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Thin Walled Box Beams Under Pure Bending

Les poutres en caisson ä parois minces sollicitees ä la flexion pure

Dünnwandige Kastenträger bei reiner Biegung

Desi D. Vasarhelyi, Asst. Professor, and Rodney O. Knudson, Instructor
University of Washington, Seattle, Wn.

The study of built-up structures embraces actually an extremely wide
field. Numerous contributions to this field are made by Solutions of related
part-problems, which not always further our better understanding of the whole.
The designer's general approach to the actual problems consequently is still
an oversimplified one in sharp contrast to the actually very complex behavior
of some details.

The term built-up structure is applied to a very great variety of structures
including anything from box girders to airplane fuselages. All such structures
actually could be broken up for stress analysis in a number of details. Even a
box girder can be considered as an assembly of its webs and flanges. Whenever
we attempt to analyse the structure as a whole we are referring to it by the
term built-up member. Thus, correctly, some term like this one should designate
the approach used in the analysis rather than the constructional properties
of the member. However, it would be difficult to be right since type of analysis
and type of construetion are so tightly interrelated. Ifwe took a box girder as an
example, the ratio of plate thicknesses to the overall cross sectional dimensions

might be such that the stress analysis would not require any special
considerations and the classical flexure formula could be successfully applied.
Another box girder might be built with thin plates, in which case the stress
analysis would require a more complex procedure and might never leave us
with the same assurance of accuracy that the first simple case did. This is
because we had to utilize a number of assumptions in describing the behavior
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of details. The uncertainties in the assumptions will be added to the general
uncertainty of any analysis.

We singled out as the object of the present study the behavior of a rec-
tangular, thin walled box section under bending with no shearing forces. The
rectangular thin walled box is the basic type of a great variety of structures.
The bending without shearing force, or pure bending, is a fundamental case.
Since this study is the first part of a planned sequence, the reason for this
selection of object is obvious.

The purpose of this study is in the first place the search for an improved
overall approach. The soundness of any such approach should be continuously
compared with experimental facts. The more elaborate theoretical and
experimental analyses of the details involved should go on separately. New results
should gradually be incorporated and the general approach may thus be

expanded and revised. The process should always try to supply the designer
with the tools, which are based on simple and generally well-known principles,
which agree reasonably well with the results of basic experience and which
can easily be adapted to practical computations.

II.

Since the generally known flexure formulae are the most adaptable tools
of the engineer, an attempt is presented in which these formulae are expanded
in order to approach better the actual behavior of thin walled box sections in
pure bending. The new adaptation is in the turn compared with experimental
results. A further improvement and expansion for bending and shear should
be the next step in this line of investigation.

The compression plating of boxes with thin walls usually buckles in a very
early state of loading, which is far less than the maximum load carrying
capacity of the structure. The importance of this strictly local deformation
should not be minimized, although such deformation is a normal follower of
the functioning of the plating. This local buckling of the compressed plating
might by itself constitute a structural damage and determine the useful ränge
of loading of the whole structure. However, we should search for a simple
method to predict the overall load carrying capacity of the structure.

Early investigation of a similar problem, that of thin walled tubes under
pure bending by Brazier [1] and Chwalla [2, 3] took into consideration the
flattening of the cross section and the resulting reduetion in the moment of
inertia. The same line of thought was used by Timoshenko [4] in connection
with box sections. Experiments show that the decrease of the moment of
inertia is not as significant as it was assumed [1, 2] and that the arbitrarily
assumed deformed shape [4] can not be found on modeis.

Eggwertz [5] and others made a significant contribution in giving practical

ways to determine the buckling stress of the compressed plating of box
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sections. The predicted buckling stresses seem to agree with experimentally
determined values, but the question of the overall maximum load carrying
capacity is left open.

Very important results were published by Chapman, Falconer [6, 7] and
others, both from the standpoint of the local buckling problem of the
compressed plating and the treatment of overall load carrying capacity. Their
approach to the overall load carrying capacity is through the assumption of
an equivalent section and an arbitrary stress distribution.

Our approach to the problem is similar but somewhat more elaborate. We
make the main assumption that the post buckling behavior of the compressed
plating is such that it keeps on supporting the buckling stress while the load
on the structure is increased. This actually creates an analogy between the
effect of local buckling and of local yielding, by which we understand a pro-
cess, under which the deformation of a part of the structure may progress
without any increase of the corresponding stress.

III.

Analysing the pure bending of a member of an arbitrary cross section,
parts of which might locally yield (fig. 1 a), we make the following assumptions.

<

b:(y) dy

©7=

a

0'

(b)

Fig. 1. a) Sketch of a general cross section A with part areas Ap which yield at a stress dp
Fig. 1. b) Sketch of a box section.
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1. The area A is homogeneous, with the exception of the Ai areas.
2. The areas Ai are homogeneous within their boundaries, each area has a

specific oi yield stress.

Investigating the case when each Ai area reaches its specific ut stress, the
extreme fiber stress a2 being greater than at max., we find that the location
of zero stress, the neutral axis, moves from 0 to 0'. The distance 0 — 0' is b.

In order to establish a relation between the M moment on the section and
the ct2 stress, we have to find this distance b.

In the place of the stress distribution shown and described above, we
introduce the following System of equivalent stresses:

a) A linearly distributed stress with zero value at 0', ax at fiber 1 and <j2 at

fiber 2, and intermediate values of u ~ o>.y2 2

b) At the centroids of each Ai stresses opposite in sign to the general stress a
and with values varying between orli — ori and cj2i — ai in which expression

axi and a2i are the values at the fibers of Ai nearest to 1 and to 2, at being
the specific yield stress of Ai.

By this we apply the following forces at any one Ai

B4 j (a-aJdA

The equilibrium of the horizontal forces in the above case and in the above
terms equals the sum of the Bi forces:

ZB< Z J (cr-crJdA

Introducing o — a2, bi(y)dy dA
Vi

Vit Vli

we obtain ZBt Z ^ l ybt (y) dy-^- y2 J bi (y)dy\
Vxi Vii

if we further introduce the parameter

and express the first integral, which is the first moment of the Ai area about
the axis through 0', by yiAi understanding that yi is the distance of the
centroid of Ai from the 0' axis, we obtain

SBt a%EAt (|£-««) (1)
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the total horizontal force due to the u stresses

F= f odA =^Ab (2)
J Vi
A

where we again find the first moment of the total A area about 0', which
equals bA.

From the equilibrium condition

F-ZBi 0, F ZBi
from (1) and (2)

Ab ZAi(yi-*iy2) (3)

according the notations on fig. 1.

Vi yi + b, y2 y2 + b

which introduced in (3) give

Ab ZA^yt + b-ocii^ + b])
and finally

ZA^^-a^)
A-ZA^l-ocJ [ ]

Thus b, and so the location of the new 0' axis can be determined by the
original dimensions and the parameter at-.

In the following derivations we need now the distance c from 0' of the
resultant of all Bi forces.

These can be found from the following elementary consideration:

cZBt Z j (o-cyx)ydA
Ai

V2CT2

usmg er —^ y
Vi

and rewriting the expression

cZB, S (~J j y*dA -er, | ydA)
Ai Ai

since \ y2dA Ii
Ai

is the second moment of Ai about 0', and

J ydA =AiVi
Ai

is the first moment of At about 0', and — <xi9 we have
a2
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cSB^S^m-^A^y^) (5)

using Ii Ii + yt2 Ai where Ii means the second moment of At about its
own gravity axis and ZBi from Equ. (1)

c
2JAi(Jci2+yi2-"iyiy2)

(6)ZAi(yi-*iy*i

where k/ — -~* Ai
The stress-moment relation can now be derived, using the equilibrium of

moments on the section, if M is the bending moment, we write

M =^ [ y2dA-cZBi
y* J

A

jy*dA IAsince

A

is the second moment of the whole area A about 0' and this can be written as

T+Ab2 IA

and using cZBi as expressed in Aq. (5) the moment equation becomes

M <ra£ ([ß+b^-Zj* W +yf-wyj) (7)

which is analogue to the fundamental flexure formula, in which the place of
the section modulus is taken by

~ (v&+b*\-z^ tv+yi8-«iy«yj)> & ^A
A

in which expression A, Ai, k2, kt2 refer to the cross section and its original
dimensions, b yi and y2 can be determined, since

yi=yi + b, y2=y2 + b

and b can be found from eq. (4) in which original coordinates yi and y2 are
used. All important is the parameter

"i IT

which on the other hand for any o2 can be determined, knowing the characteris-
tic ai of any Ai part area.

For but one yielding area AQ instead of i number of Ai areas, the basic
formulae become the following:
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b ~ T-Atp-*) (8)

M a2A ([*» + &«]-is [W+yJ-vy^]} (9)

In a practical problem if we accepted a certain Solution furnishing the
buckling (or yielding, as we called it in the previous text) stress at in some
detail, for arbitrarily chosen values of cr2 the parameters <xt can be calculated
and eq. (7) will supply us with points of a moment-stress relation.

Using the above derived generalization of the flexure formula, we want
now to compare the results furnished by it with experimental results. Since
the experiments were carried out on a simple box section, we had to adapt
eq. (9) to that case.

In doing this, we assumed that the cross section of the box, being thin
walled, can be represented by the one shown on fig. Ib.

a) t is so small compared to the other dimensions, that it can be neglected in
several cases, thus

- - d
T A

b) We assume, that the entire lower flange yields (buckles)

A0 at

Thus we have the eqs. (8) and (9) yielding the following:

b ^AAil^L^ (io)

From M o-2
A (fc + ö2 -^ [#f()2 + y* _ a ^y^

the latter allows further simplifications, if we consider eq. (5) from which

cA0(y0-ay2) =A0(k02 + y02-*y0y2)

and eq. (3) from which (for i l, subscript 0)

A0(y0-ocy2)=Ab

the expression on right hand side equals

Abc

and for the box section, fig. 2 c y2 we obtain

\ 2/2 2/2 2/2 /
and introducing y2 + b y2
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<8r
>eV

<Zr*,yw,<zr&y/__ByCKLING_SJRESS^
OF COMPRESSION Pl_f

MOMENT

Fig. 2. The basic stress-moment relation for a thin walled box section.

M CT2
IA + Ab*-Ab(ya + b)

since in the numerator

cancel the A b2 terms:

Substituting now

Vi + b

Ab2-Aby2-Ab2

TA-Aby2M a.
y%+b

d _
-9= Vt

-d~ z*and calling

the section modulus of the box, referring to its gravity center and extreme fiber

M ZA-Ab

substituting eq. (10) for b and rearranging

*-'.(^+[¥-¥»]-«[f^-I^s])
which further transformed becomes:

M-rrJ (ZaÄ« I A0d\„ I (ZAÄ0 AoA„

(11)

(12)

ZA, A, A0 and a0 being constants, the new stress-moment relation is a
linear one. It should also be remarked, that for all values <j2<o0

M a2ZA
the Convention flexure formula.
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Consequently, the stress-moment relation will be described for a thin
walled rectangular box under pure bending by two straight lines, as shown
on fig. 2.

This is the stress-moment relation, which we compared with experimentally
established values.

IV.

Following some exploratory tests on plastic modeis, two aluminium boxes
were made with cemented connections and two with riveted connections, the
dimensions and details of which are shown on fig. 3. The boxes were tested in
pure bending, applied through cantilever loads as shown in fig. 4 and the
photographs on fig. 5. The deflections were measured by dial gages and the

cüT ii

io|

:ao?R) 13Ntra.n gages V

.CEMENTED STRAP

(0)

0.04
(0.02") —*

0.4"

0.07"

W5

¦NA
CONNECTION

ANGLE

4.04" (4.02")
3.49" (3.51")

^
"I

w *oi|IL{=i

3l R,VETS 0.04" -?
(0.02") ->

(b)

J«
Fig. 3. Top: Experimental box beam section, cemented connection. Bottom: Experi¬

mental box section in riveted construetion.
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SWIVEL HEAO

LOADING BEAM

KNIFE EDGE
END CONNECTIONS -

1

TEST SECTION 14

5^1,
STRAIN GAGES

KNIFE EDGE
zjüi

ROLLER

Fig. 4. Experimental setup used in testing the box beams.

X. \
1

A¦• ¦ '¦'

; r,t.vi:;

*¦" ¦':¦'

,r.

N- '-4F\
Fig. 5. Photograph of the experimental setup.

strains on the center cross section by SR-4 gages, as indicated on the figures.
The boxes with the cemented connections could not be loaded to fracture due
to the earlier breakdown of the joints. However. they could be loaded well
past the load at which the compressed Hange buckled. The riveted boxes could
and were loaded, until secondary localized buckling of the compressed plate
within rivets occurred almost simultaneously with the buckling of the corner
angles and final breakdown of the whole structure. At this point the buckling
of the compressed plate was far advanced.
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Fig. 6. Typical distribution of stress, as found by SR-4 gage readings. Top: compression.
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Fig. 7. Actual and theoretical stress
values. Cemented box beam, 0.02 in.
plate thickness. Compression gages:
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Fig. 8. Actual and theoretical stress
values. Cemented box beam, 0.04 in.
plate thickness. Compression gages:

7, 8, 9.



242 Desi D. Vasarhelyi and Rodney O. Knudson

7,9

o o o
123

0121 14 D
11 5¦ 101 16"

9 8 7

286,100(7)

26

24
2,3/V

/ 20
4.12

/ Z7 'A 7in 7

/ / m 12/^ ^/y
/. (9)

TENS.
THEORETICAL

COMP

2 3 4 5 6
MOMENT- KIP IN.

i i

0 o o
1 2 3. D

ü i2r""'—i4a
111 15

¦ 101 16«
9 8 7 _

{

O

• •
1

1

6

•
rnMr* THEORETICAL O—O-

L,UM

o

T

///
9 "// /.'

•
i i '// /

" \ J

" //' II

Jr

7,9

1,2,3

6,10

4,12

4 6 8 10 12 14

MOMENT-KIP IN.

Fig. 9. Actual and theoretical stress values. Fig. 10. Actual and theoretical stress values.
Riveted box beam, 0.02 in. plate thickness. Riveted box beam, 0.04 in. plate thickness.

Compression gages: 7, 8, 9. Compression gages: 7, 8, 9.

The general distribution of the stresses is shown schematically on fig. 6.

The distribution of the web stresses was assumed to be linear, which was also

proved to be justifiable by other tests [6, 7].
The actual stresses as they increased with the moment are compared on

figs. 7—10 to the theoretical relationship.
In order to establish the theoretical lines for the particular case the

following assumptions were used:

a) The buckling stress of the compressed plate is given by Eggwertz's
results [5].

b) No inelastic action occurred.

c) The buckling cross sectional area A0 in the case of the cemented boxes

was the area of the compressed plate between the webs. In the case of the
riveted boxes the buckling area is the area of the compressed plating
between the center lines of the rivets.
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Fig. 11. Deflections at the midspan of the riveted box beam, 0.02 in. plate thickness.
Compression on A, B, C.

It is fully recognized that these assumptions are arbitrary and they were
chosen before even all the experiments were run. A slight modification of the
assumptions could actually result in a much better agreement between
computed and measured values. This, however, was not attempted. We think a
very general agreement of the main trends of stress moment relations is enough
to show, that the way to improvement and expansion of the process is open.

The experimental results show indeed, that the relation is really very
closely linear, if there is a deviation, it indeed can be broken into two straight
lines, the intersection of which actually falls in the vicinity of a probable
buckling stress in the compressed plate. The actual buckling of the compressed
plate was always observed in that vicinity. Thus computations based on eq. (9)
approach more closely the actual Situation than either the piain flexure
formula taking no account of the local buckling or the piain flexure formula by
dropping the whole compressed plate area from the useful cross section.

In thin walled boxes probably the maximum load carrying capacity of the
structure can not be utilized anyhow, since considerations of local deformations
might be the determining factor.

Plots on fig. 11 and 12 show the measured moment-deflection relations of
the riveted modeis. The same basic fact can be pointed out, that the relation
follows the general pattern of a two straight line relation. The only exception
is, of course, the local deflection of the gage point located on the locally
buckling compressed plate.
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Fig. 12. Deflections at the midspan of the riveted box beam, 0.04 in. plate thickness.
Compression on A, B, C.

The adapted flexure formula seems to agree satisfactorily with experimental
results and could actually be used to describe the stress-moment relation

in thin walled boxes under pure bending. The analysis of this type of structure
must always be based on a set of well-chosen assumptions. The formula appears
to be a good frame in which the results of an improved knowledge of the
buckling and postbuckling behavior of the compressed plates can fit later,
thus leading to a more accurate and simple approximative description of the
general behavior of a box girder.

References

1. L. G. Brazier, On the Flexure of Thin Cylindrical Shells and Other Thin Sections.
Proc. Roy. Soc. of London, Ser. A. Vol. 116, p. 104, 1927.

2. E. Chwalla, Elastische Probleme schlanker, dünnwandiger Rohre mit gerader
Achse. Akad. Wissensch. Wien. Sitzungsber. Abt. II a. Bd. 140. Jg. 1931, p. 163.



Thin Walled Box Beams Under Pure Bending 245

3. E. Chwalla, Reine Biegung schlanker, dünnwandiger Rohre mit gerader Achse.
ZAMM. Bd. 13. H. 1. Feb. 1933, p. 48.

4. S. Timoshenko, Bending Stresses in Curved Tubes of Rectangular Cross Section.
Trans. A.S.M.E. Vol. 45, 1923, p. 1351.

5. F. Eggwertz, Buckling Stresses of Box Beams under Pure Bending. Meddelande
No. 33, Flygtekniska Försöksanstalten (FAA), Stockholm, 1950.

6. B. H. Falconer, J. C. Chapman, Compressive Buckling of Stiffened Plates. The
Engineer, June 2 and 12, 1953.

7. S. R. Sparkes, J. C. Chapman, A. J. S. Pippard, Experiments on the Flexure of
Rectangular Box Girders of Thin Steel Plating. Res. Spec. Suppl. Vol. Colston
Papers. Vol. II.

8. R. O. KjsruDSOisr, Behavior of Box Beams under Pure Bending. Thesis for the degree
of MS in Civil Engineering, University of Washington, 1954.

Summary

A general formula is presented for the stress-bending moment relation in
pure bending of sections, parts of which yield or buckle.

The formula is applied in the case of a thin walled box beam. The values
so obtained are compared with experimental results and a satisfactory agreement

of theory and experience is shown.

Resume

Les auteurs indiquent une formule generale pour le rapport entre la tension

et le moment flechissant, dans le cas du travail en flexion pure, pour des
sections dont certaines parties se trouvent soumises au voile ou ä l'ecoulement.

Cette formule est appliquee au cas d'une poutre en caisson ä parois minces.
La comparaison entre les valeurs calculees et les valeurs determinees par des
essais met en evidence une concordance satisfaisante entre la theorie et
1 'experimentation.

Zusammenfassung

Eine allgemeine Formel für das Verhältnis von Spannung zu Biegungs-
moment bei reiner Biegung wird für Querschnitte gezeigt, von welchen sich
Teile im Fließ- oder Beulzustand befinden.

Diese Formel wird auf den Fall eines dünnwandigen Kastenträgers
angewendet. Im Vergleich der rechnerisch erhaltenen Werte mit den durch
Versuche ermittelten, ergibt sich eine befriedigende Übereinstimmung zwischen
Theorie und Versuch.
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