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Spherical Domes Under Unsymmetrical Loading
Coupoles sphériques soumises a des c'karges asymétriques

Sphdrische Kuppeln unter unsymmetrischer Belastung

TELEMACO VAN LANGENDONCK
Prof. Dr. Eng., Escola Politécnica, Universidade de Sdo Paulo, Brasil

1. Scope

The determination of the internal forces in domes, having the form of a
not very flat spherical calotte, is a problem that has already been solved, even
under unsymmetrical loading. In such cases we can split up the actual loading
in to others, which may be represented by trigonometrical functions of argu-
ment n 0. Here, 0 is the angle defined in § 2 and n is either zero or a positive
integer.

In applications, approximate solutions of the equations are used, in many
cases, as they are easier to employ. For axially symmetrical loadings we have
BrLumMENTHAL’s solution [1], through a development in asymptotical series,
and simpler processes, such as HeTfNYI’s [2], in which the solution of the
differential equation is obtained by disregarding the exponential function in
respect of its second derivative!) and GECKELER’s [4], in which the first deri-
vative is also disregarded.

For unsymmetrical loadings, the solution?) corresponding to that of
BLUMENTHAL is the HAVERS’ method [5], which may be simplified to a close
approximation (like GECKELER’s) when the dome is not flat and has a small
thickness in comparison with its radius, as shown in the present paper.

In studying this simplification, we shall consider separately the three states
of internal forces which can be considered in superposition:

1) GraviNa [3] arrives at the same result by taking account of the first term only
in BLUMENTHAL’s asymptotical series.
2) Already studied by ScHWERIN for a particular case of loading [6].
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1. — the state of membrane, in which, in addition to the active external forces,

there exist only the reactive and internal forces acting in the planes tangent

to the sphere;

— the state of pure bending, in which the sole forces acting on the edge and

on the sections of the dome are bending and twisting moments; and

3. — the state of disturbance of the edge, when there are all types of forces
acting on the edge and in adjacent sections, but which are propagated in
a rapidly weakened, oscillating manner.

(8]

2. Notation

The points of the sphere (central surface of the dome) will be characterized
by the angles ¢ and 6, measured from a vertical axis and from a horizontal
reference axis respectively, as shown in Fig. 1. The constant value of ¢, which
corresponds to the edge of the dome, will be denoted by ¢,, and:

W =@, —@. (2.1)
The radius of the sphere is R and the uniform thickness of the shell is A.
We denote by k the very small quantity:
3%

k=13pe

(2.2)

and by « the expression:

\ _
A1 1+k ]/R . R
a_l/ R = 71/3(1—;;)21,3 5 (2.3)

where v is the Poisson’s ratio of the material whose modulus of elasticity is
denoted by Z.

The displacements %, ¥ and w of a point on the dome are those which occur
in the direction of the tangent to a parallel, in the direction of the tangent to
a meridian and in the direction of the radius of the sphere, respectively. The
latter is positive when it defines a displacement from the centre of the sphere
and the two former are positive when directed in the same sense of positive
angles 6 and ¢.

When these displacements correspond to a single term of the trigono-
metrical series which represents the external forces, with argument »0, they
take the form:

u =usinnb, v =wvcosnb, w=wcosnb, (2.4)

where, 4, v and w are functions of ¢ alone.
The corresponding forces will be denoted by

ﬁq,:Nq,eosnG, Ny = N,sinnd, Ny = Nycosnb,

Mq,:Mq,cosnB, M= M psinnb, My= Mpycosnb, (2.5)
Q—q, =@, cosnb, Qs = Qo sinn b,
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where: N and N, are the normal forces; N, 00 are the tangential forces; Q
and @, are the shearing forces; M and M, are the bending moments, and
M 00 the twisting moments, all of them per unit length of the section. The
corresponding directions and positive senses are those indicated in fig. 2.
The deformations of the material in the central surface of the membrane are:

€, =€, cosni, €, = €,co8n0, y =ysinnb, (2.6)

where, &, and &, are the elongations in the - and v-directions and  is the
shearing strain, that is:

1 1
eu=7(N0—va), € = T

(2.7)

N

Fig. 1.

In expressions containing trigonometrical functions of argument = 6, such
as 2.4 to 2.6, it is possible to substitute simultaneously all the cosines by sines
and all the sines by cosines without changing the results except, in certain
cases, their sign. Should this occur in the following considerations, the double
sign + or F will be used, the upper sign to be employed with the expressions
2.4 to 2.6 (to which correspond the expression 2.8 and the expressions 2.10 to
2.13) and the lower sign when the substitution has been made. The first case
corresponds to symmetrical solutions with respect to the §-reference axis, and
the second case refers to anti-symmetrical solutions.
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For reactive forces, per unit length, we use, with ¢ =¢, (Fig. 3):

ﬂzﬂm, N=Nq,, T = §¢+Rsi1n% 82—”(;"’0= Tcosn@,
S = N¢9+%M¢g = Ssinn, H = Tsing—Ncoseo, (2.8)
V = —Nsing—Tcos ¢,

hence (always with ¢ =¢,):

M=M, N=N, T-= Qwiﬁm " S=N<,,,,+—11§M¢9,

H = Tsing—Ncoseg, V=—-Nsinp—Tcosg (2.9)

and for active forces, per unit area (p,, p, and p,, are bounded functions):
P, = p,Sinné, P, = pycosnl, P = PwCOSNO (2.10)

in the u-, v- and w-directions respectively and with the same positive senses
(Fig. 3).

The vertical displacements (positive upwards) and the radial-horizontal
displacements (positive outwards) will be represented, respectively by (Fig. 1):

necosnf =7 =wcosp—osing, (2.11)

Ecosnl =¢ =wsing+vcosg, (2.12)

the angular displacement of the meridian (positive when in the opposite sense
of positive ¢) by:
| p—

Xcosn9=5('=§(w — ) (2.13)

. . . 1
with 7 = wcosep—vsing, ¢ =wsing+wvcosp, x=f(w’—'v). (2.14)

Displacements of the edge are characterized by the index c.

3. The State of Membrane

In shells not clamped at the edges, we determine the internal forces —
which are reduced to normal forces Ny and N, and to tangential forces N
only — by the membrane theory, independently of the study of their defor-
mation and considering the active forces defined in (2.10). The forces acting
along the edge will be the reactive forces that we obtain with (2.9), where, with

P=@c-
M =0, N=Nq,, T=0, S=N¢9. (3.1)
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The equilibrium equations give 3):
N0=pr_N<p: N¢=U(n)+U(—n), N(pﬂzi[U(n)_U(—n)], (3°2)

where:
a

U(m) = Rw{f [(pv—i- lm'pu) Sian—(m+COSq))pw]

2sin? g m
P (3.3)
-sin @ tan™ (¢/2)d ¢+ C (m)} )

being a =0, for m> —1 and a ==/2 for m < — 1.

The terms C (n), corresponding to U (n), and C (—mn), related to U (—n),
are the integration constants, which, in such cases, where the domes have the
shape of a spherical calotte (therefore with a single edge) should never provide
infinite values for the forces on the crown. Hence, we have C (n)=0 for any
value of n, and C (—n)=0 for n=0 and n=1.

For n 22, the constant C(—n) can have any finite value, corresponding
to the application of normal and tangential forces along the edge. These
forces balance one another without disturbing the other external forces, and
give rise to new internal forces, characterized by (Fig. 4):

tan” (¢/2)

N¢1=_N01=$N¢01=A1 Sin2(p

(3.4)
with 4,=0,5 RC (—n).

Denoting by the index 0 the values of the forces (3.2) when we make
C(n)=C(—n)=01in (3.3), we have:

rn=2 % %:“?f‘-
- DS T
’){’9:0;:
o S
3 N
[
P S
230 [/ \ Ex
279 § td
/,d W ?
2,000 ) 1000 =900
300l /2 7 1 )
| // \\ l
2
3}@// Negr==Ngs= ¥ Ve, = A, @ \[
/ - I+ y _ I+ v
V' hAR O AR 2@

Fig. 4.

3) All the formulz in this § 3, except expression (3.13) and the subsequent expressions
may be obtained from those given in Frtcer’s paper [6], where the corresponding
proof is to be found.



184 TELEMACO VAN LANGENDONCK

No=Nyo+Ng,  Nog=Ngo+Ng1,  Nyg=DNygo+Ngp1, (3.5)

where, the first term of the second member corresponds to the effect of the
loading on the dome and the second term contains the constant 4, to be
determined in accordance with the boundary conditions. It should be noted,
however, that A; =0 for n=0 and n=14%).

The displacements of the membrane are defined by the following equations
(the accents indicate the derivatives in relation to ¢):

w+v' = Re,, ‘ (3.6)
wsing+vcosp+tnu = Re,sing, (3.7)
u'sinp—ucospFnv = Rysing, (3.8)

where ¢,, €, and y can be obtained from the forces NN, already calculated, by
means of (2.7).

By eliminating © and w from Eqgs. (3.6) to (3.8), we arrive at the single
equation with variable v:

v"—v' cotp+v(l—n2)cosec’p = R, (3.9)
in which
’ ' — ’ ’ 2n
b = €, —¢, tnycosece Eh (N Neisinquq’g)' (3.10)

With v, we find w and % from (3.6) and (3.7) (for n =0 we use (3.8) instead

of (3.12)):
w= Re,—7, (3.11)
tnu = R(e,—e¢,)singp+v'sinp—vcosep. (3.12)

The general solution of (3.9) is:
R P @
_ sm @ P P _ n?P n®P
= [tann 2 (fdn cot™ 5 d(p+01) cot 2 (qutan 2 d<p+02)] , (3.13)
/2 0

in which the constants C; and ', must be chosen so as not to give rise to moments
along the edge, for we assume the permanence of the state of membrane
(details are given in § 4, where it is also shown, that for n=0 and n=1, such
moments never occur, the constants corresponding to displacements of the
dome as a rigid body). _

The expression (3.13), for n=0, assumes an indeterminate form, which
can be shown to be equivalent to:

_ 14w N,—Ny

4) Physically, this is explained by the fact that it is impossible for a system of balanced
forces, distributed along the edge proportionally to sin# 6 or cosn 8 if n=0 or n=1,
to exist.



SPHERICAL DOMES UNDER UNSYMMETRICAL LOADING 185

Denoting by v, the value of v corresponding to the forces N ,, Ny, and
N 50, and by v, that related to the forces (3.4), we have:

v = v+, (3.15)

where (introducing (3.4) into (3.10) and the latter into (3.13)), with n>1

(Fig. 4)°):

1 2 — qin?
+vtann£ n°+n Ccos @ _sm @
Eh 2 mn(n2-1)sine

1}1 == Al R (3.16)
It should be noted that for n =0 and n=1, v, has zero values for there are no
forces (3.4), as has already been said (4,=0).

In applications it is useful to know that to v, there correspond (Fig. 4):
I+v, . @ ntcose n

7h Py n(n2—1)’ = +w1sincp

x1=0, w, =4, R . (3.17)

4. The State of Pure Bending and the Displacement of the Dome as a Rigid Body

When in (3.13) integration constants are used that differ of 4,-27»/R and
Aj-2n/R from those employed, the displacements which are added to the

former ones are:
vV = Vy+ g, (4.1)

where Vg = Azsinqatan”%, vy = Agsing cot”%. (4.2)

For n> 1, we have necessarily A;=0, so that be not v=00 with ¢ =0. To
the remaining term v, (Fig. 5) there corresponds, according to HAVERS [5],
the state of pure bending in which (in addition to N,=Ng=N_ =0 and
e, =€,=y=0):

Eh tan® (¢/2)
M02=_M(p2=iMq)02=A21+an(n2_1)——Siﬁz_q)— (4.3)
and, from (3.11), (3.12) and the last of the expressions (2.14) (Fig. 5):
Wy = —Vy = —Az(n+cos<p)tan"£§, (4.4)
— ___hw,
+ Uy = Uy, Xo = Rsing (4.5)

The moments M, and M #0> When ¢ =g, are those acting along the edge;
they constitute a balanced system (always assuming n > 1)6).

5) The integration constants used here, in the application of (3.13), are those that give
rise to zero moments, in agreement with HAvErs [5].
6) For the reasons mentioned in § 6.
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For n=1, 4, as well as A; may be different from zero. The corresponding
displacements are those of the dome as a rigid body (therefore without additio-
nal internal forces) when it is displaced horizontally or rotates around a
horizontal axis:

v = A2sinq>tani§ +Aasin<pcot% = Ay,(1 —cosp)+ A;(1+cose), (4.6)

w =-—v =—-A4,sinep+A;sing, (4.7)
tu=A4,(1—cosp)—A;(1+cose), - (4.8)
Ry=—-(4,+4,). (4.9)

kEh

Mg2=-Mpp= Mgz = A, s ®@
v, =A®, W,=-A, ®

Fig. 5.

The horizontal displacement (which occurs in the direction of the f-refe-
rence axis, when we use the expression (2.4), or in the direction perpendicular
to this axis if the trigonometrical functions are changed) has the value:

la=24, (4.10)

and the angular displacement (which occurs around the horizontal axis through
the crown of the dome and perpendicular to the direction of horizontal dis-

placement):

lﬁa:‘flz%élg' (4.11)

For n=0, we have in (4.2) the same function of ¢ for v, and »;. Thus,
(4.1) will simply be: '
v =0, = A,sing, (4.12)

which is equivalent to making, in (3.14), C,=A4, E h/R (1 +v). To this solution
correspond the following equalities, if the values of (2.4) are used:

v =v,, W=wy,=—vy=—A,c08¢, u=0. (4.13)
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This represents the displacement of the dome, by translation, in the direction
of its axis (positively upwards):
Ng = WaCOSP —VySing = —4,. (4.14)
If the trigonometrical functions are changed in (2.4) (u, of (3.8) with y =0):

v=w=0, u = uy, = Cysine. (4.15)
This means a rotation of the dome around its own axis of
Cy
=, 4.16

5. The State of Disturbance of the Edge

The displacements and forces that occur along the edge of the dome and
are propagated to the adjacent regions in a rapidly convergent oscillating
manner, may be represented, according to HavERs [5], by combinations of
functions of the type:

$e = o *71COS (x Py +3) 5 ¢s = poe > 918N (2 @y +@3) 5 (5.1)

where ¢, , 1, @, and @5 are functions of ¢, and « is given by (2.3). In the case
of domes which are not flat and have small values for 2/ R, we have, approxi-
mately, if » is not large:

Po(P) P (Pe): Pr1RPRP—P=w, p3~0. (5.2)
Then we may write, by eliminating the constant factor:
¢, = e Y cosaw, ¢, =e*?sinow,- (5.3)
whose derivatives in relation to ¢ are:

¢’é = a(ds+ ) ¢y = o (953 _¢c) . (5.4)

In such cases, all displacements and internal forces may be represented
by the function

KC¢C+K8¢S (5'5)

in which K, and K have the values given in the following table, when 1/«2,
in them, is neglected as compared with unity (K, and K, are integration
constants).

Along the edge, the displacements and forces are determined by considering
that, there, ¢,=1 and ¢,=0; it can be shown that the characteristic quantities
Ugs Uy, Wes Xo» M and N are equivalent to the constant K, of the corresponding
expressions and that for &,, n,, T, H, V and § we may use the expressions (2.8)
to (2.12), which take the form of the terms that contain K; and K, in (6.5)
to (6.8) and (6.13) to (6.14).
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The expression (5.5) may be represented in the following form:
K.+ K, = K,e*®sinacw+ K e *cosyw
=+ VK2 + K2 e~ cos (xw + )

with 0=y = arctan _KKS<7T.

c

Their absolute values are always smaller than

by = VKT + KE oo,

(5.6)

(5.7)

(5.8)

This expression may be useful for the design of the structure. It should be
noted that the highest absolute value of (5.6) will never exceed the value K,
of the edge, if 4 < 0,4195 7 or 4 = 0,75 7, and, otherwise, will reach the maximum

2 2 K2 L K2
@ep—o,vsw = 0,0670¢¥ VK2 + K32

(5.9)
for aw+4¢=0,757 (see Fig. 6).

B

N
'%u
s )

w

R — i
NI 4
-é?

2

Fig. 6.

6. Superposition of States

By superimposing the three states which were studied in §§ 3 to 5, we
obtain the solution of the problem of domes having the form of a spherical

calotte. That solution contains four integration constants, when »n> 1:

A, A,, K,, K,,
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for K. K tan i (5.7)
w | 22REK; 2.2 R K, _ K
Ko
v aR(1+v) (Ke—Ki) —a R (14v) (Ko + Ki) %f%
U F R (1+v)n Kzcosec ¢¢ + R (1+v)n K;jcosec ¢, %:‘
X 203 (K2 + K1) 203 (Ko — Ki) TI{{—E—%
gz o (K1 — K>) cot ¢c+si§‘: - o (K14 K3) cot <pc—si::%K1 - II§:
Z_‘Zo By= isi:quc Bs = isil?qvc - fgf
[a (K1 — K3) + Ko cot gc] [ (K1 + K2) — K; cot ¢c]
%%” R (B1Ks— B3 K) — R (B1 K1+ B: Ka) %%—I%:%
2ot | _p,rl= B.R! =
?;—Z R (BsK2:— B7 Ki) — R (Bs K1+ B7 Ka») g:—ﬁj—;—gz—%
—g% a (K2 — Ki) | —a (K2 + Ki) _TI{{:—;%
g% Fn Kasec g +n Kisec g fé—j
ﬂ=£—ﬂ Bg=—B1+1+v B7=—-Bz+1—_lf
Eh R ER’ ’ 2 a2
B = 1—12—;V00t¢c, Bz=(acot¢c+1—§£%)%%

which enable uS to choose four of the magnitudes (displacements or forces)

related to the edge (u,, v,, W,, Xe» Mes €c» M, N, T, H, V, §S) as, for instance:

a) Dome with clamped edge (Fig. 7a): v,=v,=w,=0, x,=0.

b) Dome with simply supported edge (set on a horizontal plane (Fig. 7b):
M=0, S=H=0, n,=0.

c) The same (set on a conical surface with generatrices normal to the sphere)
(Fig. 7¢): M =0, T=8=0, v,=0.

d) Dome supported by suspensions with radial movement (Fig. 7d):
M=0, H=0, u,=7,=0.

e) Dome on hinged immovable support (Fig. 7e):
M=0, {(,2=u,=n,=0.
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f) Dome with clamped edge on a deformable ring (Fig. 7f):
Ue=Uping > é:c = fring s Xe™ Xrings> Me™ 0.

It should be noted that the forces on ihe edge M,N, T, 8, Hor V, when
n> 1, are separately in equilibrium, for M =M cosn 67), so that we have:

(fMsin6d )2+ ([ M cos0d6)2 =0

and, similarly, for S, H and V, and, therefore, for 7 and N, which are obtained

from H and V (fig. 8).

@)

b
e %( Y2, %I
I L

Fig. 7.

For n=0, with the trigonometrical functions used in (2.4) and (2.5,) this
equilibrium does not occur for V (and, therefore, for N and T'), which repre-
sents the vertical reaction, uniformly distributed along the edge and must,
obviously, be equal to the vertical component of the resultant of the external
forces. Should the trigonometrical functions of (2.4) and (2.5) be changed, that
equilibrium would cease to exist for S, since its moment must balance that
of the external forces which tend to rotate the dome around its axis (in such
cases the dome cannot be simply supported). The lack of the constant 4,,
which does not exist for =0 (§ 3) is supplied by the condition of symmetry
or asymmetry of the two cases mentioned (v =0, S =0, in the first case, and
b=w=0, N=T=0, M =0 in the second case).

For n=1, A;=0 also, but there is, then, an additional constant A4, which
takes its place, as we have seen in § 4. In this case also, the forces on the edge

2m 27
7) The integrals f st no “®gds and f
cos’  sin
0

cos
SinnOdG are zero for n>1.
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are not separately balanced (for instance: the V forces produce a moment
and the H forces do not have a null resultant). So the dome cannot be simply
supported, on a horizontal plane. ‘

Once the integration constants are obtained, all three states of membrane,
of pure bending and of disturbance of the edge and the corresponding forces,
become known ((3.4), (3.5), (4.3) and (5.5) with the data of the table of § 5).
It is, then, only necessary to add the ordinates of the respective diagrams
(Figs. 4 to 6) to obtain the final diagrams, which will be used in designing
the dome.

To make the determination of the constants easier, when n > 08), complete
expressions for the forces and displacements of the edge are given below, four
of which must be chosen in accordance with the imposed conditions (as
illustrated at the beginning of this § 6) to constitute the equations which
enable us to find the four constants:

Ay =—§—}btan“%@, A =%tan"%°, K,, K, A} =f%. (6.1)
In such cases, the terms which contain A}, when n=1 and those which
contain A}, when n>1 must be eliminated. The constants B, and B, have
been defined at the end of the table in § 5, and:

1—v n? kn (n?2—1) 1—v

B = 5, B =, —
0= 242 sinlg, 35 T (1 4v) By = cotget 5

(6.2)

The indices 0 represent, for ¢ =¢,, the items of the magnitudes related to
the state of membrane, under the same conditions in which it was used in
(3.5) (examples are to be found in §§ 8 and 9).

M

iy — A¥ Bycosec?p,— K, B,— K, B,, (6.3)

—N— = M-l-A*cosec2 + K, (e cot ¢, —n? cosec? ¢,) + K, o cotic (6.4)

Eh Eh 1 Pe 1 Pe Pe 2 Pe> .

% = Ag“nB3cosec3cpc—Kloc(l—BO)—Kz(oc+ocB0—Bocot<pc), (6.5)

_ 8 _Ngpo K Af—AF B, cotp,—a Kyan

TER =t ER T sin2 g, iy sing,  sing,’ (6.6)
* e B _

LI N(I’OCOS%—A{" Cf)t%—i— A.2 nB3+K1n .Bs -

B Eh sing, sin?g, sin @, (6.7)

o
— K, |- Byasi — B,coso,],
2 (Sln(Pc + Dy SN @, 0 (Pc)

8) For n=0 see § 7, where the simplifications which occur when n=1 are also to be
found.
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vV Nyo . Af " cot n?
e =8 - —d e B;—"° : B
Eh Hh S Pe sin g, Agn sin2 g, lsin g, 1t (6.8)
+ K, By («—cot ¢,) cos g, ‘
T _ Mo g _MECOSPe  _ gxgine — K. (1
R - + R +A§(1+v) (n?—1)sin ¢, A singp,— K, (1+v)ncosecg, 6.9)
+A4F(1+cosqp,), .
e _ 29+A*(1+ )n2+ncos<pc—sin2%+A*Sin C Ky (l+v)
R T RV mr1)sing, g5 Fe T Ra B0 (6.10)
—Kya(14+v)+ A5 (1+cosq,), '
w w n + Cos .
7 :'}?0+A1*(1+V)n—('ﬁ2——‘(1p)g_‘42*(n+003%)+Kz2“2+A§ksm%’ (6.11)
LM (n+cosg,) .
Xe =xp—AF——— T -K,23+K,203—A4F, (6.12)
sin g,
& & % 1+ncose .
i R+A1( +V)(’n2—1)81n<pc A¥nsing,— K, a(1+v)cos g, 61
+K,[202sinp,—a(l+v)cose,]+AF (1+cosqg,), .
1- .
% = %’—A{“———n-]—/—A;‘(1+ncos<pc)+Kloc(l+v)sm<pc
(6.14)

+K,y[2a2cosp,+a(l+v)sing,] —AFsing,.

In the coefficients of K, and K, of the former expressions, 1/«* was dis-
regarded as compared with unity, since the respective values were obtained
from the table given in § 5, where such an approximation was used. A greater
simplification could be obtained if the terms that contain 1/x were also dis-
regarded, compared with those that do not contain it, provided these latter
are of about the same magnitude as that of the factor of 1/x?). We must
take into account the fact that, in most cases, B, is negligible in comparison
with unity. When we have to solve a particular case numerically, as in the
example given in § 8, there is no advantage in using the simplifications, because
the work involved in solving the equations will be the same, since the numerical
coefficients of the unknowns are available.

9) Thus, it is possible that n2/a may not be negligible as compared with unity or
sin ¢ in comparison with « cos ¢¢, since ¢, can tend to «/2, with cos ¢, — 0 and sin g.— 1.
It should also be noted that constants to be determined may not have the same order
of magnitude; that is what happens in the last example of the following footnote, in
which Kj; is of the same order of magnitude as K/« and, therefore, Kz is not negligible
in comparison with «Kj.
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7. Simplifications when n=0 or n=1

For n=0, when we use the trigonometrical functions of the expressions
(2.4) and the following equations, we have the well known case of axially sym-
metrical loading, which can also be solved by means of the expressions (6.3)
to (6.14), neglecting the terms which contain 4} and A} and by establishing only
three boundary conditions, since, then, S =0 and % =0. These conditions can
be reduced to two, if we consider that V is known, for, its resultant is equal
to that of p, and p,,, that is:

Pe

R

F = S, (pysing —p,cosp)singdep =V, (7.1)
0

and that 7 represents the movement of translation of the dome as a rigid body,
characterized, then, by the choice of AJ. This constant has no influence on
the other magnitudes (M, H, x,, £,), whose expressions are the same, (6.3, (6.7),
(6.12) and (6.13), when we eliminate the terms which contain 4, 4} and
Ay (this latter because it contains the factor n=0) and make n=0 in the
others (therefore B,= B;=0):

M 1—v

—E—h—R—z —K1+ Y COt(pc(K K) WKZ’ (7'2)
H Nyo o

—-E—}L- —_— Eh COS(pc E(KI—I-KZ), (7.3)
Xe = Xot2a®(Ky—Ky), (7.4)
% - %+2°‘ZSin?’cK2““(l+V)COS Pe (K1 + Ky). (7.5)

When these equations represent the membrane without load (N ,,=0,
{=0, xo=0) and we make M =1, H=0 or M=0, H=1, by eliminating
K, and K, and neglecting 1/« in comparison with unity !?), we find the well
known coefficients of influence of GECKELER’s solution:

(fc)ﬂl:l E h Sln Pes (gc)Hzl = E—h R Sll’l2 Pe s
448 o2 (7.6)
(Xc)M=1 = EhR’ (Xc)H:l E 7 sin Pe-

If we change the trigonometrical functions in the expressions (2.4) and
the subsequent equations, we have as single magnitude which is not zero in

10) Tt should be noted that, for H=0, K; = — K, and we could, in (7.2) make,
M/EhRR = — K;, since « is very large (GECKELER). For M =0, we should have, for the
same reasons, K; negligible as compared with K» and K; + Kea~Ks— K. A more clearly
approximate solution is obtained from (7.2) to (7.5) when these simplifications are not
made.
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the first members of expressions (6.3) to (6.14) (in addition to u,/R if the dome
is not completely prevented from turning): :

Pe A
M, ~R [ .,
= — . = — , i
4 27 R%sin®¢q,  sin2¢, Pusin®pde (7.7)
0

where M, is the moment of the p,.

For n=1 the constants to be determined are K,, K,, A¥ and AF. The
last two of these constants characterize the movement of the dome as a rigid
body, as described in § 4; the first two, alone, remain to be determined by two
boundary conditions. Indeed, the four conditions are reduced to two, since
among the magnitudes M, V, H and § there are two which are not arbitrary,
for, not being independently balanced, there are among them the obligatory
relationships (Fig. 8)11):

2w 2m
[ HcosfcosOrdO+ | Ssinfsinfrdf+ F,,, =0,
0 0

T 2w

Mcosfcosfrdbf+| Veosfrcosfrdd+M,, =0.
0

St 1

In these expressions, r= Rsing, is the radius of the supporting circle, F,,,
and M,,, are the resultant and the moment (about the diameter of the support-
ing circle) of the external active forces (p,, p, and p,,). Hence:

Fig. 8.

11) The change in the trigonometrical functions of (2.4) and the following expressions
2w 2
has no influence on the results, for: | cos20d6 = | sin20d6 = =,
0 0
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nr(H+8)=—F,,, =wr(M+VRsing,)=—-M,, (7.8)
considering that
Fop = mr(Nyocosp,F N y9)s Mext=7-rr2Nq,osin<pc, (7.9)
and so: FS = H+—ﬁ—’e£‘, V =-(M‘”2”+£). (7.10)
wr wr r

H and M remain to be determined. In regard to the displacements, if we
eliminate the movement of the dome as a rigid body, taking the horizontal
plane of the edge and the vertical planes defined by §=0 and 6§=0,57 as
fixed, we have n,=u,=0, and x, and £, remain to be determined. Two of the
four magnitudes H, M, x, and £, will be given by boundary conditions and
the other two will result from (6.3), (6.7), (6.12) and (6.13). Those two of
these equations which correspond to the magnitude given by the boundary
condition and the expressions (6.9) and (6.14), with the first member null,
will determine the constants A, 45, K, and K,. All these expressions will
have the term which contains A eliminated. By eliminating A4} and Aj}
with (6.9) and (6.14), the other four equations may be written (by neglecting
1/2 «% in comparison with unity):

M
m= —KIBI—K2B2’ (7.11)
H Ny o —cot ¢, o
——h‘ = T COS(PC_WKI KzSin(pc’ (7.12)
x, = XO_RS?;(]D —23K,+2a2 K, (x—cotg,), (7.13)

[

& _ Eotug ( 1
> = p —-K,(1+v) acos%—sin(pc

; 7.14
+ K,[2a2sing,—~o (1 +v)cosep,]. ( )
It is interesting to observe that, to a first approximation (similar to GECKELER’s),
these equalities lead to the same coefficients of influence (7.6), as the axially
symmetrical loading.

8. Dome Under Wind Loading

As a first example, let us take the spherical dome on radially displaceable
suspensions (that is, M =0 and H=0) stressed by wind, whose pressure is
normal to the surface12):

12) This law is frequently used (see, for instance FLtger [7]) and coincides with
that which would be verified in an immersed dam, having the form of a spherical calotte
with a horizontal axis, after making allowance for the uniform pressure equivalent to
that which occurs at the height of this axis.
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Py = —psingcosb, Py=1D,=0. (8.1)
Let us determine the expressions of the forces for the particular case in which
@,=60°, v=1/s and R/h=064 (that is, «=10,4, from (2.3)):
To (8.1) there correspond n=1 and
Pw = psing, Py =P, =0. (8.2)

These expressions when used in (3.3) and (3.2), give us:

Ny = —%lg(?+cos<p) cot<ptan2%, (8.3)
N =-LE(2 tan2 ¥ 8.4
200 ———3*( + cos ) cosec ¢ tan 5 (8.4)
pR 2 2 P
Ny, = ——~3—(3+4cos<p+2cos @) cosec ¢ tan 5 (8.5)
From (7.11) and (7.12), with M =0 and H=0, and N, from (8.3) with

¢ =¢,, the numerical data of the proposition applied:
0,9769 K, +0,0218 K, = 0,

_ PR _ ya
11,342 K, +12,009K, = 0,08019Eh = 5,1320 7

and we have the values of K| and K, which, when introduced into the formulse
of the table given in § 5, enable us to obtain the equations of all forces, which
must be added to (8.3), (8.4) and (8.5), resulting in (¢, and ¢, from (5.3)):
K, =—0,0097 %, K, =0,43652,
N, = N, +ph(2,676¢,—2,097¢,),
Nog= Nogo+ph (5,132 4,—5,067,),
Ny = Ngo+ph-91,85¢,,
M, = phR-0,4266 4,
M 5= —p RE(0,0198 ¢, +0,01954,),
My = p RE(0,93594,+0,0093 4,),
Qp = Ph(4,640$,—4,4394,),
Qy = —ph(0,8730¢,+0,01944,).
These expressions can assume the form (5.6) for the employment of (5.8) and
(5.9) or of the graph given in Fig. 6.
As support reactions we have ((6.8), (6.6) and (2.8)), in addition to M =0
and H=0: _
V= 0139p Rcos¥,

S =-0,240p Rsin 0,

these values being coincident with those that we could obtain by means of
(7.9) and (7.10), with H=0 and M =0.
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9. Dome Under Non-Uniform Heating

For a second example we shall take the case of a dome having the form
of a spherical calotte with clamped edge (x,=0, {,=0) and under the effect

source of heat

/S B

Vi

t=t, (1+ cosy)

Fig. 9.

of heating which occurs, according to the law indicated in Fig. 9, axially
symmetrically in relation to the axis that would reach the focus of heat, if
it were prolonged. The measurement of 6 will be made from a plane which
contains that focus, denoting by B the angle that the straight line which
unites the centre of the sphere with the focus, makes with the vertical. The
modulus of elasticity E, the Poisson’s ratio v, the coefficient of thermal expan-
sion o, of the material are given, as well as the greatest difference 21, of tem-
perature that could exist between two antipodal points, if the sphere were
complete (Fig. 9). It is intended to draw the diagrams of forces for the case
in which E=300t/cm2, A=10cm, v=1/;, o,=107"5/°C and ¢,;=10°C with
p,=60°, 8=30° and R/h=100 (that is, x~13).

The law of variation of ¢ given in Fig. 9 (¢/t,=1+ cosy) can be expressed
as a function of ¢ and 6, in the following way:

t =ty (1 +cos ¢ cos B +singsin S cos ) (9.1)
as it is inferred from the well known cosine law of spherical trigonometry
(Fig. 9).

The deformations that would take place if no contact existed among the
adjacent elements, would be, in all directions:

§=oyt, y=0. (9.2)

In the formule that relate IV, and Ny to ¢, and ¢, (2.7) these deformations
must be substituted respectively by (e, —¢,) and (e, —¢,). When these formulae
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are introduced into the equilibrium equations of the membrane, without
external loading action, we find that, with the variation law chosen for ¢
(9.1), the expansion of the sphere occurs without the existence of forces:

N,=Ny=N,=0. (9.3)
Thus, we have:
y =0, €, = €, = & = oyly (1 +cospcosB+sinesinBcosd). (9.4)
The study of the displacements can be made by considering separately the
items corresponding to =0 and » =1, that is, respectively:
€, = €, = oyly (1 +cos¢cosp), y=0, (9.5)
€, = €, = ytysingsinf, y =0,

to which there correspond, in (3.13) and (3.14), null integrals (¢ =0, N ,— Ny=0),
and there remains only the movement of the dome as a rigid body (§ 4) and
the expansion that occurs because €,+0 in (3.11), that is:

for n = 0: w = Royty(1+cosBcosy),
o (9.6)
for n = 1: w = RotysinBsing.
To the above equations there correspond the displacements of the edge:
for n=0: & = Roytysing, (1+cosBcosg,),
Xo — —atto C‘OSﬁSin(pc,

for n=1: & = RoytysinBsin?ep,, x, = otysinpfcosqp,,

(9.7)

. . 9.8
1o = RoytysinBsing,cosep,, u,=0. (9-8)

When these values are introduced, with N ,,=0, into (7.2) to (7.5) and
(7.11) to (7.14), we obtain the solutions!3), under the condition of clamped

edge (£,=0, x,=0):

for n=0:
= —&o — Xo
K=o Reing, T Hetga v o
_ Ehg u = Eh¢, (9-9)
" Rasin?g,’ ~ 2a%sing,
for n=1 (with 7,= Ry,sin ¢, and u,=0):
_ —& . cot @,
K2_2oc2RSingvc’ Ky _K2(1— o )NKz’ 9.10
o Bhg o Bhé (9-10)
Rasin?g,’ 2a?sing,’

13) With the same simplifications used to find (7.6), of the type of those described
in the corresponding footnote.
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Hence, on the whole 14):

H =—ES—}ian‘—ti’(l+cosﬁcos<;>c+sinﬁsin<pccos0),
[
Pe (9.11)
jii l?)i12<xtt0 1 . . 0
=~_5;2__( + cos 3 cos ¢, + sin Bsin ¢, cos 6).

9= §.= 50°26° w=3°34'

5000

v330 Qg kg/ drm
P-4, =60° w=0° F= 59254’ w=6’

Fig. 10.

For the particular case corresponding to the numerical data suggested at
the beginning of this § 9, the solution found leads to the internal forces given
in Fig. 10, related to the parallel (w), where the respective maximum absolute
value occurs. The formule that determine these forces are those of the table
given in § 5, since there are no forces in states of membrane and pure bending,
where we make, for n=0:

— oyl
2 2

EhK, =EhK,= —127 kg/m,

K~ K, = (14+cosBcosp,) = —4,24 X 1077,

and for n=1:
—oyty . .
K, ~K, = —i%gsmﬁsm% = —1,28x1077,

EhK, =EhK,=—384kgm.

14) Tt should be noted that the expressions in brackets, in (9.11), will be equivalent
to (14 cos i), if we denote by . the angle ¢ corresponding to the point of the edge
under consideration (fig. 9).
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10. Spherical Calotte with Compressed Edge

As a last example, we shall determine the variations of the radii of the
parallels (£) of the spherical calotte with ¢,=45° «=10 and v=0,25, radially
loaded, along the edge, by a distributed force (Fig. 11):

ﬁ=§(1+00320). (10.1)

_ As this is the only force that acts on the edge of the dome, we shall have
M=0, 8=0 and V=0, in addition to N ,,=N ,9o=2Ny,=0. By taking separa-
tely the items corresponding to n=0 (H =0,5 P) and to n=2 (also H=0,5P),

Y|

(S
(&5
o

S

Fig. 11.

with ¢,=0,257, and applying (7.11) and (7.12,) in the first case, and (6.3),
(6.6), (6.7) and (6.8) in the second case, we shall have:

77 33 - P

80" *800 Y YE)
hence, K, =0,001576 P/Eh, K,=—0,03677TP/Eh, (10.3)
77 9
for n=2: 2A§kB3+‘86K1+§(—)’6K2=0,
2A4F¥—2A43 B,—18V2K,—20V2K, =0,
V2AFf—4A¥ B;+585V/2K,+10,135)/2K, = 2;;%, (10.4)

V2A}+4A} B;—-3,85V2K,—0,135/2K, =0,
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hence K, =—0,04883 P/Eh, K, = +0,02457 P|Eh, (10.5)
A¥ By = 0,02336 P|Eh, A¥ = —0,2507 P/Eh (10.6)

and, using (6.1) and (6.2):
A, =—1,461P, A, =12102P R/Eh. (10.7)

There is, therefore, a state of membrane, with n =2, characterized by the
constant 4, to be introduced into (3.4) (forces) and into (3.16) and (3.17)
(displacements); a state of pure bending, also with n=2, defined by the
constant A, introduced into (4.3) (forces) and into (4.2), (4.4) and (4.5) (dis-
placements); and a state of disturbance of the edge, partly axially symmetrical
(n=0) and partly with n =2, characterized by the constants K; and K, respec-
tively of (10.2) and (10.5), to be applied in the formulee of § 5.

The displacements £ to be determined, can be obtained through the formulze,
mentioned previously, for v and w, which enable us to write (with w=45° —¢):

%T) =—0,479¢ 109g8in 10w+ 0,440 0% ¢cos 10 w+[0,917 ¢ 10 gin 10 w
+ 0,303 e719 cog 10 w — 0,304 (3 + 2 cos ¢ + cos? p) cosec ¢ tan? (p/2)
+1210,2sin ¢ tan? (p/2)] cos 20.

Eh

——w = 0,315¢"1%gin 10w —7,354e 192 ¢cos 10 w —[9,766 e~ 1°?sin 10 w
—4,914¢ 1% cos 10 w + 1210,5 (2 + cos p) tan? (p/2)] cos 2 6.

=

These expressions, when introduced into (2.12), lead to the required values
of £ which are shown in Fig. 11, together with those of w, for #=0° and § =90°.
In the scale of the drawing the oscillating part of the diagram cannot be
indicated. This part corresponds to the state of disturbance of the edge, but
there is marked predominance of the state of pure bending, as it is inferred
from the value of 4, in comparison with those of 4,, K, and K,. It will not be
the same for the moments, since A} B; is of the same order of magnitude as
K, and K,.
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Summary

An approximate theory, easy to employ and of sufficient precision, has
been developed for domes having the form of a not very flat spherical calotte,
under any asymmetrical loading, provided that it can be represented by
rapidly convergent Fourier’s series.

The three effects of this loading are studied separately: the effect of
membrane, of pure bending and of disturbance of the edge. They are subse-
quently superimposed and equations are derived which enable us to determine
the integration constants.

Application of this theory is made to domes exposed to wind, to those
which are subjected to non-uniform heating and to shells compressed along the
edge.

Résumé

Une théorie approchée, facile a utiliser et de précision suffisante a été
développée pour le calcul des coupoles chargées asymétriquement, ayant la
forme de calottes sphériques pas trop plates, en admettant que la charge
puisse étre développée en séries de Fourier qui convergent rapidement.

Les trois effets de cette charge: efforts dus & 1’état de membrane, & la
flexion pure et aux perturbations des bords, sont étudiés séparément. On tire
de leur superposition subséquente des équations qui permettent la détermina-
tion des constantes d’intégration.

Cette théorie est ensuite appliquée au calcul de coupoles soumises au vent,
a un chauffage non-uniforme, ainsi qu’a une coque comprimée le long de ses

bords.

Zusammenfassung

Fiir unsymmetrisch belastete Kuppeln, welche die Form einer nicht sehr
flachen Kugelhaube aufweisen, wurde eine leicht anzuwendende und geniigend
genaue Niaherungstheorie entwickelt, unter der Bedingung, dal die Belastung
durch rasch konvergierende Fourierreihen dargestellt werden kann.

Die drei Folgen dieser Belastung: Membran-, reiner Biegungs- und Rand-
storungszustand, werden getrennt untersucht. Aus ihrer nachfolgenden Super-
position werden Gleichungen abgeleitet, welche die Bestimmung der Inte-
grationskonstanten erlauben.

Diese Theorie wird auf den Fall einer windbelasteten und einer ungleich-
miBig beheizten Kuppel sowie einer lings den Rindern gedriickten Schale
angewendet.
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