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Analysis of Suspension Bridges by the Minimum Energy Principle

Calcul des ponts suspendus d'apres la methode de Venergie minimum

Die Berechnung von Hängebrücken nach der Methode der kleinsten Energie

Cevdet Z. Erzen, Assistent Professor of Structural Engineering,
Cornell University, Ithaca, N. Y.

Synopsis

The purpose of this paper is to develop and solve the differential equations
of displacements and cable stress in a Suspension bridge due to live load or
temperature change. The Principle of Minimum Energy is applied in the
analysis, and by means of variational calculus two equations are obtained
from which are derived expressions for the cable stresses and the deflection
of the Suspension bridge in the form of trigonometric series.

Introduction

The usual theory of Suspension bridges necessitates the determination of
two equations in order to calculate the stresses completely. This stems from
the fact that the basic differential equation in terms of the vertical displace-
ment of the cable and the stiffened truss includes a redundant quantity known
as the additional cable stress due to live load or temperature change. One
method of obtaining the second equation required for the Solution is given by
Timoshenko1) and by Johnson, Bbyan, and Turneauke2). To do this, the
increase in energy of the cable is equated to the work done by the load acting
on the cable.

x) "The Stiffness of Suspension Bridges", S. Timoshenko, Transactions Am. Soc.
C. E. Vol. 94 (1930), p. 377.

2) "Modern Framed Structures", J. B. Johnson, C. W. Bryan, and F. E. Turneaure.
New York: John Wiley & Sons, lOth ed., 1929, part II, pp. 252ff.



52 Cevdet Z. Erzen

However, two independent equations can be established by minimizing
the total strain energy defined in terms of two displacements. Therefore it is

possible to obtain directly two equations by means of variational methods if
the total strain energy of a Suspension bridge is expressed in terms of its
vertical and horizontal displacements. In addition to the displacements, both
equations include the redundant quantity mentioned above. This redundant
can be evaluated from the known boundary conditions. Thus the problem of
Suspension bridges resolves into the determination of the differential equations
and the Solution of these equations with due regard to the boundary conditions.

Notation

The following notation is used throughout the paper.

q Dead load per unit length of the truss, cable and hangers.

p Live load per unit length on the truss.
P Concentrated live load.
H Horizontal component of cable stress due to dead load and mean

temperature.
h Additional horizontal component of cable stress due to live load or

temperature change.

y Ordinate of the cable under the action of dead load.
w Vertical displacement of cable in excess of y (assumed to be equal to

the vertical displacement of the truss) due to live load or temperature
change.

v Horizontal- displacement of cable due to live load or temperature
change.

EI Flexural rigidity of the truss.
L Span of the truss.

/ Sag of the cable.

AT Change in temperature from mean temperature.
co Coefficient of thermal expansion.

The Total Strain Energy Expression and the Derivation of the
Differential Equations

The usual assumption made in the analysis of Suspension bridges is that
the vertical displacement of the cable is equal to the deflection of the truss.
This assumption is valid in view of the fact that the deflection of the truss
and cable is large in comparison with the elongation of the hangers due to
tension. It is also assumed that all the dead load, before the application of
the live load, is carried by the cable, and under uniformly distributed load of
constant magnitude the shape of the cable is a parabola given by the equation
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rrd2y - „ (i)

If the origin of the coordinate System is taken at the top of the left tower, the
equation of the parabolic curve for the center span is

y T 2 \^J2X'^X2) (2)

and for the side spans eq. (2) holds except that y and / are measured from the
diagonal drawn from the outer support to the top of the tower as shown in
fig. i.

X JA")

Fig. 1

In the derivation of the total strain energy expression both the vertical
and horizontal displacements will be taken into consideration. As stated above,
the vertical displacement w will be taken to be the same for the cable and the
truss. Furthermore, for the time being, both displacements will be considered
large. The strain energy in the cable will be investigated first.

Let there be taken a differential element of the cable ds long. After
deformation of the cable due to the application of the live load or the temperature
change, this length becomes dsx. The unit strain in the cable is then given by

ds1 — ds
ds (3)

The change in length of d s corresponds to the change in x and y coordinates
of the cable. That is, the original coordinates of a point on the cable (x, y)
become (x + v) and (y + w) after deformation. As a result of this deformation
the length ds expressed by

ds (dx2 + dy2yi>= (l+yx2)^dx

(the subscript x will designate the derivative) becomes

dsx [(dx + dv)2 + {dy + dw)2]1/*

ds1 [l + yx2 + 2vx + vx2 + 2yxwx + wx2]1l*dxor (4)

Thus it may be seen that the unit strain e can be expressed in terms of the
displacement functions of the cable. This unit strain can also be associated
with the change in three quantities, namely, the increase in the horizontal
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cable pull, the change in the stress produced by H as a result of the change
in slope of the cable, and finally the temperature change. It can therefore be
said that the unit strain given by eq. (3) is.the sum of the three unit strains
produced by the change in the three quantities mentioned above. Denoting
by d x1, the horizontal component of d s±, the unit strain due to h is given by

€-,
1 h ds-L

1 E A dxx

and the increase in stress produced by H yields

1 H_ /ds1 _ds\
*2 ~ E A \dx1 ~ dx)

in which dsx is given by eq. (4), and

dx± (1 +vx)dx (5)

and finally the unit strain produced by the temperature change is

(6)

€3 CüAT

Therefore the sum of the unit strain components becomes

_ l [ h ds1 H /ds1 ds\l _
ds^^ — ds

~~ E [A dxx A ydx! dx/\ ds

This equation may be written as

h + Hds,=E äSl-ds+H ds_EajA TA dx1 ds A dx
which is the unit stress in the cable at its displaced position. This stress is also

composed of three terms. The first term, due to the extension of the cable, is

given by
d Si — d s

ds
the second term is the initial stress

G2 ~ A dx

and the third is a constant stress due to temperature change

o-3 -EcoAT

These unit stresses are shown in fig. 2.

Thus the strain energy of deformation of a unit volume becomes, from the
figure

| a1 € + cr2 e + ct3 e

Substituting the corresponding values for al5 o*2, cr3 and e, this becomes
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dst-ds
~ds

Fig. 2

/ds1 — ds\2 H ds ds1 — ds dsx — ds
\ ds / A dx ds ds

and for a differential volume A ds of the cable

{dsx — ds)2 jj d
dUc \EA ds + H ~ (ds1-ds)-EAcoAT(ds1-ds)d x

or

The strain energy due to bending of the truss is given by

UT — \\EI w2xx d x
and for the dead load

UD.L. $qwdx

Summing up all the terms and remembering that in d Uc

ds (l+yx2y/* dx
there results

0

-EAcoAT{^-\\ (l+yx2y/> + ±EIw2xx-qw\dx-Pw (7)

where w is the deflection under the concentrated live load P. To minimize the
total strain energy one takes the Variation of U with respect to w and v and
sets it equal to zero. Since ds± includes w and v terms, the Variation of ds1
from eq. (4) is

8* 8vx + vxhvx + yx8wx + wx8wx
1 " (l+yx* + 2vx + vx* + 2yxwx + wx*yi-aX

or 8ds SVx + vxSVx + yx8wx+wxSu>x ,dxy1 ds±
(8)
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and from eq. (5)
8dxx 8vxdx (9)

Taking the Variation of U from eq. (7) there is found

J L \ds ds L dx ds
o

-EAcoAT ^l+Vx2)U
8dsx + EIwxx8wxx-q8w\ dx-P8w 0

a s j
Substituting for 8dsx and 8dxr from eqs. (8) and (9),

L
8 f IeaI^-i) (1 + ^2)Vz 8vx + Vx8vx + yx8Wx + Wx8Wx

(dx)2 +
0

dx ds dsx

EAcüAT^^y*2^2 Svx + vx8vx + yx8w* + w*8w*
(dx)2 +ds ds±

+ EI wxx 8 wxx — q8w

Writing

dx—P8w=0

8vx + vx8vx l+vx 8v d^ gy
d^ d«^ * dxdsx x

remembering that (1 + yx2)lf2dx ds,

and factoring,

0

0

+ EIwxx8wxx — q8w\ dx — P8w 0 (10)

From the above equation one can obtain two differential equations by coe-
sidering terms in 8v and 8w independently. To do this, the terms are inte-
grated by parts. Since the Variation of the derivative of a function is equal to
the derivative of the Variation, i. e.,

S — - _^_ S
dx dx
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the first integral can be written as

L
<j> —— 8vdx

J dx
o

4> \ea(^-^+h^-ea<»at\ 4^ (ii)T
L \ds dx J dsx

Integrating by parts L

U8vf- f-^ 8vdx 0
o J dx

o

but since 8 v is arbitrary between x 0 and x L

£*-
from which there results

</> constant.
Eq. (6) may be rewritten

h + H= \EA(dSirds)+H ^-EAojAt] ^ß (6a)[ \ ds / dx J dsx

Comparing now eq. (11) with the above, it is seen that
(f> H + h a constant.

Substituting this constant in the second portion of eq. (10),
L
f L Vx + u>x

8wx + EIwxx8wxx-q8w\ dx-P8w 0

o

The first and second terms of this last expression will now be integrated by
parts in order to collect them under 8w. From the first term is obtained

J l+vx \dx Lv l + vx J
0 0

^t(H + h)^(^<]8wd x
J dx \ l+vx
o

and the second term after integrating twice yields

l l
J EIwxx\^8wx^ dx [EIwxx8wx\-\ EI U^ wxx\ ij^8w\dx
0 0

L

iE I^xx8wxiQ-[EIwxxx8w"\ + J EI \J^Wxxx\ 8wdx
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Thus the integral becomes

L

j [EIwm-(H + h) A ^±^j-qj 8wdx-P8w 0 (12)

0

In order to find a Solution for the problem eq. (12) must be satisfied. This
equation contains three unknowns, namely, w, v and h. However eq. (11) or
eq. (6) can be used to find the displacement function v which necessarily will
contain the redundant h. But once the expression for v is obtained h can be

evaluated from the consideration of the boundary conditions.
If it is assumed that vx is small in comparison with unity, from eq. (12)

there results

L
J [EIwxxxx-(H + h)(yxx + wxx)--q]8wdx-P8w 0
o

but Hyxx=:-q
therefore this integral becomes

f[EIwxxxx-hyxx-(H + h)wxx]8wdx-P8w 0 (13)
o

This is the well-known equation used by previous investigators. A trigono-
metric series for w in the form

n^°° a • nirxw L ^nsm —F~
71-1 -U

can now be assumed, in which An are coefficients to be determined. Taking
the concentrated load P at x a, there is found

fi
n co nirx *=«> mraöw 2j sin ~f— °An and bw 2j sin —f— °^n
n=l Li n=i L

8 /
Substituting these expressions, and yxx — W- from

4/
y jj (Lx-x2)

there is obtained,

L

0

2 sm —y— d x 8 An 2 P sm —=— 8 An

The Integration between the limits yields

mrar, -r /w7r\4 L 8/7 L ._¥ _. (mr\2 L ._.

£
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from which the coefficients An are found to be

A„ —

-o rnra Sfh L xrsin-y -— (l-Gosmr)
(14)

However the preceding formula contains an unknown constant quantity h
which must be determined. This will be found with the aid of eq. (11)

H + h r, 4 /ds,— ds\ TT ds r- AEA —S )+H -, EAcoA
\ ds J dx

T]dx,
in which d xx as previously found is

dxx (l+vx) dx

and d Sl [(1 + yx*) + (2 vx + v* + 2yxwx + w^)]1'. d x

which upon expanding by the binomial formula becomes

ds, [(l+yx*)1i* + l(l+yx*)-li'(2vx + vx* + 2yacu,ae + ißx*) +

neglecting terms after the second, this gives

vx2

-]dx

vx+-j-+yxwx + -f-
ds1 — ds — 7^- ^zr, dx

whence

H + h EA
vx+-^+yxwx+-f-

+ H(l+yx2fi'-EA<oAT

(l+2//),/a +

t/T» t*/T*

vx+-f-+yxwx+-f
(i+2/*2)v°

If the assumption be made that the secant of the angle between the horizontal
and the cable before deformation is equal to the secant of the angle after
deformation

dx
ds

dxx
dsx

the above formula then becomes

H +k-EA^'-y^+H-**"**
(i+yx*r* (l+2/x2)Va

Neglecting the relatively very small term -^-, this reduces to

vx+yxwx+-
w„

AE (l+^+^Tfl+^l
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Substituting
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_ 4/ 8/ -2(x) -4„ cos nirx

this equation becomes

4/ 8/-cn /4/ 8/ \ wtt »tto; 1 f /»7r\ nwa;"|2
r-+2(x-if*JT-^wTr+iL2(-x-jj4»00,,-r-J

Denoting by 3 the derivative of y

yx * l l*
and integrating eq. (15), the following equation is found:

1 mA2 „ 1 „ W7T „ »ira;

00 oo

+ 22m= 1 7i= 1

sin (m — n)^-x sin (m + w) -^- #
+

-y- (m — n) -y- (m + n)

j {z(l + Z2)V2 + |z(l+Z2)V2+|in[^ + (l+Z2)V2]|_

- (z+±Z*\wAT + c (16)

AE 32

8

in which c includes the constant
L 8/2
¥ + 3~L

arriving from the Integration of

which is
_^2
8)

Equations (14) and (16) are general and apply to all the spans of the bridge.
Denoting the coefficients in the series representing w hj an, bn, cn for the
first, second and third spans of the bridge respectively,

3) Where m2=j=n2
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._, mrx ^ f nirx ^ n-n

^1 ^2 ^3

If, instead of a concentrated load P, uniformly distributed loads of inten-
sities px, p2 and pz occupy portions of all three spans denoted by a Lx, j8 Z/2

and yl3 (all measured from # 0), then Substitution of the integrals
olLx

I Vi sin ' " ~ dx p* —- (1 — cosnnoc)
J ™ Lx ™nir
o

nirx Lx
-=— d x Vi —- (1 — <

in eq. (14) for
_> nrraP sm —y—

8 /glves p1(l — cosn7r<x)— -j^ h(l — cosmr)
a„ —

~2 ©>.(¥)+*+»]
8 /

p2 (1 —cosnTrß)——^ h (1 —cos^7r)
K L ,„.,,r ^1 — (18)

2 (0[*/.(0+H + *]
8 /

^3 1 — COS 72, 77 y) — ~f h(\— COS n 77)

Similarly eq. (16) can be written for all three spans by proper Substitution
of the coefficients an, bn, cn for An, and the values fl9 /2, /3, _Zyl5 hL2, L3 for
/ and £ respectively.

There will now be determined an expression for h by considering the
boundary conditions. Denoting by vl9v29 and v3, the horizontal displacements
of the three spans, one can write

Since

and

«1 Oatx Lx (a)

-K)*=o K)*=o (b)
(V*)x-U K)r=0 (c)

^3 0 at x L3 (d)

z -~- at # 0
JU

z 4/—=^ at x L
JU

Eq. (16) yields the following four equations based on the four expressions
(a) to (d):
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(a')

AE 64i

J/2 L2 Ä L,r/ 16/a«\»/. 3/ 16/2Y/2]
V wtt AE

-AsaH^OT-*^-"^ <*

8/:
COS 71 77 - ,2£2 +

?^[(¦?W',+S(l+OT-
431H-4Hi+W/!H(-^HrAE 64:

+ C„

^Lg2 » ^77 4^ 8

1

„ 8/, L, l^InnY « r

(-W/2+K-W/2]-

+ c. (C)

A -L3

ä 3.L2
AE 64^-iH-W/s]+

+ - (i+wHr+c3=o (d')

If there be imposed the further restriction of a bridge with Lx and f± equal
respectively to _L3 and /3, by eliminating c2 between eqs. (b') and (c') there is
found
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2^*.ä<1-''°8*''> + l2(f)V^-
63

h Lt
AE 4 ft+W+tt+W']-
* 3 V

AE 64/2
('+^)16/22\V2 + i/2'

2_ / ^
k*W- 4/i -^(1 + i^f)^r

By adding eqs. (a') and (d') there is obtained

1 _, (niA2 0 r 1 ^ (nTr\2 _ r „ 8/i it

-A^-[('^T,-^]+i'('+^,)-jä,+<^"0
Eliminating (^ + £3) between the last two equations

1 _ (n7r\2 0 r 1 ^ IniA2 0 r 1 „ (mr\2 9 T

L/anmr
8/2
L22 "»TT

+ 2|fr<!.^(1-<!<>B»»)

[(-W,!+i(i+W/!]^ ^2
.4,0 4

+

+

^_ 3 V+ Z~_ff ^2/7
(>^)16/lV/tj.*/!+ X7 A 3X,2
ix 16/tV/t 4/i 4.0 64/8

In
(>+ i22; +m
('+ 16/22\V2

w)
4/. +

(19)

Eq. (19) contains the coefficients an, bn and cn. When the values of these
coefficients are substituted there is obtained an equation from which h can
be evaluated.



64 Cevdet Z. Erzen

Let there be considered now the case when only the middle span is loaded
and the two side spans are of equal length. Furthermore if the flexural rigidities
of the two side span stiffening trusses are equal, an cn, and eq. (19) simpli-
fies to

\ 2 ^'^ 2 (£)"V^+2^«.£.—..)+
*4iac-«»J2

h L2

mr

[(l+W/!+i(1+^)^+
h 3V,^ — In^ HE 32^

U1+ £,» j L, J

fe 3£22
AE64f2

In ¦La2
"*"

L2'(¦HS)

+2i'(I+w)"JT+i«(1+w)"J7'

(1 — COS7&77)2

Substituting for an and bn from eq. (18)

+ 2[Q ^ 2 "I 2

2?2 (1 —COS W77 ß)—-f\- A(l-COS^77)

*(#>¦(£)¦?*?*]¦

/ 8 / \ ^2 (1 -" cos n * ß) ~~ tt ^ (1 — cos n tt)
+ Z2W) l!@'[«,(gv»+i] "-

^^[(-W/!+l(1+W/!]+

(1 —cosw7t)

h 3 V' AE 32 fx
In +

A 3£22
Z^E 64/2

In
7T i i6/22\v2,4/2-
\1+ W + £2
/. MW/t 4/2 +

+ 21,^m^M^m) >AT (20)

in which h is the only unknown quantity and can be evaluated by trial.
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Numerical Example

The Manhattan Suspension Bridge will be used as an example. Eq. (20)
will be applied to finding the additional cable stress due to temperature change
and also to live load occupying part of the middle span. The following data
will be used in the calculations:

Lx 713.5 ft.
L2 1446.7 ft.
ft 37.2 ft.
f2 145.3 ft.
A 275 in.2

EI1= 29-IO6-50860-144 lb.-in.2

EI2 29- IO6-43900-144 lb.-in.2

q2 5820 Ib. per ft.
p2 4000 Ib. per ft. 334 Ib. per in.
ß i
co =66- IO-7 in. per in. per degree Fahrenheit
AT +55° F.

Substituting this data with units in pounds and inches, in eq. (20), it
becomes:

30 5Ä2 y (1-CQS71-77)2

[334(l - cos ^) -46.4- 10-6Ä(l-cosn77)l2
+ 53 400-1062^ - 4/ J

n*(6.02-10Qn2 + H + h)2

-61 Oh V (l-COSK,77)2
^ n*(2$J.l06n2 + H + h)^

[334 (l - cos ^~\ - 46.4- 10"6A(1- cos nir)]
+ 4-96-106^ nHS.LlVnt + H + K) d-ooB»*)

4.549- IO"6 h + 35.67- IO3 co AT

in which H is found from eqs. (1) and (2) to be

Taking n 1, 2, 3, 4 and 5, this equation becomes
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r i 1 l "I

U2hZ [(39.18- 106 + A)2
+ 81 (268.78.10« +hf + 625 (727.98-106 + Ä)2J +

.«o.nn 1ftJ(97-9-92.8-10-^)2 (334)2 (570-92.8-lQ-*ft)2
+ [ (16.50-106+Ä)2 + 16(34.56- 10«+A)2 81 (64.66- 10«+A)2

(668)2 (570-92.8-IO-6)2
"T" c\i~ r> / i r\r* nr\ i Aß 7.\9 ' J-

244fe [89.18A- - x +^7^T^n^TT. + w ,.o. nAo „uTTTil +

256(106.80-106 + ft)2 625(160.98- 106 + ft)2

1

106 + Ä~r81(268.78"-106 + Ä)^ 625 (727.98-106 + &)J

6 [97.9-92.8-10"6A 570-92.8-10"6A 570-92.8-10~6A 1

_+ 9-92*10 [ 16.50- 106+A + 81 (64.66- 106+Ä)T + 625 (160.98-106+A) J "
4.549-10~6Ä+12.95

When there is no change in temperature the second term on the right side of
the equation is zero, and for this case there is found by trial

h 0.901 -106 Ib.

If the effect of temperature change is included,

h 0.703- IO6 Ib.

If there is no live load acting on the bridge, the p2 terms vanish; a change of
temperature +55° F. will reduce the stress in the cable in the amount of

h -0.191-IO6 Ib.

From eq. (20) it may be observed that the law of superposition does not apply
in finding the value of h separately from live load and temperature change.

The following table presents a comparison of the calculated values of h as

found above and those found by Messrs. Johnson, Bryan, Ttjeneaure4) and

Timoshenko5).

Table I. Comparative results for h, with or without temperature change

Live Load Temp. +55° F. L. L. + Temp.

Author's results 901000 Ib. -191000 Ib. 703000 Ib.
Johnson, Bbyan, Turneaure 663400 Ib.
Timoshenko 897000 Ib. - 250000 Ib. 647000 Ib.

4) "Modern Framed Structures", J. B. Johnson, C. W. Bryan, and F. E. Turneaure.
New York: John Wiley & Sons, 10th ed., 1929, part II, pp. 271 ff.

5) "The Stiffness of Suspension Bridges", S. Timoshenko, Transactions Am. Soc.
C. E. Vol. 94 (1930), p. 391.
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Moments, Shears, and Deflections

Once h is evaluated the coefficients an, bn and cn are obtained by substi-
tuting the value of h in eq. (18). The deflection of the mid-span truss is
obtained from

-,, mrx
w =z2lbn sm ~t~

The shear and moment in the truss are given by

V EIwxxx

and M EIwxx

If one Substitutes the coefficient &„ in

nTTX/ n 77\
wxx -Z y-j^j bn

the expression for moment becomes

sm
L2

2EI2P2^~^sn7rß)-^h(l-cosn7r)
^ n7TXM :—? 2 ; i—~ x sm -j—n(EI2-~n2 + H + h) L*

It may be observed that the series representing M does not converge as

rapidly as the basic series from which h has been determined. For this reason
more terms are necessary to find a good approximation for M.
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Summary

The complete Solution of the Suspension bridge necessitates the
determination of two differential equations. In this paper it is shown that these
equations can be obtained directly by the Principle of Minimum Energy.
However, in order to solve these equations, the assumption is made that the
slope of the cable does not change during deformation. On the basis of this
assumption the Solution is given in terms of a trigonometric series. The equations

derived can be applied to a bridge with different lengths of side and
main spans and for live loads covering any region of the bridge.
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Resume

Le calcul complet des ponts suspendus exige l'etablissement de deux
equations difförentielles. L'auteur montre que ces equations peuvent etre
obtenues directement a l'aide de la möthode de l'energie minimum. Toutefois,
pour les resoudre, il admet que l'inclinaison du cable porteur reste la meme
au cours des deformations. En tablant sur cette hypothese, il obtient la Solution

sous la forme d'une serie trigonometrique. Les equations obtenues peuvent
etre appliquees au calcul de ponts de differentes portees, tant en ce qui con-
cerne les travees principales que les travees d'acces et pour toutes les charges
utiles qui peuvent etre appliquees en un point quelconque de ces ponts.

Zusammenfassung

Die vollständige Durchrechnung von Hängebrücken macht die Aufstellung
von zwei Differentialgleichungen notwendig. Es wird gezeigt, wie diese

Gleichungen mit Hilfe der Methode der kleinsten Energie direkt gefunden werden
können. Für die Auflösung dieser Gleichungen wird vorausgesetzt, daß die

Neigungswinkel der Tragkabel bei den Formänderungen unverändert bleiben.
Auf Grund dieser Voraussetzung erhält man die Lösung in Form einer
trigonometrischen Reihe. Die entwickelten Gleichungen dienen zur Berechnung von
Brücken verschiedener Spannweiten und für Nutzlasten, die an jedem
beliebigen Brückenpunkt angreifen können.
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