On the analyses of a skew girder bridge by the theory of orthotropic parallelogram plates

Autor(en): Naruoka, Masao / Ohmura, Hiroshi

Objekttyp: Article

Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen

Band (Jahr): 19 (1959)

PDF erstellt am: 02.06.2024

Persistenter Link: https://doi.org/10.5169/seals-16958

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

On the Analyses of a Skew Girder Bridge by the Theory of Orthotropic Parallelogram Plates

Etude des ponts à poutres obliques par la théorie du parallélogramme orthotrope

Über die Untersuchung von schiefen Balkenbrücken durch die Theorie der orthotropen Parallelogrammplatte

MASAO NARUOKA Professor of Kyoto University, Kyoto, Japan HIROSHI OHMURA Assistant Professor of Kobe University, Kobe, Japan

1. Introduction

It is well known that Y. GUYON and CH. MASSONNET's table and diagram of the distribution coefficients based on the theory of orthotropic rectangular plates are very effective in the experimental analysis and design calculation of right girder bridges. On the contrary, there are very few researches on the skew girder bridge in every country. It would not be too much to say that the research made by T. Y. CHEN, C. P. SIESS and N. M. NEWMARK [1] is the only excellent one. Their research is based on the theory of continuous isotropic parallelogram plates supported by flexible girders. It can be easily assumed that the theory of orthotropic parallelogram plates will also be effective to the same degree in the analysis of skew girder bridges as the orthotropic rectangular plate in the analysis of right girder bridges. From this point of view, assuming a simply supported skew girder bridge structure with cross girders or sway bracings distributed in the direction perpendicular to the main girder as an orthotropic parallelogram plate which is simply supported on the opposite two skew sides, the authors intended to derive skew network finite difference equations for the orthotropic parallelogram plate and to give the influence coefficients of the deflection and bending moment for the several cases of characteristic values of the plates.

2. Skew Network Finite Difference Equation for the Orthotropic Parallelogram Plate

The analysis of the orthotropic parallelogram plate is to obtain the solution of the following fundamental differential equation expressed in Cartesian coordinates:

$$B_{x}\frac{\partial^{4}w}{\partial x^{4}} + 2H\frac{\partial^{4}w}{\partial x^{2}\partial y^{2}} + B_{y}\frac{\partial^{4}w}{\partial y^{4}} = p, \qquad (1)$$
$$2H = \nu_{x}B_{y} + \nu_{y}B_{x} + 4C.$$

Since the analytical solution of the above differential equation is very difficult, it is better to solve the equation numerically by using the finite difference method than to solve analytically. In the case where the plate is simply supported at the opposite two skew sides and supported by flexible girders at the other two sides (see fig. 1), by using the skew network as shown in fig. 2, the above differential equation can be changed into a finite difference equation for each

Fig. 1. Assumed Orthotropic Parallelogram Plate, Simply Supported at the Opposite Two Skew Sides and Supported by Flexible Girders at the Other Two Sides.

Fig. 2. Skew Network.

of the following nine types of network points, that is, a) general interior points, b) interior points near the left simple support, c) interior points near the right simple support, d) interior points near the edge girder, e) interior points near the sharp corner, f) interior points near the blunt corner, g) general edge points, h) edge point on the sharp corner, i) edge point on the blunt corner. For these derivations, Poisson's ratio ν_x and ν_y are assumed to be zero and the following notations are used in these equations.

$$A = \frac{K^2}{\alpha}, \quad B = K \tan \varphi, \quad K = \frac{\lambda_y}{\lambda_x}, \quad \alpha^2 = \frac{B_y}{B_x}, \quad J = K^4 \frac{E J_R}{\lambda_y B_x}, \quad \kappa = \frac{H}{\sqrt{B_x B_y}}.$$

The values of $\sqrt[n]{A}$ and κ correspond to the values 2θ and α defined by Y. GUYON and CH. MASSONNET.

The above nine finite difference equations are shown in eqs. (2) \sim (10).

a) General interior points.

b) Interior points near the left simple support.

c) Interior points near the right simple support.

$$\frac{B^{2}/4}{-B} \frac{-B^{2}/4}{-B} \frac{1-B^{2}/4}{+2 z A (1+B^{2})} - 4 (1+B^{2}) - 4 z A + \frac{1}{2 z A (1+B)} + 2 z A (1+B^{2}) - 4 z A + \frac{1}{2 z A B^{2}} - 4 z A (1+B^{2}) - 4 z A + \frac{1}{2 z A (1+2B^{2})} + 5 B^{2} + 2 z A (4+5B^{2}) + 5 B^{2} + 2 z A (4+5B^{2}) + \frac{1}{2 z A (1+2B^{2})} - 4 (1+B^{2}) - 4 (1+B^{2}) - 4 z A + \frac{1}{2 z A (1+B)} + \frac{$$

d) Interior points near the edge girder.

e) Interior points near the sharp corner.

f) Interior points near the blunt corner.

g) General edge points.

$$\frac{A^{1}_{2}-B^{1}_{4}}{+z^{2}A^{2}_{2}zA(1+2B^{2})} \xrightarrow{1+3A^{*}_{+}B^{1}_{2}}{-2A^{2}zZA(1+2B^{2})} \xrightarrow{A^{1}_{2}-B^{1}_{2}+zAB^{2}}{+z^{2}A^{2}_{+}+z^{2}A^{2}_{+}+z^{2}} \\ \xrightarrow{B^{1}_{2}+zAB} \xrightarrow{B(-1+B-B^{2})}{-2(1+B^{2})-4zA} \xrightarrow{B(1+B+B^{2})} \xrightarrow{-B^{1}_{2}-zAB}{+z^{2}ZA(1+B)} \\ \xrightarrow{P^{1}_{2}+zAB} \xrightarrow{B(-1+B-B^{2})}{+z^{2}ZA(1-B)} \xrightarrow{+z^{2}ZA(1+B)} \xrightarrow{+z^{2}ZA(1+B)} \\ \xrightarrow{B^{1}_{2}+z^{2}}{+z^{2}ZA(1+B)} \xrightarrow{E^{1}_{2}-z^{2}}{+z^{2}} \xrightarrow{-B} \xrightarrow{B^{1}_{2}+z^{2}}{+z^{2}}$$
(8)

h) Edge point on the sharp corner.

i) Edge point on the blunt corner.

$$\frac{h^{3}/2 - B^{2}/4 + \mathbf{Z}AB^{2}}{+7} - \frac{2A^{2}\mathbf{Z}\mathbf{Z}A(1+2B^{2})}{+\mathbf{Z}A(4+B+5B^{2})} + \mathbf{Z}\overline{A}(4+B+5B^{2}) + 5T} + \mathbf{Z}\overline{A}(4+B+5B^{2}) + 5T} + \mathbf{Z}\overline{A}A +$$

In these equations, the quantity \overline{p}_0 is the equivalent combined effects in terms of load per unit of area for all the loads which act upon at point 0. Thus,

 $\mathbf{234}$

if at point 0 there act a uniformly distributed load of p_0 per unit of area, a line load of q_0 per unit of length in the x direction, and a concentrated load of P_0 , \overline{p}_0 is given by

$$\overline{p}_{\mathbf{0}} = p_{\mathbf{0}} + \frac{q_{\mathbf{0}}}{\lambda_y} + \frac{P_{\mathbf{0}}}{\lambda_x \lambda_y} = p_{\mathbf{0}} + \frac{q_{\mathbf{0}}}{\lambda_y} + \frac{K P_{\mathbf{0}}}{\lambda_y^2}.$$

If point 0 lies on an exterior edge of the plate, \overline{p}_0 is given by

$$\overline{p}_{0} = p_{0} + \frac{q_{0}}{0.5\lambda_{y}} + \frac{P_{0}}{0.5\lambda_{x}\lambda_{y}} = p_{0} + \frac{2q_{0}}{\lambda_{y}} + \frac{2KP_{0}}{\lambda_{y}^{2}}.$$

Covering the orthotropic parallelogram plate with the skew network and applying the above nine finite difference equations for each network point, we can obtain simultaneous equations. Solving these equations, the values of deflection can be calculated and then the bending moment can also be obtained from the following equations.

a) General interior point (see fig. 2)

$$\begin{split} M_x &= -\frac{K^2}{\lambda_y^2} B_x \left(w_{1'} - 2 \, w_0 + w_1 \right), \end{split} \tag{11} \\ M_y &= -\frac{1}{\lambda_y^2} B_y \left\{ B^2 \left(w_{1'} - 2 \, w_0 + w_1 \right) + 0.5 \, B \left(- \, w_{1'2} + w_{12} + w_{1'2'} - \, w_{12'} \right) + \left(w_{2'} - 2 \, w_0 + w_2 \right) \right\}, \end{aligned} \\ M_{xy} &= -\frac{K}{\lambda_y^2} \kappa \alpha B_x \left\{ B \left(w_{1'} - 2 \, w_0 + w_1 \right) + 0.25 \left(- \, w_{1'2} + w_{12} + w_{1'2'} - \, w_{12'} \right) \right\}. \end{split}$$

b) Point on the left simple support (see fig. 3a)

$$\begin{split} M_{x} &= -\frac{K^{2}}{\lambda_{y}^{2}} B_{x} z \left(w_{12'} - w_{12} \right), \qquad M_{y} = -\frac{1}{\lambda_{y}^{2}} B_{y} \left(B^{2} z - B \right) \left(w_{12'} - w_{12} \right), \\ M_{xy} &= -\frac{K}{\lambda_{y}^{2}} \kappa \alpha B_{x} \left(B z - 0.5 \right) \left(w_{12'} - w_{12} \right), \\ z &= \left(\kappa \frac{B}{A} + \frac{B^{3}}{A^{3}} \right) / \left(1 + 2 \kappa \frac{B^{2}}{A} + \frac{B^{4}}{A^{2}} \right). \end{split}$$
(12)

c) Point on the right simple support (see fig. 3b)

$$\begin{split} M_x &= -\frac{K^2}{\lambda_y^2} B_x z \left(w_{1'2} - w_{1'2'} \right), \qquad M_y = -\frac{1}{\lambda_y^2} B_y \left(B^2 z - B \right) \left(w_{1'2} - w_{1'2'} \right), \\ M_{xy} &= -\frac{K}{\lambda_y^2} \kappa \alpha B_x \left(B z - 0.5 \right) \left(w_{12'} - w_{1'2'} \right). \end{split}$$
(13)

d) Point on the exterior edge (see fig. 3c)

$$\begin{split} M_x &= -\frac{K^2}{\lambda_y^2} B_x \left(w_1 - 2 \, w_0 + w_{1'} \right), \qquad M_y = 0 \,, \\ M_{xy} &= -\frac{K}{\lambda_y^2} \, \kappa \, \alpha \, B_x \left\{ B \left(w_{1'} - 2 \, w_0 + w_1 \right) + 0.5 \left(-w_{1'} + w_1 + w_{12} - w_{12} \right) \right\}. \end{split}$$
(14)

Fig. 3. Points on the Simple Supports and on the Exterior Edge.

The assumption of $\nu_x = \nu_y = 0$ is same as in the case of the derivation of the finite difference equations.

The detailed description of the above eqs. (2) \sim (14) requires so much space that it is omitted and only the results of the derivation are written here (see references [2]).

3. Tabulation of the Influence Coefficients of Deflection and Bending Moment

If the tables of the influence coefficients of the deflection and bending moment were completed, these tables would become of great help for the designers of the skew girder bridges. From this point of view, it is necessary

Fig. 4. Orthotropic Parallelogram Plate, Simply Supported at the Opposite Two Skew Sides and Free at the Other Two Sides, and its Skew Network.

to calculate the influence coefficients of deflection and bending moment for the various combinations of the above characteristic values A, B and κ .

The authors are now calculating the table of influence coefficients of deflection and bending moment of points $1 \sim 18$, covering the orthotropic parallelogram plate with the skew network as shown in fig. 4, for the various combinations of the characteristic values of the plate, A = 1, 4, 9, 16, 25, 36;

noint		κ=	= 0			$\kappa = 1$			
point	w_3	w_8	w_{13}	w_{18}	w_3	w_8	w ₁₃	w ₁₈	
1	37 708	23 973	14 239	7 901	18 419	11 720	7 208	4 443	
2	$71\ 613$	44 670	25 687	$13\ 551$	$33 \ 418$	21 818	$13\ 721$	8 622	
3	91 814	$56\ 639$	$31\ 196$	$15\ 354$	40 841	$27 \ 448$	17668	11 317	
4	$77 \ 459$	$51\ 896$	28 698	$13\ 144$	$32\ 171$	$23 \ 979$	$16\ 461$	10 970	
5	44 791	$31 \ 492$	17 657	7 530	$16\ 672$	$13\ 372$	9843	6 903	
6	$30\ 052$	$21\ 146$	13 553	8 183	$15\ 177$	$11\ 912$	7 854	$5\ 231$	
7	$50\ 850$	37 500	$24 \ 437$	14 778	$25 \ 313$	$20\ 594$	14 741	$10\ 129$	
8	$56\ 639$	44 882	29789	17 953	$27 \ 448$	24 653	$18 \ 495$	13 106	
9	$45\ 121$	$36\ 287$	25 944	$16\ 287$	20 479	$19\ 467$	$16\ 197$	$12 \ 264$	
10	23 652	19 378	14 691	9 799	9 950	9 995	9 068	7 391	
11	$18\ 884$	$16\ 298$	$12\ 975$	$9\ 354$	$11\ 136$	$10\ 057$	8 547	$6\ 389$	
12	$30 \ 349$	$27 \ 216$	$23 \ 512$	17 499	$17 \ 384$	16 913	15 694	$12 \ 257$	
13	$31\ 196$	$29\ 789$	28 798	$22\ 084$	17 668	18 495	$19\ 221$	$15\ 648$	
14	24 537	$23\ 232$	22,762	19 490	$12\ 884$	14 093	$15\ 295$	13 873	
15	$12\ 794$	$12\ 125$	$12 \ 095$	$11\ 193$	6 173	7 049	8 016	7 913	
16	$9\ 349$	$10\ 642$	$11\ 513$	$10\ 865$	7 610	7 907	8 157	7663	
17	14 602	17 034	19 770	$20\ 291$	$11\ 427$	12 591	$14\ 032$	$14 \ 386$	
18	$15 \; 354$	17 953	$22\ 084$	$25\ 522$	11 317	13 106	$15\ 648$	17 918	
17'	$12\ 278$	14 049	$17\ 212$		8 247	9 870	$12\ 120$		
16'	$6\ 479$	7 356	9 029		3 954	4 895	6 200		
15'	$3\ 074$	5739	8 753		$5\ 112$	5894	$6\ 755$		
14'	4996	9 069	14 230		7573	9 115	$11\ 338$		
13'	$5\;451$	$9\ 540$	$15\ 193$		$7 \ 427$	9 254	$11\ 989$		
12'	$5\ 049$	7 555	$12\ 002$		$5\ 412$	6 920	$9\ 162$		
11′	$2 \ 292$	3 944	6 336		2608	$3\ 424$	$4\ 642$		
10'	$-1\ 354$	$1\ 655$	$5\ 378$		3539	4 417	$5\ 709$		
9′	-2 030	2.688	8 673		$5\ 208$	$6\ 719$	$9\ 006$		
8'	$-1\ 752$	$3\ 172$	9 541		$5\ 064$	6 716	$9\ 254$		
7'	-1 055	2 862	7 990		3668	4 981	6 996		
6'	-517	1 630	4 450		1.767	2 460	3 530		
5'	-6 842	-3279	1 133		2537	$3\ 434$	4 808		
4′	-9 012	-3 423	$3\ 465$		3 688	$5\ 131$	7 380		
3'	-7596	-1.752	$5\ 451$		3558	$5\ 064$	$7 \ 427$		
2'	-4 620	12	$5\ 742$		2576	$3\ 742$	$5\ 794$		
1'	-1 879	588	3 710		$1\ 259$	$1\ 867$	2 825		
		1	1						

Table 1. Influence Coefficients of Deflection w for the Case of A = 1, B = 0.5(unit: $10^{-6} P a^2/B_x K$)

noint		κ=	= 0			$\kappa = 1$			
	w_3	$ w_8 $	w_{13}	w_{18}	w_3	w_8	w ₁₃	w ₁₈	
1	63 877	15 144	-2 361	- 4 092	39 195	18 977	8 363	3 527	
2	116 084	26 474	$-5 \ 051$	- 7 778	70 381	34 694	$15\ 542$	$6\ 642$	
3	140 931	30 559	$-7 \ 461$	-10 104	$85\ 230$	42 564	19 349	8 376	
4	$115 \ 485$	$25\ 802$	-8 044	-9862	68 545	37 692	17 865	7 897	
5	$63\ 276$	14 291	-5 536	-6324	36 694	21 806	$10\ 858$	4 930	
6	$20 \ 452$	16 782	7 297	$2 \ 395$,23 489	21 302	11 794	$5\ 621$	
7	31 921	29 640	12 708	4 134	38 977	38 393	$21\ 750$	$10\;533$	
8	30 559	$33\ 357$	$13\ 764$	4 388	42 564	$46 \ 394$	$26\ 770$	$13\ 164$	
9	18 209	19 644	$9\ 287$	$2\ 985$	$33 \ 458$	37 564	23 870	$12\ 208$	
10	$3\ 476$	3 683	$2\ 178$	735	17 441	$20\ 268$	$13 \ 962$	7 474	
11	-3251	$8\ 255$	$19\ 062$	$12 \ 339$	$11\ 575$	14 523	16 880	9877	
12	-5952	$13\ 362$	$35 \ 254$	$22 \ 272$	18 410	$24 \ 308$	$30 \ 922$	$18\ 450$	
13	- 7461	$13\ 764$	$43 \ 615$	$26\ 879$	19 349	$26\ 770$	38001	$22 \ 973$	
14	-6985	$10\ 085$	$34 \ 444$	$23 \ 984$	$15\ 053$	$21 \ 343$	30 662	$20\ 637$	
15	- 4 292	4 943	18 269	14 134	7 788	11 311	16 565	$12\ 169$	
16	- 5960	2 195	14 193	22 503	$5\ 183$	7 724	12 305	$15\ 931$	
17	-9568	3 783	$24 \ 039$	41 413	8 087	$12 \ 399$	$20\ 747$	29 409	
18	-10 104	4 388	$26\ 879$	$51\ 145$	8 376	13 164	$22 \ 973$	$36 \ 398$	
17′	-7995	3859	$22 \ 251$		6 480	10 367	18 347		
16'	-4295	$2\ 241$	$12 \ 338$		3 339	$5\ 431$	$9\ 756$		
15'	- 2919	243	5536		$2\ 238$	3 696	6 848		
14'	- 4759	555	$9\ 328$		$3\ 471$	$5\ 830$	$11\ 067$		
13'	-5125	803	10 477		3582	6 109	11 821		
12'	- 4150	813	8 856		$2\ 770$	4 783	9 364		
11′	-2274	507	4 993		1 428	$2\ 495$	4 940		
10′	- 128	-52	109		$1\ 012$	1.793	$3\ 617$		
9′	- 536	-180	509		$1\ 576$	$2\ 823$	$5\ 773$		
8'	- 789	-230	804		$1\ 632$	$2\ 955$	6 109		
7'	- 737	-200	792		$1\ 267$	$2\ 315$	4 831		
6'	- 424	-111	466		657	1 211	2549		
5'	1 250	-414	3 049		536	1 008	$2\ 169$		
4′	1 939	-704	4 868		827	$1\ 573$	$3\ 421$		
3'	1 976	-789	$5\ 125$		850	$1\ 632$	3582		
2'	$1\ 517$	-658	$4\ 053$		655	$1\ 271$	$2\ 812$		
1′	797	-366	$2\ 177$		338	662	1 477		

Table 2. Influence Coefficients of Deflection w for the Case of A = 4, B = 0.5(unit: $10^{-6} P a^2/B_x K$)

noint		κ=	= 0		κ = 1				
pome	w_3	w_8	w ₁₃	w_{18}	w_3	w_8	w_{13}	w_{18}	
1	98 918	17 948	- 8	-1 118	54 119	$15 \ 956$	4 1 18	1 004	
2	177 070	$32\ 012$	- 436	-2 152	95 599	30 133	8 118	$2\ 037$	
3	$212 \ 187$	$38\ 314$	$-1 \ 234$	-2 850	$113 \ 625$	38 078	10 699	$2\ 762$	
4	178 134	$34 \ 266$	-1 767	-2835	91 917	$35\ 062$	10 474	2796	
5	$100\ 065$	$20\ 275$	-1 401	-1 847	$49\ 275$	$21\ 005$	$6\ 734$	1 871	
6	$21\ 544$	37 469	$11\ 362$	1 670	23 071	$26\ 068$	9 117	$2\ 594$	
7	$35\ 353$	67 557	20 843	$2\ 964$	36 640	$46\ 961$	17584	5 181	
8	$38 \ 314$	81 498	$25 \ 619$	$3\ 442$	38 078	$56\ 480$	$22\ 511$	6 877	
9	30 924	$67\ 571$	$23 \ 434$	$2\ 984$	28 686	46 181	$21\ 003$	6774	
10	16 681	$37\ 475$	14 133	1 728	14 244	$25\ 115$	12 807	4 396	
11	-1358	$14\ 023$	$35\ 185$	$11\ 073$	7 234	13 194	22 561	8 107	
12	-1738	$23 \ 348$	$63 \ 504$	$20\ 235$	$10\ 842$	$21 \ 305$	41 128	$15\ 839$	
13	-1 234	$25 \ 619$	$76\ 737$	24 794	10 699	$22\ 511$	$50\ 055$	20 506	
14	- 467	20 929	$63 \ 424$	22 621	7 820	17 316	$40 \ 992$	19 304	
15	- 65	$11\ 455$	$35\ 099$	13 620	3 790	8 814	22 402	11 879	
16	-1840	$1\ 679$	13 645	34 820	1 967	4 518	$11 \ 931$	$22\ 164$	
17	-2829	$2\ 940$	$22\ 644$	62 904	2 863	6 866	$19\ 347$	40 505	
18	-2 850	$3\ 442$	24794	$76\ 089$	$2\ 762$	6 877	20 506	49 412	
17'	-2 161	3 006	$20\ 214$		1 987	5 106	15 800		
16'	$-1\ 128$	1 714	$11\ 050$		951	$2\ 513$	8 062		
15'	- 537	-390	$1\ 726$		498	1 303	4 162		
14'	- 874	-540	3 004		715	1 920	$6\ 345$		
13'	- 939	-469	$3 \ 497$		682	1 875	$6\ 374$		
12'	- 757	-295	3 039		487	1 366	4 749		
11'	- 422	-133	1 729		231	661	$2\ 346$		
10'	- 73	-257	-378		126	360	$1\ 273$		
9'	- 129	-404	-530		182	526	1 898		
8'	-150	-418	-469		174	511	1875		
7'	-129	-325	-305		125	372	$1\ 382$		
6'	- 72	-172	-142		60	180	678		
5'	64	- 75	-554		42	128	484		
4'	96	-131	-888		59	183	706		
3'	96	-150	-939		56	174	682		
2'	71	-128	-746		39	124	493		
1'	37	- 73	-404		18	59	238		

Table 3. Influence Coefficients of Deflection w for the Case of A = 9, B = 1(unit: $10^{-6} P a^2/B_x K$)

noint		κ=	= 0		$\kappa = 1$			
	w_3	w_8	$ w_{13}$	w ₁₈	w_3	w_8	$ w_{13}$	w_{18}
1	112 928	9 784	-1 712	- 586	69 017	15 439	2 942	523
2	$201\ 245$	$17 \ 399$	-3 237	-1076	$121\ 914$	$29\ 044$	5 740	1 044
3	$239\ 734$	20733	$-4\ 185$	-1 345	$144 \ 671$	$36\ 475$	7 473	1 390
4	201 482	18 478	-4 047	-1 262	118 240	33 613	7 246	$1\ 384$
5	113 182	10 906	-2562	-782	64 249	$20\ 286$	4 638	914
6	$11\ 326$	48 600	7 799	-102	21 608	$33\ 474$	8 663	1778
7	18 835	86 976	$14\ 073$	-250	34 630	$60\ 137$	$16\ 539$	$3\ 495$
8	20733	104 046	17 004	- 427	$36\ 475$	$72 \ 197$	20 971	4568
9	17 044	87 029	$15\ 344$	- 503	28 118	$59\ 664$	$19\ 523$	4 448
10	9 370	$48\ 656$	$9\ 159$	- 361	14 335	32 898	11 942	$2\ 864$
11	-2 597	$9\ 155$	47 006	7 591	4 843	$12\ 127$	30 710	8 060
12	-4079	$15\;339$	84 150	13 692	7 398	19669	$55\ 515$	$15 \ 503$
13	$-4\ 185$	$17\ 004$	100 726	$16\;541$	7 493	$20\ 971$	$67\ 072$	19 788
14	-3 209	$14\ 079$	84 127	14 926	$5\ 617$	$16 \ 407$	$55\ 466$	$18\;522$
15	-1688	7 806	$46 \ 982$	8 910	$2\ 805$	8 513	$30\ 652$	11 390
16	- 778	-368	8 913	$46\ 886$	938	2 907	11 404	$30\;541$
17	$-1\ 258$	-509	$14 \ 928$	83 953	1 401	4 401	$15\ 533$	$55\ 246$
18	-1 345	-427	$16\;541$	$100 \ 512$	1 390	4568	19 788	66 789
17'	-1 081	-244	13 690		1 030	$3\ 467$	$15\ 492$	
16'	- 589	- 97	7589		508	1747	8 047	
15'	-51	-359	-349	1	169	587	$2\ 758$	
14'	- 90	-523	-480		250	882	$4\ 257$	
13′	- 105	-603	-399		245	880	$4\ 345$	
12'	- 91	-476	-225		180	657	3 301	
11'	-52	-256	- 87		89	326	$1\ 665$	
10'	16	-52	-358		30	112	579	
9'	24	-85	-572		45	167	876	
8'	24	- 94	-603		43	166	880	
7'	18	- 78	-478		32	124	662	
6'	10^{-1}	- 44	-258		16	61	331	
5'	8	15	- 54		8	30	167	
4′	12	24	- 93		12	45	248	
3′	13	24	-105		11	43	245	
2'	11	19	- 89		7	32	181	
1'	6	10	- 50		4	16	90	

.

Table 4. Influence Coefficients of Deflection w for the Case of A = 16, B = 1(unit: $10^{-6} P a^2/B_x K$)

•

noint		κ=	= 0			$\kappa = 1$			
point	$M_{x,3}$	$M_{x,8}$	$M_{x,13}$	<i>M</i> _{<i>x</i>, 18}	$M_{x,3}$	$M_{x,8}$	<i>M</i> _{<i>x</i>, 13}	<i>M</i> _{<i>x</i>, 18}	
1	2 133	1 771	1 239	770	1 088	777	511	342	
2	$5\ 528$	3771	$2\ 375$	$1\ 336$	$2\ 670$	$1\ 735$	1.088	692	
3	12 439	6 230	$2\ 702$	$1\ 378$	$5\ 793$	$3\ 277$	$1\ 824$	$1\ 066$	
4	$5\ 883$	$5\ 314$	$2\ 786$	$1\ 132$	$2\ 610$	$2\ 520$	$1\ 749$	$1\ 112$	
5	2556	$2\ 849$	$1\ 764$	685	$1\ 015$	1 140	966	696	
6	$2 \ 492$	$1\ 543$	$1\ 025$	687	$1\ 241$	$1 \ 099$	548	391	
7	4 935	$3\ 200$	2052	$1 \ 306$	2592	$1\ 777$	$1\ 216$	837	
8	$6\ 016$	$5\ 751$	$3\ 287$	$1\ 736$	$3\ 275$	$3\ 328$	$2\ 154$	$1\ 350$	
9	$3\ 722$	3 130	2598	$1\ 611$	1.658	$1\ 707$	$1\ 694$	$1\ 297$	
10	$1\ 712$	$1\ 427$	$1\ 248$	979	674	687	787	730	
11	1.787	1 410	735	637	$1\ 062$	865	559	448	
12	$3\ 225$	$2\ 734$	$1\ 847$	$1 \ 408$	$1\ 837$	$1\ 760$	$1\ 311$	$1\ 007$	
13	$2\ 882$	$3\ 311$	$4\ 076$	2585	$1\ 855$	$2\ 179$	2683	$1\ 852$	
14	$2\ 297$	$1\ 964$	$1\ 772$	$1\ 985$	$1\ 062$	$1\ 199$	$1\ 290$	$1\ 450$	
15	1 140	905	728	914	461	513	529	677	
16	866	1 036	948	621	765	777	695	491	
17	$1\ 304$	$1\ 705$	$2\ 014$	$1\ 547$	$1\ 169$	$1\ 337$	$1\ 463$	1 191	
18	$1\ 445$	1.743	2584	3766	$1\ 095$	$1\ 375$	$1\ 860$	2543	
17'	$1\ 297$	$1\ 225$	$1\ 377$		694	846	$1\ 008$		
16'	694	601	603		312	385	443		
15'	278	554	857		508	599	640		
14'	480	842	$1\ 445$		739	935	$1\ 205$		
13'	610	870	$1\ 495$		605	902	$1\ 252$		
12'	$1\ 006$	694	1 043		462	600	776		
11'	314	352	503		216	283	360		
10'	- 92	136	521		341	442	581		
9'	-247	220	811		487	658	919		
8'	- 33	286	884		452	623	890		
7'	43	283	753		312	431	593		
6'	37	164	414		147	206	283		
5'	-549	-329	54		235	333	478	а. С	
4'	-701	-345	268		332	480	716		
3'	-562	-151	308		307	451	673		
2'	-306	- 94	616		215	317	622		
1'	-100	81	397		103	154	225		

Table 5. Influence Coefficients of Bending Moment M_x for the Case of A = 1.0 and B = 0.5 (unit: $10^{-4} P/K$)

noint		κ=	= 0		$\kappa = 1$			
point	$M_{x,3}$	$M_{x,8}$	$M_{x,13}$	<i>M</i> _{<i>x</i>, 18}	$M_{x,3}$	<i>Mx</i> , 8	<i>M</i> _{<i>x</i>, 13}	$M_{x, 18}$
1	4 232	1 716	-155	-370	2 477	1 477	714	314
2	$9\ 332$	$3\ 167$	-398	-715	5 470	3 002	1 387	602
3	$18\ 105$	$3\ 956$	-714	-952	$11\ 353$	4 569	$1\ 885$	787
4	8 500	3 398	-790	-945	$5\ 649$	3792	1 774	760
5	4 167	$1\ 873$	-521	-609	$2\ 356$	$1\ 952$	$1\ 053$	477
6	$1\ 973$	1 093	598	247	$2\ 082$	$1\ 432$	948	491
7	$3\ 223$	2888	1 161	326	3 899	3 219	$2\ 173$	954
8	$3\ 183$	$6\ 275$	$1\ 469$	409	4587	$6\ 059$	2840	$1\ 282$
9	$1\ 797$	$2\ 232$	990	272	2 930	$3\ 157$	$2 \ 391$	1 210
10	318	236	205	71	$1\ 377$	$1\ 355$	$1\ 262$	726
11	-276	1 022	957	1 068	$1\ 125$	1 314	1 041	776
12	-543	1 809	$2\ 734$	$2\ 050$	1 838	$2\ 437$	2500	1 608
13	-658	1 992	6 311	2688	1 905	$2\ 851$	5 191	$2 \ 467$
14	-531	1 388	$2\ 660$	$2\ 360$	1 363	1 894	$2\ 478$	$2\ 071$
15	-310	660	884	1 323	676	915	1 014	$1\ 087$
16	-559	314	$1\ 335$	$1\ 276$	505	753	1 100	951
17	-891	519	$2\ 376$	3 304	785	$1\ 234$	$2\ 083$	2 353
18	-924	597	$2\ 701$	10 789	797	1 291	$2\ 469$	$5\ 032$
17'	-713	546	2059		595	947	1 601	
16'	-376	319	1 074		301	478	767	
15'	-274	35	536		214	360	666	
14'	-445	75	886		330	565	1 100	
13′	-478	110	997		336	581	$1\ 156$	
12'	-387	115	871		256	442	847	
11'	-211	73	497		131	227	430	
10'	- 12	- 7	10		95	171	350	
9'	- 53	-25	50		148	268	554	
8'	- 78	- 33	86		152	277	577	
7'	- 73	- 28	92		117	215	443	
6'	- 42	- 15	56		60	112	230	
5'	114	- 58	288		50	95	206	
4'	176	- 98	459		77	147	322	
3'	179	-136	483		78	152	333	
2'	137	- 92	381		60	117	257	
1'	72	- 51	204		31	61	134	

Table 6. Influence Coefficients of Bending Moment M_x for the Case of A = 4.0, B = 0.5(unit: $10^{-4} P/K$)

noint		κ=	= 0			κ=1			
point	$M_{x,3}$	$M_{x,8}$	$M_{x,13}$	<i>M</i> _{<i>x</i>, 18}	$M_{x,3}$	$M_{x,8}$	$M_{x,13}$	<i>M</i> _{<i>x</i>,18}	
1	7 474	$1\ 654$	33	- 97	3 744	$1\ 265$	340	84	
2	$15\;582$	3 006	11	-190	8 135	$2\ 575$	692	172	
3	24 901	3 726	- 95	-256	$14 \ 304$	3 895	985	244	
4	$15\ 681$	$3\ 356$	-175	-260	$7 \ 911$	3 604	1 014	254	
5	7580	$1\ 965$	-139	-171	$3\;452$	2008	657	174	
6	2069	2644	$1\ 034$	173	$2\ 197$	1 840	744	221	
7	$3\ 446$	$5\ 816$	1944	303	3 770	$4\ 056$	1532	453	
8	$3\ 726$	$10\ 032$	2506	338	$3 \ 940$	$7\ 134$	$2 \ 304$	642	
9	$2\ 914$	5 817	2 305	$\boldsymbol{282}$	6 449	$3\ 984$	$2\ 153$	658	
10	$1\ 549$	2644	$1\ 365$	163	$1\ 156$	1.764	$1\ 229$	431	
11	-135	$1\ 342$	$2\ 423$	$1\ 005$	715	1 269	$1\ 513$	652	
12	-173	2 297	5 419	$1\ 882$	1.068	2 190	$3\ 483$	1 370	
13	- 95	2506	9557	$2 \ 423$	1 010	$2\ 317$	$6\ 476$	$2\ 111$	
14	7	$1\ 952$	5 410	$2\ 224$	687	1 518	$3\ 471$	1 987	
15	27	1 043	$2\ 417$	$1\ 314$	324	724	$1\ 499$	$1\ 137$	
16	-171	159	$1\ 317$	$2\ 388$	186	445	$1\ 143$	$1\ 476$	
17	-260	277	$2 \ 226$	$5\ 358$	266	672	$1 \ 992$	$3\ 423$	
18	-250	337	$2\ 424$	9 493	249	648	2 113	6 4 1 4	
17'	-192	307	1 881		173	451	$1\ 368$		
16'	- 99	176	1 003		82	217	649		
15'	- 50	-35	163		45	123	409		
14'	- 82	-46	283		63	178	619		
13'	- 88	-37	342		59	169	595		
12'	- 71	-20	310		42	120	415		
11.'	- 46	- 9	178		19	58	200		
10'	- 7	-24	-33		11	32	119		
9'	- 13	-37	-45		16	56	174		
8'	- 15	-39	-37		15	45	167		
7'	- 13	-30	-22		10	32	120		
6'	- 7	-15	- 9		5	15	58		
5'	6	- 8	-52		4	12	43		
4'	8	-13	-84		5	16	62		
3'	9	-15	-89		5	15	58		
2'	6	-13	-71		3	10	41	4	
1'	3	- 8	-39		1	5	19		

Table 7. Influence Coefficients of Bending Moment M_x for the Case of A = 9, B = 1(unit: $10^{-4} P/K$)

Masao Naruoka and Hiroshi Ohmura

noint		κ=	= 0		$\kappa = 1$			
point	$M_{x, 3}$	$M_{x,8}$	$M_{x,13}$	$M_{x,18}$	$M_{x,3}$	$M_{x,8}$	<i>M</i> _{<i>x</i>,13}	<i>M</i> _{<i>x</i>,18}
1	8 829	919	-150	- 54	4 967	$1\ 286$	256	46
2	$17 \ 950$	$1\ 652$	-288	- 99	$10\ 524$	2557	508	110
3	27 627	$2\ 011$	-390	-126	17 708	3673	695	126
4	$17 \ 972$	1 800	-388	-119	$10\ 282$	$3 \ 400$	697	127
5	$8\ 853$	$1\ 056$	-247	- 73	4653	$1\ 942$	449	86
6	$1 \ 092$	3677	730	- 3	$2\ 070$	$2\ 431$	736	158
7	1796	7 675	$1\ 334$	- 14	3513	$7 \ 032$	$1\ 477$	314
8	$2\ 012$	$12\ 271$	$1\ 652$	- 36	3706	$8\ 854$	$2\ 112$	457
9	$1\ 622$	7 679	1 497	- 48	2509	$5\ 192$	$1 \ 971$	429
10	884	3682	886	- 35	$1\ 214$	$2\ 384$	$1\ 147$	278
11	-252	885	3 523	710	473	1 184	2 169	$2\ 841$
12	-392	1 497	7 397	$1\ 297$	720	$1 \ 989$	4779	$1\ 379$
13	-391	$1\ 653$	$11 \ 943$	$1\ 607$	706	$2\ 117$	8 339	1 998
14	-287	$1\ 335$	7 394	$1\ 326$	507	$1\ 469$	4775	$1\ 875$
15	-148	731	$3 \ 520$	861	248	725	$2\ 164$	1 093
16	- 73	-36	862	$3\ 510$	88	283	1 095	$2\ 143$
17	-118	-49	$1\ 456$	$7\ 378$	130	376	$1\ 876$	$4\ 752$
18	-126	-36	$1\ 671$	$11 \ 923$	127	430	1 998	8 311
17'	-101	-13	$1\ 297$		92	313	$1\ 378$	
16'	- 55	- 3	710		45	155	679	
15'	- 5	-34	-34		16	55	268	
14'	- 9	-18	-46		23	82	412	
13'	- 10	-56	-34		22	80	408	
12'	- 9	-45	-12		16	59	297	
11'	- 5	-23	- 2		8	29	147	
10'	1	- 5	-34		3	10	54	
9′	2	- 8	-54		4	15	81	
8'	2	- 9	-57		3	15	80	٢
7'	1	- 7	-45		3	12	59	
6'	1	- 5	-24		1	5	30	
5'	1	1	- 5		1	3	15	
4'	1	3	- 9		1	4	22	
3′	1	2	-10		1	3	22	
2'	1	2	- 9		1	3	16	
1′	0	1	- 6		0	1	8	

Table 8. Influence Coefficients of Bending Moment M_x for the Case of A = 16, B = 1(unit: $10^{-4} P/K$)

B = 0.5, 1, 0, 1.5, 2.0 and $\kappa = 0, 1.0$. The values of $\sqrt{A/2}$ corresponds to the values of θ (defined by Y. GUYON and CH. MASSONNET) = 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0.

Instead of calculating the matrix inversion of the given stiffness matrix of $(6-1)\times(6+1) = 35$ elements, we are calculating the inverse matrix of the stiffness matrices of 18 (17) elements for the loading symmetrical (anti-symmetrical) about the diagonal, to obtain the necessary values by adding or

 $\mathbf{244}$

subtracting the solution of the above both cases. The digital computers, UNIVAC-120 and Bendix G-15 D, are used for these matrix inversions.

It requires much space to write the influence coefficients of deflection and bending moment of all points $1 \sim 18$ in detail. Therefore, as an example, only the influence coefficients of deflection w and bending moment in x direction, M_x , of the points 3, 8, 13 and 18 are shown in tables $1 \sim 8$ for the case of J = 0 (that is, the plate is free at the two sides in y direction).

4. Experimental Verification of the Theory

In order to check the effectiveness of the author's method of analysis for the skew girder bridges, experimental researches were made on three models, that is, a) a skew grillage girder bridge consisting of composite main and cross girder sections, b) a skew grillage girder consisting of aluminium round bars for main and cross girders, c) a skew grillage girder bridge consisting of main and cross girder sections of plastic material of polymethachrilmethyl, Acrylite. Now that the detail of the result of experimental research for the model a) was already published [3], it is omitted to describe here and the results for the model b) and c) will be described.

I. Model. The plan and cross section of these models b) and c) are shown in figs. $5 \sim 8$, and the characteristic values of the models b) and c) are as follows:

Model	$ \tan \varphi$	a	b	K	$\alpha = \sqrt{B_y/B_x}$		B	Fig.
b)1 b)2 c)1 c)2	$ \begin{array}{r} 8/17 \\ 32/63 \\ 29/42 \\ 11/20 \end{array} $	405 429 580 660	860 845 420 600	$ \begin{array}{r} 17/8 \\ 63/32 \\ 42/58 \\ 10/11 \end{array} $	$(17/24)^2$ $(63/128)^2$ $(1/1.38)^2$ $(1/2.2)^2$	9 16 1 4	$ 1 \\ 1 \\ 0.5 \\ 0.5 $	Fig. 5 Fig. 6 Fig. 7 Fig. 8

II. Experiment. For the model b), a concentrated load P = 5 kg was applied to the mid-span point of each main girder and the deflection was measured at these points by dial gauges. For the model c), a concentrated load P = 5 kg was applied to the points corresponding to the network points of the skew network of the orthotropic plate, and the deflection was measured at these points by dial gauges, and the strain of the girder was measured by electric wire resistance strain gauges cemented into the web plate of the main girder.

III. Experimental result. The results of experimental researches for the model b) and c) were shown in figs. $9 \sim 14$. For the sake of convenience, these figures show only the influence values of deflection, bending moment and distribution coefficient for points 3, 8, 13 and 18, along the mid-span line and the

Fig. 6. The Plan of the Skew Grillage Girder (A = 16, B = 1).

Fig. 7. The Plan of the Skew Grillage Girder Bridge (A = 1, B = 0.5) and the Cross Section of the Main and Cross Girders.

(b) Cross Section of Girder

Fig. 8. The Plan of the Skew Grillage Girder Bridge (A = 4, B = 0.5) and the Cross Section of the Main and Cross Girders.

Fig. 9. Comparison of the Deflections Calculated from the Measured Dial Gauge Readings and from the Theory for the Model c)₁ (A = 1, B = 0.5).

Fig. 10. Comparison of the Bending Moments Calculated from the Measured Strain Gauge Readings and from the Theory for the Model c)₁ (A = 1, B = 0.5).

253

254

Masao Naruoka and Hiroshi Ohmura

measured values are compared with the theoretical values calculated under the assumption of $\kappa = 1$ and 0 in all these figures.

In the figures for distribution coefficients, the notations used by Y. GUYON and CH. MASSONNET are used, for example, K, b and f. That is, 2b is the effective width instead of b used in fig. 4.

The results of experimental researches for the model $c)_1$ and $c)_2$ are shown in figs. 9 and 10, plotting the measured values of the deflection and bending moment for model $c)_1$ and in fig. 11, plotting the measured values of the bending moment for model $c)_2$, but the results for model $c)_2$ are shown in fig. 12, not with the values of deflection itself, but with the values of distribution coefficients K defined by Y. GUYON and CH. MASSONNET. For the purpose of comparison, the distribution coefficients calculated from the dial gauge readings are shown in figs. 13 and 14 with those calculated from the theory for the specimen models $b)_1$ and $b)_2$.

IV. Consideration. From above experimental researches, it was clarified that the authors' theory can explain well the experimental results and the measured values seem to be in satisfactory agreement with the theoretical values.

Generally speaking, the measured values check favorably with the theoretical values calculated under the assumption $\kappa = 0$ in these models b), while the measured values do with the theoretical values under the assumption $\kappa = 1$ in the models c). These differences can be well understood from the fact that the former model of aluminium round bars has no slab and the torsional rigidity is small, and that, on the contrary, the latter models have the slab so that the torsional rigidity is larger than that of the former models.

The values of influence coefficients of the deflection and bending moment of the orthotropic parallelogram plate for any arbitrary values of κ between 1.0 and 0 are not yet completed, and therefore, the measured values can not be compared directly with the theoretical c values corresponding to the torsional rigidity of the models themselves. However, the experimental results can be said to be satisfactory practically.

5. Conclusion

From the above numerical analyses on the orthotropic parallelogram plates and the experimental researches on the models of a skew grillage girder, it was clarified that the theory of the orthotropic parallelogram plates is very effective in the analyses of the skew girder bridges.

The authors are now calculating the influence coefficients of deflection and bending moment for the cases of various combinations of characteristic values of the plate, using the skew network shown on in fig. 4, but wish to calculate those in the case of a finer skew network to obtain more accurate values.

Masao Naruoka and Hiroshi Ohmura

References

- 1. T. Y. CHEN, C. P. SIESS and N. M. NEWMARK, University of Illinois Bulletin, No. 439 (1957).
- 2. M. NARUOKA und H. OHMURA, Stahlbau, 28 (1959), not yet published.
- 3. M. NARUOKA and H. OHMURA, Memoirs of the Fac. of Eng., Kyoto Univ., 20 (1958), p. 139.

Summary

The authors derived the skew network finite difference equation for the orthotropic parallelogram plate, simply supported on the opposite two skew sides and supported by flexible girders at the other two sides, and calculated the influence coefficients of deflection and bending moment for the special characteristic values of the plates. These values of influence coefficients were verified by the experimental researches on models of skew grillage girder bridges.

Résumé

Les auteurs établissent l'équation limite aux différences dans le cas du treillis oblique, pour la dalle orthotrope en forme de parallélogramme, portant simplement sur les bords obliques opposés et soutenue sur les deux autres par des poutres de flexion.

Il a été ainsi possible de déterminer les coefficients d'influence de la flèche et du moment fléchissant pour les valeurs caractéristiques particulières de la dalle.

Ces coefficients d'influence calculés ont été confirmés par des essais sur modèles de ponts constitués par des grilles portantes obliques.

Zusammenfassung

Die Autoren geben hier die Ableitung der begrenzten Differenzengleichung bei schiefem Netzwerk für die orthotrope Parallelogrammplatte, die an den gegenüberliegenden schiefen Rändern einfach gelagert und an den anderen beiden durch Biegeträger gestützt ist.

Damit wurden die Einflußzahlen der Durchbiegung und des Biegemomentes für die besonderen charakteristischen Werte der Platte bestimmt.

Diese berechneten Einflußzahlen wurden durch Versuche an Modellen von schiefen Trägerrostbrücken bestätigt.