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Transformation of the Anisotropic Cylindrical Shell into the Isotropic
Cylindrical Shell

Transformation d'un voile cylindrique anisotrope en voile isotrope

Transformation einer anisotropen Zylinderschale in eine isotrope Zylinderschale

TAKESHI OKAMOTO

Tokyo

1. Introduction

When the dimensions of a cylindrical shell are such that it cannot resist
bending in the circumferential direction, a considerable practical advantage
can be obtained by increasing the shell's flexural rigidity through the
Provision of reinforcing ribs in its circumferential direction. When a cylindrical
shell has ribs in the circumferential direction and/or longitudinal direction
which are spaced at equal and appropriate distances, an accurate elasticity
Solution can be derived by regarding it as an anisotropic shell. An equation
for the relation between stress and displacement was given by W. Flügge [1]
and Dischinger [2] established a Solution for it. However, his Solution is too
complicated to be adopted in practical numerical calculations.

The approximation which is presented in this paper has been deduced on
the basis of the following assumptions:

1. That Poisson's ratio is zero.
2. That the eccentricity of the reinforcing ribs is negligible.
3. That in the equations of equilibrium for the forces in the circumferential

direction acting upon an infinitesimal element of the shell, Q^ (see Fig. 1),
the radial shear force may be neglected. [3], [4], [5].

The Solution thus obtained can be expressed in extremely simple forms.
The characteristic values are, besides being a function for parameter VTrjl,
a function for longitudinal tensile rigidity Dx and circumferential flexural
rigidity K^, and have no relation to longitudinal flexural rigidity Kx and
circumferential tensile rigidity D^.
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From this approximation the theory of the transformation of an
anisotropic cylindrical shell to an isotropic cylindrical shell is derived. Considering
an isotropic cylindrical shell having the same characteristic values as an
anisotropic cylindrical shell (regarding the former as the equivalent isotropic
cylindrical shell of the latter) we can determine the relation between this pair
of shells in terms of dimensions, sectional force and displacement. As a conse-

quence, the required numerical values can be obtained simply by performing
computations for the equivalent isotropic cylindrical shell by making use of
the published numerical tables for isotropic cylindrical shells, instead of
resorting to the complicated and tedious calculations for the theoretical
Solution of the anisotropic shell's bending.
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Fig. 1.

2. Symbols

The co-ordinates x and <p of the shell's middle surface are taken as shown
in Fig. 1. The co-ordinate z is taken in the radial direction. The sectional forces
and displacement are as illustrated in Fig. 1. (Their positive directions are as
indicated in the illustration.)

Sectional rigidity (see Fig. 2):
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where Fx =j—\bxdz, F^ j— Ib^dz, FX(p $dz t,
üx0 J °(p0 J

8* TT~
\ bxzdz> s<P r~ \ b<pzdz>

üx0 J °q)0 J
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v: Poisson's ratio.
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Fig. 2.

The integral of the equations above must be carried out over the entire
section along width bx0 or b^Q. An asterisk given to an integral mark indicates
that the integral has to be performed only for the shell and exeluding the ribs.
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3. Basic Equations

The relations between strain and displacement of the neutral surface are

u' v'+w u +v'
€*~ R' R ' rxcp R (1)
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The relations between sectional forces and strain can be expressed in the
following manner if we assume that Poisson's ratio is zero and neglect the
effect of the ribs' eccentricity.

Nx=Dx€x> Ny^Dyty, NX(p \Dxqtyxqn (2)

Mx *f ur", M„ ^w\ Mxq) %V'. (3)

The equations of equilibrium of sectional forces on an infinitesimal element
of the shell are:

N'X+N'9X 0, (4a)

N9+N'X9-Q9 0, (4b)

Q9+Q'x + N<p=0, (4c)

Q9=±(M9 + M'X9), (4d)

QX=±{M'X + M9X). (4e)

4. Approximation for the Bending Theory

If we neglect the effect of Q^ in Eq. (4 b) as being small we can introduce
a stress function

Nx &-, NV <P", NX9 -V. (5)

From Eqs. (4 c, d, e) we get

RNv+M;+2M-a;<p+M':; o (6)

and from Eq. (1)
w

e'v+€x+yx<p--ß 0. (7)

Introducing Eqs. (3), (2) and (5) in Eqs. (6) and (7), the following two
equations can be obtained:

ctx am M

R* W
k9w—' +2w"" + kxtf'" + -=— 0" 0.

•*^xcp

By eliminating 0 or w, we can deduce the following differential equations
respectively either relating to w or &

(9a)
(1

\ ••" Jr "" 7?2 T)± + kJw''''+^w'''' + ^r^w'''' o,TZ
¦£Vxq>
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lA::HÄ**)*::;''+(£+4+l;K';;
+ (1

\ ••" h "" 7?2 D

dq, J dy KX(p

(9b)

As a Solution for Eq. (9a) we assume:

w #em??sinA|. (10)

Substituting Eq. (10) into Eq. (9 a) we find the characteristic equation to be

kcpX dx / ^(p\dx dy)

%(km+*j ^6A6m2 + |x |x^8A8+ 4 EJ^J!LßZ\l 0.

Since the value of m is fairly large, we can take an approximate value for
Eq. (11), in which the coefficients of m8 and m6 and the last term are the same
as those in the above equation (6).

H-M^^f+^i^1-0- (i2)

As the Solution for Eq. (12) eight "m"s can be expressed by the equations
given below.

m1 ajl^, m3 <x2±iß2,
2

m5 —mli m7 — m3,
6 2 8 4

(13)

where a, /± («*„ + £) y Pi, & /5(rf-+ £) r«j«

?1

y =nR-j,

*^mMBtj/12

If we formulate only the damping waves occurring from an edge of the
shell and omit those occurring from the other edge, then we can write:

w [e-*1^ (B1 cos ß1 aj + B2 sin ßx cö)

(15)
+ e-a2^(JB3cosj82cI3 + J54sin^2cI5)]sinA|

v '
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(16)

and similarly from Eq. (9 b)

0 [e-«i™(C1cosß1ü + C2smß1tv)

+ e~a2" (C8 cos ß2 cö + 04 sin ß2 cö)] sin A £

Substituting these into Eq. (8b) we obtain the relation between Ci in
Eq. (16) and Bi in Eq. (15)

^\er^(B\vQ*ßx6> + B\wvß^

— ^^ [e~^- (^f cos y8x cD -+- ^1 sinySi ci3) + e^^^J (^| cos ^2 ^ + ^| siny82 eö)]

+ kx\* [e-^™ (B1cosß1cö + B2sinß1cö) + e-(X^ (B3cosß2cö + B^inß2cö)]
i?3A2r

K [e-^M (G^os ßx^ + C2sinß1cö) + e~a^M {C^co^ ß2w + C^sinß2w)] 0,
xq?

Because the above equation is always possible it follows that the following
equations must also be possible at the same time.

k A2 #3

^Bi-2-^Bl + k^B,-^fcq)

¥

¥

x*
>2

i?3
A2<72 0,

A2 ß3

£Bt-2±Bi + kx\'Bt-£-\*Ca 0,
(18)

Kx<p

A2 723^Bi^Bt + k^B.-^-X^G, 0

Solving Eq. (18) the relation between integral constants Ci and Bi can be

expressed by the following equations:

VdJK
c1 B1

C.

{(i dx+iik9
+ (dx+i"k9r)?+(k* dx+\ik9)*\

VdJKWK 2 2kx \ l 2 \ J
\\2 dx+iikv+(dx+iik<Prjx r» dx+i/vxj s

(19)

dx + llkv (dx + ljk,

where x Sttxo

0 and w are now to be expressed as under:

W K{r2(f)$ill\g,

0 y|*#2l/,sinA£j
(20)
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in which

fin) 6-ai w (ß(n) cos ß^ $ + jg£i) sjn ft £) + ß~a2 " (5^) cosft £ + ß(n) sjn^ jj) j
— — —. _ (21)

fin) c-ttl o> (XK«) cos ft <ö + D(2^ sin ft cö) + e~a2 " (D(3*> cos ß2 cö + D(4W) sin ft cö).

#f>

ai ^-D + ft B?-*, ^) a2 i^-D T ft 5$r», Bf £,,221 443 (23)
Di*> Ä1 jD^-1) + ft Dff-x>, Dg» a2 D^-D + ft DJ*-», Dg» Di.22 1 443From Eqs. (5), (3) and (4) we find that sectional forces and displacement

are: ,—
Nx j/^^sinA^

dx
N<? =-yp(^y)VsinA^

NX9=-^(iry)4fi>0OB\t,

Mx =-^^L(7ry)2^sinA|,

M9 -&„-pL^2>sinA£,

Mx(p= ^L(iry)^oosAf,

G, ^n^- {fc^-(Wy)»^}sinÄf,

Dxmu 0<2>cosA£,
AK4V

n l/12(i?^)2,
Dxq,w ^—-<£smA£,

^^ -1—^aw£>
Dx„|^ —L=^2>sinA£,

(24)

(25)

D*90 =-^[2l/5^) ^==^»+^Ä^lsinAf.
L 'K {«y)*Vdxk/ t * J
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5. An Equivalent Isotropic Cylindrical Shell for an Anisotropic Cylindrical Shell

5.1. The relation in dimensions between these two shells:

An isotropic cylindrical shell which has the same characteristic values as

an anisotropic cylindrical shell can be taken as the equivalent isotropic shell
of the latter. When the central angles (angle subtended by the edges of the
shell), radii, thicknesses and longitudinal spans of an anisotropic cylindrical
shell and its equivalent isotropic shell are represented respectively by #, B,t,l;
#0, B0, t0,l0, we can write, from Eq. (12) the characteristic equations of these
shells as

•iKH+ft) i?8A4 0,

1
(26)

W-x)

(wj-^|A8)* + ir*||AJ 0,
Kq

where k - t%
k - -*°- A_»»* A _ n"Rowhere k-^p, ko-URy A--J~' Ä°~

l0 '

In order that these two shells have identical characteristic values we must
find that:

#2A2 #2A2, |^ ö. (27)
Ky fc KQ

Since these equations have three variables of #/#0, A/A0 and kjk0 an
anisotropic cylindrical shell will have an unlimited number of its equivalent isotropic
shells. If one of these three variables is determined, the remaining two can
also be calculated. Ribs in the longitudinal direction have no practical effect
because they do not reinforce the shell in its flexural rigidity even though they
serve to increase the shell's tensile strength. Therefore, we shall deal with the
case where the shell has ribs only in the circumferential direction which are
effective in increasing the shell's flexural rigidity in the same direction.

For the sake of simplicity, we can assume that on an equivalent isotropic
shell #0 # and B0 B. Now if we neglect 1/lCy in comparison to 1 since ky
has a fairly large value, we find from Eq. (27) the following relation between
the dimensions of the two shells:

±-t l-^t -4=t0, l ~ (28a)

and employing this equation

y=]/2yQ, A=/2A0 (28b)

5.2. The relation in sectional forces and displacement between the two
shells:

The sectional forces and displacement of an anisotropic cylindrical shell
with ribs in the circumferential direction are given by Eqs. (24) and (25). To
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express them as the functions of ci alone we can write

M« 7ff^(2)sinA^

Mx =-~{TryY<f>8inH,

MX9= pL(wy)^«cosAf,

Qv Tf^^^-^yJ'^BinAf,
B* y=&R{kg,r)~2(7rY)2<f>il)}sinXL

Qx 7^B^*-(ffy)V}ooBAf,

Nxv -^^^ [fc^')-2^y)»^»)+(ffy)^]0O8A|>

^ —
*

[^<A(«)-2(77y)2^ + (77y)^<2)]sinA^,
l/l2i?d2(7ry)2 v

Yl2d*B*
Ew -«j (f> sin A £,

Ev - w^lKr'-^K+1)W'r)'r'
+ 5 (tt y)4 <P> - 2 (tt y)6 <P>] sin A f.

The sectional forces and displacement of the equivalent isotropic shell can
be obtained by getting ky 1 in Eq. (29)

(M9) ^<2>sinA|,

(Jf^) JLWy0^>cosA£,

(JfJ =--^=(,ry0)2<£sinA£, (30)

(£„) —A—^-^y^^BmAf,

W i/Tö* P
{^(3)-2(^yo)V(1)}sinAg,
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W i7=^-{^-2^yo)V»+("yo)V}8inA^
V12,V$R0

(Nx<p) - ,-J° -{^)-2(Wy0)*^>+(Wy0)*^}SinAf,
(/12^J«0(7ry0)

™ ,/Tö<n£/ ^{^-ä^yo^^ + ^yo^^BinAI, (30)
Kl2i?gi?0(7ry0)2

^(|^) /T2^#i^)sinA^.
*3

In the above equation the sectional forces and displacements in parentheses
are those of the isotropic shell.

When the value of ftn) in Eq. (30) representing the sectional forces and
displacement of the isotropic shell, and the relation in Eq. (28) are substituted
into Eq. (29) which expresses the sectional forces of the anisotropic shell, we
find that:

My =2Vky(My),
2 1/2"jf Y

(M
Vk,,,

Mx =^(MX),

R9 =2^{(4) + (2 + AjA.(^v)jsinA^

Nv 2^{W-(2-^)|W-(l-;±)|Ä)},
Nxv V^\{NX9)~{2-^yo(R9)-(3-±^(Mx^co^, (31)

Nx ^{(^-(2-^(^) + (3-^)^(^) + (2-^^(^)}SinAf,

„/, 28 80\ A0- ,1

~2v~ic~+Ji)t{ x,p)rnH'
1 dw k

assuming that 0 -=- -— we may write 6 —- (0).
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Eqs. (31) express the relation between the sectional forces and displacement

of the anisotropic shell and those of the equivalent isotropic shell. In
these equations the mark A above the Symbols of the sectional forces or the
displacement indicate that those are the maximum values either at both ends
of the shell or at the midspan.

6. The Relation in Sectional Forces between an Anisotropic Cylindrical Shell and
Its Equivalent Isotropic Cylindrical Shell, Both Subjected to Edge Loads

When both an anisotropic cylindrical shell and its corresponding equivalent
shell are subjected along the longitudinal edges to loads Ny, NXy, By and My,
the relation between the sectional forces of the two shells and also the
displacements thereof can be expressed respectively, from Eq. (31), by the
following equations.

[Nv\ =2VV,\{Nv)i-{2-±^^(M9)i-^-^^(Mx)^

[N9X\t j/^J^^-^-^AotÄ^-^-^-^^J,},
W, =2^{(^+(2-^)^(^-)| (32)

[Mv\ =2Vk~;(M9)t,

E^ -*H-£:pfc<*->-£(7-£)£<**><

-'K+?)*<M-
in which i Nq), NXy, By and My, and (F)i represents the sectional forces
and displacement working on the equivalent isotropic cylindrical shell and
[F\ represents those working on the anisotropic cylindrical shell, when either
cylindrical shell has been subjected to the edge loads i.

These edge loads are denoted by:

-^l^^J X2 NyX, XS=By, X± My.

When a unit edge load acts separately upon the longitudinal edge of the
anisotropic shell and that of its corresponding equivalent shell we find from
Eq. (32) that the relation between the sectional forces of the two shells and
the displacement thereof can be expressed by Eq. (33).
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i

m X1 N9 l X2 N9X \

[N^r ^MH1-^)!^*} -2|/^(1-^)|w*
l^ cpxH -V2^-*-)k{M'')f ^MH3-^^1!
[iyr 2^(2~i;)k{Mxv)r 2M2-i)k{M^
{M9-\r 0 0

M* ^»* ^»2*

E[v\?

mr hm ^(0)*

in Xt B9=l *4 ^ 1

[Njr -2Ml~r)%(M^

\J^ (pxli -^{(2-±)a0 -V2kA3-*-)klM'')f

ixjr 2^AH*-v9Wm*#] 2M2-^)k{M^)f
[Mjr 0 ^K
[«>]** ^»,* ^»*
E[v]r

mr ^m ^iß)*
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In Eq. (33) mark * denotes either the sectional forces or displacement of
the shell at the edge.

When the anisotropic shell is subjected simultaneously to edge loads
X1, X2, X3, X4 the sectional forces working on it are expressed by the following

equations:

Nv =[#,]! X1 + [N9]2 X2 + [N9]3 X, + [i\g4 x4,
Nvx [N9X]1X1 + [N9X]2X2 + [Nvx]3Xz + [N9XiiXi,
R9 =[^]x X1 + [RV]2 X2 + [R9]3 X, + [.R„]4 XA, (34)

M9 [Mv\ X1 + [M9]2 X2 + [M9]S X3 + [iJf„]4 Xt.
Similar expressions can be found for the sectional forces and displacement

other than those expressed by the above equations.
From these equations we also find for the edges of these two shells that:

N* =[N9-\* X1 + [N9]i X2 + [N9W X^ + WJ} X„
N*x [N9X\? Xx + [N9X\ f X2 + [N9X\f X3 + [N9X]} X,,
R* =[B9]f X1 + [R9]f X2 + [R9]* X3 + [R9]i XA,

[Mv]? Xt,
X2 + [w]*
*2+Ms*

M* (35)
w

0*

* [w]f
Mi*

X1 + [w]f
X1 + M*

mr xi+[6]* x2+[d]$

xz+Mt
Xa + [v\t
xz+mr

x.4'
X4'

When the boundary conditions of the anisotropic shell are given, the edge
loads Xi can be determined by selecting four suitable equations from (35).
The employment of Eq. (34) then produces the sectional forces and
displacement.

For the cases where the anisotropic shell is subjected separately to each
of the edge loads A^=l, NyX=l, By=l, My=l, obtain first the edge loads
Xi, (i 1,2,3,4) by solving simultaneous Eq. (36) and then the sectional
forces and displacement by employing Eq. (34).

(36)

*1 X, X, Xt R. H. S.

[Nvx]?

0

[N9]f
U* (pxJ2

[*„L*
0

[N9]f
[NVXW

0

l^ (pxU

[^4*

1, 0, 0, 0

0, 1, 0, 0

0, 0, 1, 0

0, 0, 0, 1

7. The Transformation of an Isotropic Cylindrical Shell to Another Isotropie
Cylindrical Shell

We shall consider the transformation of one isotropic cylindrical shell to
another isotropic cylindrical shell having the same characteristic values as the
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former. The radii, angles, spans and thicknesses of these two shells are denoted

respectively by B, &,l,t; B0, &0,l0, t0.
Then we find from Eq. (27) the relation

^o _ * _ -i/K (37)

(38)

# a0 y k'
_ N n-n B nir BQ

where A —=—, A0 —z
L L0

12 2P' °~~ 12^'
by rewriting this equation we get

* Rolk YifB

and by expressing the value of the above equation as c we find

»-;*»• f-£- *"?£• (39>

From Eq. (37) we find that:

y y0> (4°)

in which y —=—, y0 —r^-
^ lQ

The sectional forces and displacement of the isotropic shell can be obtained
by substituting, dx kx dy ky=l in Eqs. (24) and (25). By using Eqs. (39)
and (40) the following equations to express the relation between the sectional
forces and displacement of the first shell and those of the second are produced.

Nx =(NX), Mx
1 B ..--.
^R-0^'

Nv =(N9), Mv
1 B t, x

^ xq> \-" xcp) ' Mxv
1 B --.
^R~0(x'p)'

Q* =l-(Qx),
0

Qv =£w.
w — c2 (w), u >,
v c (v), e

±t0

(41)

In this equations the sectional forces and displacements in parentheses are
those of the second shell. When # #0 we find that c 1 and BIB0 lll0 tlt0.
That is, with respect to a pair of cylindrical shells which are similar in shape
but different in size, as for instance, is the case with an actual cylindrical shell
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and its model, the relation between their respective stresses and displacements

can be obtained by substituting c 1 in Eq. (41).

8. Accuracy

In the proposed approximation for the anisotropic cylindrical shell it has
been assumed that (1) Poisson's ratio is zero and (2) the eccentricity of the
ribs is negligible. These assumptions will produce an element of error. With
respect to concrete cylindrical shells, however, the assumption that Poisson's
ratio is zero is not considered to have any appreciable effect. Neither does the
negligence of the rib's eccentricity seem to cause any perceptible error in
practical application so long as this eccentricity does not become large in
proportion to the radius of the shell.

In this Solution, in which an anisotropic cylindrical shell is transformed
into an equivalent isotropic cylindrical shell, we write 1 — l/ky 1, because the
circumferential flexural rigidity ratio ky is very large in comparison to 1. The
error due to this assumption will be approximately l/ky in comparison to the
results obtained on the basis of the first two of the assumptions mentioned
above.

9. Examples for Calculation

Cylindrical shell with ribs: B 28 031 m, Z 40.0 m,
* 0.10m, # 60°.

Dimensions of rib, as illustrated in Fig. 3.

Distance between ribs, 5 m.

"ST

0.550

n
JL

0.550

5000
1^

C3 5.000

Crown (Section) Edge (Section)

Fig. 3.

Dx= DXy 0.1 E, Kx= KXy 0.00008333 #,
K- 0.013805 E,

ky 165.664.
Dy 0.1659 .E,

.'.dy 1.659,

For the thickness and Iy the average of the values at the top and lower
end of the shell has been taken.

Dimensions of the equivalent cylindrical shell:

B0 B, t0 0.6474395, l0 56.3986.
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Table 1

Edge
Load

See-

tional
Forces

Solution*

Angle cö

0 0.2 0.4 0.6 0.8 1.0

A 14.1605 -1.2844 -3.6957 -1.7665 0.2598 1.0573
Nx B 14.0693 -1.2762 -3.6718 -1.7543 0.2586 1.0505

A 1.0000 0.2165 -0.5189 -0.5418 -0.1881 0.1335

N9=\
N<P B 1.0000 0.2163 -0.5187 -0.5414 -0.1878 0.1334

<P A 0 2.2302 0.7857 -0.5333 -0.8434 -0.4901
N<px B 0 2.2235 0.7833 -0.5316 -0.8403 -0.4883

A 0 -0.4963 -1.2779 -1.5003 -1.0993 -0.4652
M<p B 0 -0.4960 -1.2772 -1.4994 -1.0985 -0.4648

A 45.957 -9.223 -12.682 -2.720 4.379 5.439
Nx B 45.741 -9.166 -12.605 -2.701 4.353 5.428

A 0 -2.2005 -3.3288 -1.9771 0.0146 1.1865
N<P B 0 -2.1994 -3.3271 -1.9764 0.0147 1.1864

K=l A 0 5.3917 -0.7210 -4.3526 -3.7352 -1.2691
Ncpx B 0 5.3753 -0.7188 -4.3994 -3.7338 -1.2652

A 0 -5.4844 -8.4341 -7.5780 -4.3729 -1.1071
My B 0 -5.4842 -8.4335 -7.5773 -4.3725 -1.1071

A -5.5043 -0.7812 0.5244 0.4537 0.0845 -0.1540
Nx B -5.4878 -0.7789 0.5229 0.4523 0.0841 -0.1535

A 0 -0.08748 -0.05075 0.10096 0.05932 -0.00311
N<P B 0 -0.08763 -0.05090 0.10116 0.05940 -0.00312

*<px=l A 1.00000 -0.26280 -0.23816 0.01404 0.13762 0.11528
N<px B 1.00000 -0.26277 -0.23814 0.01404 0.13758 0.11528

A 0 0.04616 0.17997 0.26208 0.23047 0.12856
My B 0 0.04630 0.18053 0.26288 0.23116 0.12894

A -2.6554 0.7041 0.6298 -0.0436 -0.3695 -0.3065
Nx B -2.6429 0.7002 0.6263 -0.0431 -0.3662 -0.3048

A 0 0.11058 0.12937 0.02327 -0.08050 -0.11280
N<p B 0 0.11062 0.12938 0.02331 -0.08154 -0.11279

My=l A 0 -0.22900 0.13830 0.26906 0.15594 -0.01075
N<px B 0 -0.22829 0.13787 0.26824 0.15553 -0.01065

A 1.0000 0.9762 0.8315 0.5429 0.2266 0.0023

'
M<p B 1.0000 0.9762 0.8315 0.5430 0.2268 0.0023

* A: The values obtained by the approximation discussed in Section 4.

B: The values calculated by the transformation of an anisotropic shell to its equi¬
valent isotropic shell.
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Table 1 shows the results of the calculations made for an anisotropic
cylindrical shell which has one of its edges subjected to loads Ny, By, Nxv,
My=\. Of the figures given for each type of sectional force, those in line
with A are the values obtained by the approximation discussed in Section 4,
and those in line with B are the values obtained by the transformation of an
anisotropic shell to its equivalent isotropic shell described in Section 6. The
errors in both are less than 1%. W. Zerna's method [5] was employed for
the calculation of the equivalent isotropic shell transformed from an anisotropic

shell.

10. Conclusion

The approximation proposed has been deduced from the assumptions that
(1) Poisson's ratio is zero, (2) the eccentricity of reinforcing ribs may be
neglected, (3) the radial shear force Qy in the equation of equilibrium for an
infinitesimal element in the circumferential direction is negligible. The characteristic

equation, the characteristic values, and the sectional forces etc. have
been reduced to simple expressions. These considerations allow this approximation

to be employed for practical calculations.
Denoting dx dy 1, kx ky 1 in the various equations in this method

will yield a Solution for an isotropic cylindrical shell, which is in complete
agreement with the results obtained by W. Zerna's method [5]. The
Observation of the equations in the proposed method will clarify the relationship
between an anisotropic cylindrical shell and an isotropic cylindrical shell.

The characteristic values of an anisotropic shell are determined, according
to Eq. (14), by the longitudinal tensile rigidity ratio dx and circumferential
flexural rigidity ratio ky, but they do not refer to the longitudinal flexural
rigidity ratio kx. Therefore the provision of reinforcing ribs in the longitudinal
direction has no practical effect. It would be the same if the thickness of the
shell were increased by an amount equivalent to the volume of material in
the ribs being spread over the entire surface of the shell.

The addition to the shell's flexural rigidity by means of circumferential
ribs will produce a considerable effect in practical use.

For any anisotropic cylindrical shell (with span l and thickness t) and
having reinforcing ribs, there will be innumerable equivalent isotropic cylindrical

shells which have the same characteristic values as the anisotropic shell.
If an equivalent isotropic shell were to be provided with the same radius and
central angle as those of the corresponding anisotropic shell, its span l0 and
thickness t0 would be expressed by

l*=V2h h=^t-
That is, the sectional forces will damp off from the edges of an anisotropic
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cylindrical shell with reinforcing ribs in the same way as from the edges of its
equivalent shell, whose span and thickness are expressed by the above equation.

Between the sectional forces and displacements of these two shells there
is a certain fixed relationship as denoted by Eq. (31).

The numerical calculations for an anisotropic shell is a very simple
procedure if the proposed method for the replacement of the anisotropic shell

by its equivalent isotropic shell is followed, because the readily available
numerical tables for isotropic shells can be used.
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Summary

An isotropic cylindrical shell is considered which has a central angle and
characteristic values both identical with those of an anisotropic cylindrical
shell having ribs in a transverse direction. This isotropic cylindrical shell is
called the equivalent isotropic cylindrical shell of the latter. The relations
between these two cylindrical shells are defined in terms of the dimensions,
sectional forces and displacements. Consequently the sectional forces and
displacements working on any anisotropic cylindrical shell can be found by
calculating the sectional forces and displacements of its equivalent isotropic
shell. With the use of the available numerical tables this is a much simpler
procedure than solvingjthe equations of the anisotropic cylindrical shell.
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Resume

L'auteur considere un voile cylindrique isotrope dont les valeurs
caracteristiques et l'angle au centre sont identiques a ceux d'un voile cylindrique
anisotrope, presentant des nervures transversales. Ce voile isotrope est appele
voile cylindrique isotrope equivalent. Les relations entre ces deux voiles
cylindriques sont exprimees en fonetion des dimensions, des efforts interieurs
et des deformations. Les efforts interieurs et les deformations d'un voile
cylindrique anisotrope quelconque se trouveront donc en resolvant le probleme
pour le voile isotrope equivalent; gräce aux tables numeriques existantes, ce

procede est bien plus simple qu'une etude directe du voile cylindrique anisotrope.

Zusammenfassung

Betrachten wir eine isotrope Zylinderschale, deren Zentriwinkel und
maßgebende Größen identisch denjenigen einer gegebenen anisotropen Zylinderschale

mit querverlaufenden Rippen seien. Diese betrachtete Schale bezeichnen

wir als entsprechende isotrope Zylinderschale. Die Beziehungen zwischen
diesen beiden Schalen werden wir in Funktion der Abmessungen, Schnittkräfte

und Deformationen erhalten. So kann denn die Bestimmung der Schnitt-
kräfte und Deformationen einer anisotropen Zylinderschale auf diejenige einer
isotropen, entsprechenden Schale zurückgeführt werden, was dank den zur
Verfügung stehenden Tabellen viel einfacher ist als die direkte Behandlung
der anisotropen Zylinderschale.
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