0 to 0.30).

Assuming a straight-line pressure distribution across the width of the
section, the end ordinates p0 and px are given by the simple relation

p0 s1 + 6s2, p1 s1-6s2 (16)

If this straight-line graph of p is used in eqs. (13) and (15) instead of the
actual pressure-distribution curves illustrated in fig. 15 and 16, almost identical
results are obtained yielding aerodynamic response graphs sufficiently accurate
and informative for all practical purposes. In fig. 21 I give a comparison of the
torsional instability graphs computed by the two methods (using the two
different kinds of test data from two different laboratories) for an .£f-section of
djb 0.16. For practical purposes, the difference is neghgible [15].

General Aerodynamic Equations for Oscillating Sections

By rigorous mathematical analysis applied to basic physical concepts, I
have derived the following general aerodynamic equations for the forces (L and
M) acting on any moving or oscillating section in any relative fluid flow [13].
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Fig. 21. Comparison of Instability Graphs for an if-Section (d/b 0.16) by Exact and
Approximate Methods.
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L =L0 + ipV2b[cis1(x-f)-

(b&ym M0+yv2b2 |c2*a(«--i)-c<4«4_

+ m0(F*-ij) (17a)

Ja« (17b)

where L0 and ilf0 are the initial static lift and torque for the section at rest at
the initial angle of incidence; rj, r\, are vertical velocity and acceleration; x, ä,
ä, are angular displacement, velocity, and acceleration; sx and s2 are the slopes
of the static lift and torque graphs for the ordinary straight model; ss and s4 are
the slopes of the static lift and torque graphs for the curved model; ma and Ia
are the mass and the polar moment of inertia of the cylinder of air enveloping
the section; and Cx, C2, C3, C4 are phase-correction factors for the effect of
time lag between any change in attitude or motion of the section and the
resulting pressures across the width of the section. All moments are taken
about the midpoint of the width b [13].

Eqs. (17) are of fundamental importance. They are the pivotal formulas of
the analysis presented. The apphcability of eqs. (17) is without restriction as to
the nature of the motion or oscillation of the section (uniform, irregulär, or
harmonic). Moreover, the section may be horizontally stationary in a steady
wind (as in the case of a bridge) or moving horizontally relative to the wind (as
in the case of an airplane); V is the relative wind velocity.

In the case of harmonic oscillations, the coefficients Cx, C%, C3, and C4 are

functions of the velocity ratio ^-1 or of k ~ ™ \. In such case, the

C-coefficients are of the vector form, G F — iG, representing an angle of lag
equal to tan-1 GjF. The values of F and G may be calculated and plotted from
the pressure distribution graphs for the section (Fx, F2, Gx, and 672 from the
straight model; F3, Ft, Gs, and G4t, from the curved model) [13].

In eqs. (17) all the terms and parameters within the brackets are dimensionless.

The outside terms may also be written in terms of p V2 b or p V2 b2 and
dimensionless factors.

The ordinates of the pressure distribution graphs are designated by yx for
the straight model and ys for the curved model. Each pressure ordinate, yx, or
ys, lags an amount <f> behind the respective displacement or velocity vector that
produces it.

For each force or moment vector Cs, Fs is the cosine component and —iGs
is the sine component. The angle of lag of the resultant force or moment vector
is tan-1 (GIF). Accordingly, for the force vectors,

l l
J yx cos <f> dx $yx sin <f> dx

Fx \ ; Gx «L (18a)
hldx(=S1) $yxdx(=Sx)
0 0
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with similar expressions for Fs and G3; and, for the moment vectors,

1 1

J 2/i (i — x)cos <f> d% J 2/i (i — «) sin <£ <fo

F2 -j ; öjj =-j (18b)
j>i(?-aO^(=s2) I l/i (i - ^) ^^ «a)
0 0

with similar expressions for Fi and (?4 [13].
The .F-graphs and 6r-graphs for any section, as functions of VfNb, are

computed by eqs. (18) from the pressure distribution graphs. The computation and

plotting of the graphs are expedited by the use of an electric analogue Computer.
Equating the aerodynamic forces given by eqs. (17) with the dynamic

resisting forces given by the general dynamic equations for oscillating sections,
the general force equations for an oscillating section are obtained. These general
force equations (not reproduced here) are the key equations for solving the
various problems of aerodynamic oscillations [13].

For pure vertical oscillations, the general force equations yield the rate of
amplification: y§i=-^(*WW (19)

which is identical with eq. (12); also with eq. (9), with the factor Fx here added

for phase correction.
For pure angular oscillations, the general force equations yield the rate of

amplification: &2 Q y
S2=-^{~FS2 + F^)Nb (20)

which is the final corrected form of eq. (14).

Eqs. (19) and (20) yield the instability-response curves, which may thus be

plotted predictively for varying V/Nb [13].
By writing the equations of the static lift and torque graphs in general form

and substituting the resulting mean effective values of the slopes sx, s2, s3, si,
in eqs. (19) and (20), equations are obtained for determining the limiting vertical
and angular amphtudes with varying velocity ratio V/Nb. Numerical and

graphic Solutions are supplied for predictively plotting the amplitude-response
curves [13].

From the general force equations, I have also derived the complete Solution

for coupled vertical and torsional oscillations, corresponding to the dangerous
"flutter" of airplane wings and control surfaces. A typical instability- response
graph computed, by my formulas for coupled oscillations, for a real section

(d/b 0.02) is shown in fig. 22 [13].
The analysis I have developed, as herein outhned, is beheved to be the first

generahzed aerodynamic theory of oscillating sections, not limited to sections

of any one type. It also constitutes the aerodynamic theory of bridge oscillations

brought to greater completeness and generality than any previously attempted.
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It is believed to be the first complete theory of aerodynamic oscillations
with the following features of distinguishing generality [13]:

1. It is not limited to streamline airfoil sections and idealized thin plates
but is also apphcable to all bridge sections or other sections of whatever type
or form.

2. It is not hmited to coupled oscillations (as in airplane flutter) but also

Covers vertical oscillations and torsional oscillations (which are the known
forms of bridge instability).

3. It is not limited (like prior aerodynamic theory) to predicting critical
flutter velocity but also determines and predicts all critical wind velocities for
vertical and torsional oscillations and, in addition, rate of amplification, limiting

amplitudes, and amplitude response at all wind velocities.
4. It does not require, for each problem, large-scale oscillating model tests,

which are costly and time-consuming, but instead determines all necessary
constants for any section by simple static tests on small-scale section modeis.

Criteria for Assuring Aerodynamic Stability [1,12]

In the absence of scientific design to improve the aerodynamic characteris-
tics of the cross section and in the absence of other means of stabilization or
stiffening, aerodynamic stability can be secured by simply providing adequate
depth of stiffening trusses or girders. As a first criterion to apply, I have derived
and established the following simple specification:

Specification 1. The depth of stiffening trusses or girders shall be not less

than Z/120 + (Z/1000)2, unless aerodynamic stability is otherwise assured [12].
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For the Tacoma Bridge span of 2800 feet, the foregoing specification would
have required a depth of 31 feet, or 1: 90 of the span. The stiffening girders of
the original Tacoma Bridge were made 8 feet deep, or only 1: 350 of the span.
It was by far the most flexible Suspension bridge of modern times.

In Suspension bridges with generously proportioned stiffening trusses, a
shallower depth ratio than specified above will yield the requisite stiffness and
damping. If the foregoing first criterion is not satisfied, the next test to apply
is my more general specification:

Specification 2. The stiffening System of a Suspension bridge shall have a
value ofEI ofnot less than b f4/60 //, unless aerodynamic stability is otherwise
assured [12].

If the foregoing tests, easily applied, are not satisfied, a more intimate
examination of the aerodynamic constants of the structure is required. Any
deficiency may be made up by special provisions or corrected by special design.

The most important constant in aerodynamic studies for any structure is
the "spring constant" or coefficient of rigidity K. It measures the resistance to
oscillation and determines the natural period or frequency of harmonic oscillations

in any mode. The numerical value of K can be easily and accurately
calculated for any existing or proposed structure of known dimensions. The mode
n 2 (the main span oscillating in two segments with a node at mid-span) is
most conveniently used for calculating K, since the fundamental mode (n 1)

will rarely give a value materially lower. For all even values of n (the anti-
symmetric modes), K is given quickly, scientifically, and precisely by my
simple formula [12] 9

K ^H +^EI (21)

where H is the horizontal component of dead-load cable stress. This value of
K for n 2 ranges from 124 in the ill-fated Tacoma span to 2164 in the Wil-
hamsburg Bridge. Low values of K are associated with aerodynamic instability;
but K alone does not teil the whole story.

The two terms in the above formula for K (the H term and the EI terra)
represent the contributions of the cables and the stiffening girders, respectively.
The ratio of the girder term to the total is the stiffening ratio R, and largely
determines the structural damping. The value of R ranges from 0.015 in the
collapsed Tacoma span to 0.780 in the Williamsburg Bridge. Low values of R
(below 0.25) are associated with aerodynamic instability [7,12].

Another important dimensional constant is the width factor B b2fw) in
which w is the weight of the span per linear foot. Aerodynamic instability
increases with the square root of B. The value of B (with w per füll width) is
fairly constant at approximately 0.25 for most Suspension bridges. For wide
bridges of normal or reduced weight per square foot, the value of B is greater,
even doubled, as in the Bronx-Whitestone Bridge, thereby adding 41% to the



240 D. B. Steinman

instability. Contrary to populär misconception, the narrowness of the Tacoma
Narrows Bridge was not the cause of its failure. (The name of the bridge may
have subconsciously contributed to this hasty, erroneous conclusion.) If the
bridge had been wider, it would have been more vulnerable to aerodynamic
action, with more rapid amplification and greater amplitudes; and its instability

would have been more difficult to counteract or eure [12].
All formulas for aerodynamic instability contain the dimensional factor

iBjK. The three measures of instability are rate of amplification, critical
velocities (in the catastrophic ränge), and maximum amplitudes. Considerations
of all three measures yield the same conclusion [12]:

Safety against aerodynamic instability is proportional to ]/KjB.
This relation yields a simple criterion, of rational form on a Statistical base,

for quickly checking the aerodynamic stability of a proposed bridge design:

Criterion 1. The rigidity ratio KjB shall exceed 1200 (unless aerodynamic
stabihty is otherwise assured) [12].

The values of KjB ränge from 468 for the Tacoma span to 16,028 for the

Williamsburg Bridge. No bridges with a KjB greater than 1200 have ever, as

far as known, shown any traees of aerodynamic instability. On the other hand,
all bridges with a K/B less than 1200 have evidenced aerodynamic instability,
in varying degrees.

A more aecurate and more discriminating criterion, taking into account the
Variation in structural damping represented by the stiffening ratio R, may also

be simply stated:

Criterion 2. The aerodynamic stability constant R iKjB shall exceed 10

unless aerodynamic stabihty is otherwise assured) [12].

The values of R iKjB ränge from 0.4 for the Tacoma span to 100 for the
Wilhamsburg Bridge. All bridges with values for R i KjB of less than 10 have
been subject to aerodynamic oscillations. All bridges with this constant greater
than 10 have been aerodynamically stable.

A still more scientific criterion, more discriminating in borderhne cases and
safer to use in abnormal cases, takes into account the Variation of potential
instability with the form and proportions of the cross-section. For different
section-ratios djb I have plotted and tabulated the formula values of potential
torsional and vertical instability (8). The formula value of the positive damping
(8S) for any given structure or design is then compared with the corresponding
recorded value of maximum 8. The ratio is the factor of safety against
aerodynamic instability.

This ratio varies from 0.02 in the Tacoma span to 5.3 in the Williamsburg
Bridge. All bridges for which this ratio is less than unity have been subject to
aerodynamic oscillations, with a highly consistent order of vulnerability and
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seriousness; and all bridges for which this ratio is greater than unity have been

aerodynamically stable [7,12].
From my formulas and wind-tunnel data, I have plotted a graph to facili-

tate this comparison. All bridges whose plotted points fall below the instability
curve are in the unstable category, and those whose plotted points fall above
the curve are in the stable Classification. Degree of stabihty (or factor of safety)
is represented by the ordinate of the plotted point divided by the corresponding
ordinate of the graph. This comparison, expeditious but comprehensive, is
represented by my third criterion for aerodynamic stability:

Criterion 3. The aerodynamic stability constant R iKjB (or the value of
8S iKjB which it represents) shall exceed the required value for the section,
as tabulated or as plotted in a graph for different section ratios and forms
of section [7,12].
We thus have two simple, practical specifications and three alternative

criteria, ofprogressively increasing scientific accuracy, to aid in quickly checking
the aerodynamic stability of a proposed bridge design.

Here at last is an answer to the question that has challenged bridge engineers
for a Century: How much stiffening does a Suspension bridge requirel Any
Suspension bridge with a stiffening System satisfying specification 1, or specification

2, or criterion 1, will be aerodynamically stable. If the EI provided by
the stiffening girders or trusses does not satisfy specification 2, additional
stiffening must be provided by means of stays or other means to satisfy criterion

2; otherwise the section must be modified to eliminate or reduce the
aerodynamic instability until criterion 3 is satisfied [1, 2,4, 7,12].

It should be noted that the alternative specifications 1 and 2 are so worded
as not to freeze progress but to encourage initiative and reward resourcefulness
and scientific design [7,12].

Prevention and Cure of Aerodynamic Instability

The Tacoma Bridge disaster has awakened the profession to one important
lesson: Designers of Suspension bridges must henceforth give consideration to the

aerodynamic stability of their structures.
John A. Roebling, in his writings and in his work (1840—1869), was the

first bridgebuilder to recognize the problem of aerodynamic stabihty; without
the benefit of modern scientific and mathematical knowledge but with intuitive
perception, he built his spans with special provisions to stiffen them and make
them aerodynamically safe. But subsequently, for three-quarters of a Century,
this phase of the bridge engineer's problem completely dropped from sight. We
now have had to pick up the problem where Roebling left it and, with far
more mathematics and science than he had available, to carry the Solution to
maximum completeness and practical applicabihty [4,6].

It is of course easy, especially in the shorter spans, to assure aerodynamic

17 Abhandlung XIV
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safety by generous stiffening, disregarding economy and appearance. The real
problem, however, is to assure aerodynamic stability without wasting material
on excessive stiffness and without sacrificing artistic proportions.

The principal lines of attack for securing or improving aerodynamic stability
are the following [6]:

1. To augment the rigidity of the structure.
2. To augment the positive damping.
3. To modify the cross-section.

For resistance to aerodynamic effects, the most significant constants of the
structure are the coefficient of rigidity K and the stiffening ratio R (the ratio
of the contribution of the stiffening elements — trusses, girders, stays, etc. —
to the total rigidity). The magnitude of R largely determines the structural
damping [12].

Almost any method of increasing rigidity is also directly effective in aug-
menting structural damping. Rigidity and structural damping to resist potential
aerodynamic instability, both vertical and torsional, may be augmented, in
precalculated amounts, by using: deeper stiffening girders or trusses; cable

stays, tower stays, center stays, and intermediate stays; continuous construction,

and straight backstays. In addition, rigidity and structural damping to
resist potential torsional instability may be augmented in precalculated amounts
by using transverse diagonal stays; instalhng a double (top and bottom) System
of lateral bracing; increasing the torsional stiffness of the towers; raising the
points of suspender connection; and lowering the center of gravity of the section
(for example, by placing the roadway at the bottom) [6,12].

In amplitudes attainable, magnitude of kinetic energy accumulated, and
structural strains produced, two-segment (single-node, or n 2) torsional
oscillations are generally the most dangerous potential manifestation of
aerodynamic instability — as in the case of the Brighton Chain Pier (1836) and the
Tacoma Bridge (1940). A highly effective method of curing, preventing or
resisting such two-segment torsional oscillations is to provide adequately pro-
portioned center stays (fig. 23) or other equivalent means of preventing relative
longitudinal motion of cable and suspended structure at midspan. Such center
stays were first conceived and apphed by me on three Suspension bridges in
1938, and were promptly presented by me to the profession in a published paper
and at a professional meeting.

Another economical method is to use longitudinal diagonal stays, inchned
in either direction, in the planes of the eables (fig. 24). Such stays may be located
either above or below the roadway, and may have their points of attachment
to selected points of the cable, or to points of the stiffening girder, or to both.
Roebling developed and apphed this concept in his Suspension bridges. The
first modern application was made by me on three Suspension bridges in 1938,
and this was promptly presented to the profession.
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Fig. 23. Mid-Span Stays for Preventing Torsional Oscillations. Installation on Thousand
Islands Bridge and Deer Isle Bridge, 1938.
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Fig. 24. Cable Stays for Checking Aerodynamic Oscillations. Installation on Thousand
Islands Bridge and Doer Isle Bridge, 1938.

For maximum effectiveness, the two types, cable stays and tower stays,
may be combined to form a double System. In the case of the Tacoma Bridge,
such a double System near each end of the span, as calculated by me, would
have increased K from 124 to 1204, at the same time raising the value of R from
the very low value of 0.015 to the extremely high value of 0.900. This would
have brought the aerodynamic constants of the Tacoma span to very generously
safe values [6,12].

The most advanced development of my use of cable stays is embodied in my
design for the proposed Messina Straits Bridge, to link Sicily to Italy, with a
main span of 5,000 feet, to be the longest span in the world (fig. 25). Here a
beautiful System of radiating cable stays is incorporated in the design as a
scientifically calculated feature to prevent oscillations and assure aerodynamic
stability [17].
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Fig. 25. Messina Straits Bridge, to Link Sicily to Italy. Main Span of 5,000 feet, to be the

Longest in the World. Rigid Type of Stiffening Truss and System of Radiating Cable Stays
to Assure Aerodynamic Stability. (Designed by the Author.)
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Fig. 26. Intermediate Stays for Checking Aerodynamic Oscillations. Installation on Deer
Isle Bridge, Maine, 1943.
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Fig. 27. Transverse Diagonal Stays to Prevent Torsional Oscillations. Installation on Deer
Isle Bridge, Maine, 1943. Three Pairs of Transverse Stays Near the Quarter Point. Top

Strut Added for Greater Effectiveness.

For stiffening a flexible design. the cable stays at the ends of the span and
the center stays at midspan may be supplemented by a System of intermediate
stays, also in the plane of the cable (fig. 26). My formulas provide for their
scientific design to provide any desired increase in the value of K [6, 12].

In addition or as an alternative to the longitudinal diagonal stays, an econo-
mical and strikingly effective method of curing or preventing torsional oscillations

is the use of transverse diagonal stays (fig. 27) located between opposite
suspenders at selected points of the span. Transverse horizontal struts or ties
between the cables may be used in conjunction with such stays for still greater
effectiveness. For the Tacoma span, diagonal stays of only 1 sq. in. per panel
point would have yielded a more than 50-fold augmentation in torsional
resistance, represented by an increase in K from 124 to 7064 — many times more
than sufficient for assured torsional stability. The Deer Isle Bridge (on the
Maine coast) has been equipped by me with such a System as a safety precaution,
to preclude any possibility of torsional oscillations developing at wind velocities
higher than the 80-mile storms thus far experienced at this coastal location [6,12].

Another highly effective method of augmenting resistance to torsional
oscillations is by providing two planes of lateral bracing, at or near the top and
bottom flanges of the stiffening girders (or trusses). respectively. so as to secure
the integral effect of a hollow rectangular section in torsion. According to my
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formulas, as apphed to the Tacoma span, by adding comparatively light
Systems of top and bottom lateral bracing (5 to 20 sq. in. of equivalent horizontal
web section), K is increased from 100 to 400 percent, and R is multiplied
35 — to 50 — fold (which means a corresponding increase in the structural
damping). The higher values of K and R would have prevented the torsional
oscillations and the failure of the structure in the 42-mile wind that destroyed it.
In fact they would have assured torsional stabihty at a wind of more than
100 miles an hour. If the girder depth had been twice as great, the numerical
increases in K obtainable by adding the wind trusses would be quadrupled
[6,12].

Although the addition of wind trusses in two horizontal planes is highly
effective against torsional oscillations, this method is far surpassed in economy
and effectiveness by the simpler device of instalhng transverse diagonal stays
(fig. 27). With diagonal wire-ropes only one-fifth of the lightest wind-bracing
section assumed in the foregoing, the transverse diagonal stays would yield
a 50-times greater augmentation of K, also a correspondingly greater augmen-
tation of R [6,12].

These simple and economical apphcations of stays can be effectively used

to prevent aerodynamic oscillations in new bridges as well as to eure
aerodynamic instabihty in existing bridges.

The Aerodynamic Solution

By increasing depth, rigidity, and bracing; by adding center stays,
longitudinal diagonal stays, transverse diagonal stays, or other stays; and by intro-
ducing artificial damping devices, resistance to aerodynamic instabihty may be

built up to any desired amount. These methods resist or check the effects but
do not eliminate the cause.

The more scientific attack is the application of aerodynamic principles and
methods to the selection or modification of the cross-section so as to minimize
or eliminate any potential vulnerability.

The slopes of the lift and torque graphs (from simple wind-tunnel tests on
small section modeis) are a measure of the potential instabihty. A positive slope
identifies a stable section, with oscillations hmited to low wind velocities (below
the critical velocity) and usually neghgible or damped. A negative slope identifies

an unstable section, with an unlimited catastrophic ränge of oscillations
above a critical wind velocity. The ideal hft or torque graph approximates a
horizontal straight line; this identifies a seicton stable at all wind, velocities and
all angles of attack. The curvature of the hft graph or torque graph affects or
determines the hmiting amplitudes by determining the reduction of mean
effective slope with increasing amplitude. The static wind-tunnel graphs for any
section are thus a means of diagnosis, prediction, and prescription [12,14,15].
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Fig. 28. Open Slots in Bridge Deck Yield Aerodynamically Stable Section. This feature
Now Adopted in the Design or Reconstruction of All Large Suspension Bridges.
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Fig. 29. Aerodynamically Stable Bridge Sections. Combinations of Slots and Fins Provide
Complete Aerodynamic Stability.

By providing open slots at predetermined points of the roadway width
(fig. 28), the aerodynamic forces causing amplification of oscillations can be

eliminated or materially reduced. The most important horizontal area to leave

open is between the edge of the roadway and the stiffening girder or truss
chord. The opening of these lateral areas definitely reduces the net aerodynamic

instabihty and may ehminate it.
That aerodynamic stabihty or instabihty of a section is a function of the

form and proportions of the section and can be controlled by providing suitably
located and proportioned openings in the horizontal width of the section, is now
a demonstrated fact. Bridge cross-sections can be devised or modified to
produce assured aerodynamic stabihty [6,16].
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In 1946/47 I undertook a systematic exploration of the aerodynamic pro-
perties of various forms and proportions of bridge eross-sections and of various
indicated modifications of such sections. To this end, I secured the generous
Cooperation of Prof. F. J. Mäher, utilizing the wind tunnel facilities of the
Virginia Polytechnic Institute. With the help of a grant from the Research

Corporation, the test program was extended and amplified. The tests covered
a wide ränge of section-ratios and various modifications of the sections, includ-
ing open-grid roadway, lateral slots in roadway, center slot in roadway, and
outside fins. Such fins may take the form of cantilever brackets utilized for
sidewalks or other utihties. My original sugggestion of outside fins (in 1941) was
based on simple aerodynamic considerations. Subsequent research showed that
no bridge with outside brackets or cantilever sidewalks has ever been known to
show aerodynamic instability [16].

The 1947 wind-tunnel tests revealed that combinations of lateral slots and
outside fins in suitable proportions yield a complete eure or prevention of both
vertical and torsional instability. Such combinations of slots and fins had been

repeatedly suggested by me since 1941 in my pubhshed contributions.
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Fig. 30. Aerodynamically Stable Cross-Section Adopted for The Maekinac Straits Bridge,
Michigan, 1953. Lateral Openings, Central Openings, Open Trusses, Open Floorbeams,
and Top and Bottom Lateral Bracing Assure Aerodynamic Stability. Confirmed by Wind-
Tunnel Tests as the Most Stable Bridge Section Ever Designed. (Designed by the Author.)
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Based on the foregoing wind-tunnel research, diagrams of some aerodynamically

stable bridge sections (limited here to girder ff-sections) are recorded in
fig. 29. These modified sections offer complete aerodynamic stabihty, vertical,
torsional, and coupled, for all angles of incidence and at all wind velocities [16].

An application of the foregoing principles to a practical bridge cross-section
is shown in fig. 30. This is the adopted cross-section for the Mackinac Straits
Bridge of 3800 feet span. The design features of wide lateral openings (between
roadway and truss chords) and a wide central opening (two inner roadway lanes
of open-grid construction), in combination with deep open-web stiffening
trusses and open-web floorbeams, yield a most highly favorable section. Wind-
tunnel tests confirm the high aerodynamic stabihty, and indicate that this is
the most stable section, aerodynamically, ever designed. In addition, a double
System of lateral bracing (top and bottom) provides very high torsional rigidity,
so that the bridge has its aerodynamic stability doubly assured [18].

By the various means of stiffening and bracing, resistance to the effects
of aerodynamic instability may be built up to any desired degree. By scientific
design of the cross-section, applying aerodynamic findings and concepts, the
cause of instability can be eliminated. The one line of attack places the emphasis
on providing increased resistance to a dangerous inherent characteristic; the
other aims to avoid or eliminate the dangerous characteristic.

It is more scientific to eliminate the cause than to build up the structure to
resist the effect. The aerodynamic or fluid mechanics phase of the problem was
the real challenge to engineers and scientists. In response to this challenge, we
now have the new science of Bridge Aerodynamics [19].
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Summary

Some bridge failures, such as the catastrophe of the Tacoma Bridge
(November 1940) has required the creation of a new science, Bridge
Aerodynamics. With regard to the aerodynamic action of wind, its vertical
component is more dangerous than the horizontal component.

The stabihty or instabihty of a section depends on the „velocity ratio"
VjNb, where V signifies the wind velocity, N the natural frequency of the
oscillating structure and b the width of the section.

In order to amplify the test procedure and perfect the mathematical
analysis, the writer used modeis with curved cross-sections.

Methods of augmenting rigidity and structural damping are provided by
cable stays, center stays, intermediate diagonal stays and transverse diagonal
stays (e. g. Deer Isle Bridge 1943, Mackinac Straits Bridge 1953).

Besinne

Divers accidents survenus sur des ponts aux Etats-Unis et tout parti-
culierement la catastrophe du pont de Tacoma en novembre 1940 ont conduit
a traiter l'influence des efforts düs au vent, non seulement sous la forme
statique, mais egalement sous la forme aerodynamique.
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Les mouvements verticaux provoques par le vent dans l'ouvrage sont con-
sideres comme particulierement dangereux. Pour maintenir dans les limites
admissibles les mouvements verticaux et les mouvements de torsion
correspondant a un vent horizontal determine, il faut faire intervenir non seulement
la largeur, mais aussi la forme de la section du tabher, ainsi que la fleche du
cäble par rapport ä la portee.

Pour completer les theories dejä connues en matiere d'oscillations, on a

procede ä des essais en soufflerie sur des sections incurvees.
Pour obtenir la rigidite necessaire dans les ponts suspendus, il est recom-

mande de prevoir des cäbles en diagonale (entre le cäble porteur et le tablier),
ainsi que des contreventements verticaux au-dessous du tablier (pont Deer
Isle 1943, pont Mackinac Straits 1953).

Zusammenfassung

Verschiedene Brückeneinstürze in den USA, vor allem die Katastrophe der
Tacoma-Brücke (November 1940) führten dazu, die Wirkung der Windkräfte
nicht nur als statisches, sondern als aerodynamisches Problem zu behandeln.

Als besonders gefährhch werden die durch den Wind verursachten
Vertikalbewegungen des Bauwerks angesehen. Damit die Vertikal- und Torsions-

Bewegungen für eine bestimmte horizontale Windkraft in erträglichen Grenzen

bleiben, kommt es neben der Breite auch auf die Form des Fahrbahnquerschnittes

und auf die Pfeilhöhe des Kabels im Verhältnis zur Spannweite an.
Zur Ergänzung der aufgestellten Schwingungstheorien wurden auch

Versuche mit gekrümmten Querschnitten im Windkanal unternommen.
Zur Erreichung der notwendigen Steifigkeit bei Hängebrücken werden

Diagonal-Kabel (zwischen Tragkabel und Fahrbahn) und vertikale
Windverbände unter der Fahrbahn empfohlen (Deer Isle Bridge 1943, Mackinac
Straits Bridge 1953).
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