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Transversely Loaded Compression Members
Made of Materials Having No Tensile Strength

La capacite portante des pieces comprimees et flechies transversalement, formees
de materiaux sans resistanee ä la traction

Die Tragfähigkeit von querbelasteten, gedrückten Bauteilen, die aus Baustoffen
ohne Zugfestigkeit hergestellt sind

SVEN SAHLIN
Tekn. D., Docent, Division of Building Statics and Structural Engineering,

Royal Institute of Technology, Stockholm, Sweden

The present paper is a study of the load-carrying capacity of transversely
loaded compression members, such as columns, walls, struts, or the like, which
are made of materials having no tensile strength. Furthermore, a comparison
is made with the corresponding conditions of loading in the cases where the
material possesses tensile strength. In both cases, it is assumed that failure in
compression is not to be taken into consideration. The transverse loading is
supposed to consist of one or two symmetrically applied concentrated loads,
see Fig. 1 and Fig. 4, respectively.

In dealing with the conditions of loading shown in Fig. 1, use can be made
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Fig. 1. Compression Member Submitted to a Transverse Load at the Centre.
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of Fig. 2. Fig. 2 was taken from [1], see also [2]. This figure represents, for
several values of the load and the eccentricity, the angle of rotation of the
end of a wall having no tensile strength, which is submitted to an eccentric
load at one end.

On the assumption that the deformations are small, that the material is

elastic, and that it has no tensile strength, we obtain Eqs. (1), (2) and (3)

from Fig. 1.
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Fig. 2. Relation between the compressive load P and the angle of rotation <pv of an end
of a compression member made of a material having no tensile strength, which is
submitted to an eccentric load at one end and to a central load at the other end. The full-line
curves represent the relations which are obtained when the eccentricity e has certain
constant values, while the dash-line curves refer to the relations which are obtained

when the edge stress has certain constant values.
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Fig. 3. Relation between the transverse load H and the compressive load P for
compression members under the conditions of loading shown in Figs. 1 and 2. The abscissa

represents -=-7 for the füll-line curves and ——- for the other curves. The curves arePd Pßd
marked in accordance with the table below.

*) These curves apply only to the values assumed on p. 249.
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Conditions of loading

shown in Fig. 1

Conditions of loading

shown in Fig. 4
Hh
Pd

Hh
PEd

Material having no
tensile strength

Material having
tensile strength*)

(A)

(1) (5)

(B) (C)

H
h ~ 2P'

where e, P, and <p„ have the same significance as in Fig. 2, while Xh A/2.

(1)

(2)

(3)
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From Eqs. (1), (2), and (3) we get

Xh en e

d <Pv

and hence

and

HXh
2Pd

d d

e Xh

d
e

d'
HXh
2Pd

Hh
Pd

.le Xh \
4{d-T^J-

(4)

(5)

(6)

For a series of constant values of P, the maximum values of the right-hand
Hhmember of Eq. (6) can be found from Fig. 2 (for this purpose, -p-r may possibly

be plotted as / (e/d) in order that the maximum values may be determined
more sharply).

After this Operation has been carried out, the maximum values of -p-r for

a series of values of P are known. The result of such calculations is represented

by the full-line curve (A) in Fig. 3. As the Euler critical load PE "
,2 has

been introduced, the abscissa in this graph expresses a relative value.
In order that an idea of the absolute magnitude of H may be formed,

Hh
P^d -'(*)

is also shown in Fig. 3 by the dash-line curve (A).
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Fig. 4. Compression Member Submitted to Two Symmetrically Applied Transverse
Loads H/2.

A direct treatment of the case of loading represented in Fig. 4 was not
possible with the aid of the available data. To begin with, it was therefore
necessary to make a preparatory calculation so as to determine the angle of
rotation of an end of a compression member, e. g. a wall, having no tensile
strength, which is subjected to loads of equal eccentricity at both ends. Fig. 5
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shows the results of this calculation, which has been carried out by using
those Solutions of the equation of the elastic curve of members made ofmaterials
having no tensile strength which had been published in [3], [4], [5], and [1].

From Fig. 4 we"get the equations (7), (8) and (9).
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Fig. 5. Relation between the compressive load P and the angle of rotation <pv of an end
of a compression member made of a material having no tensile strength, which is
submitted to loads of equal eccentricity at both ends. The full-line curves represent the
relations which are obtained when the eccentricity e has certain constant values, while
the dash-line curves refer to the relations which are obtained when the edge stress has

certain constant values.
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(8)

(9)

where cpVa is the angle of rotation of an end of a compression member which is
submitted to an eccentric load at one end only (Fig. 2) and cpVb is the angle
of rotation of an end of a compression member which is subjected to loads of
equal eccentricity at both ends (Fig. 5).

For A a=4, Eqs. (7), (8), and (9) yield

Hh
Pd

\e (Xh Xh \\ß[d-^+ir^)l (10)

While Eq. (6) is used for one transverse load, Eq. (10) is employed in a

similar way for two transverse loads in order to find i-^-.J for various
\Jr d/ max.

values of P. In this case, —f<pVa is obtained from Fig. 2 and —f<pVb is
determined from Fig. 5.

The results of this calculation are shown in Fig. 3, where the füll-line

curve (B) represents -p-=- and the dash-line curve (B) represents p—*-
The curves (C) for a \ are obtained in an analogous manner.
If the material is assumed to be able to take certain limited tensile stresses,

then the equation of the elastic curve of a member made of a material having
tensile strength gives the following moment at the centre of a member
submitted to combined compression and bending in accordance with Fig. 1:

where k y-^r-p -7-Vw -r-a.
1 E J h 1 Pw h

ÄÄtgga)
27raMmax= 0_r • (12)

For a rectangular cross section (bd), the maximum tensile stress is

P ßM
a -bd+~bdT- (13)

By substituting Eq. (12) in Eq. (13) and by transforming, we get

Hh /4<7Ä»

P*d {m + ja2)acot{ia)- (14)

Thus, the maximum transverse load H is a function of both the tensile
strength and the compressive load. In other words, this is a stress problem,
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which differs in principle from the case of a material having no tensile strength,
where H was determined by the compressive load alone, that is to say, where
we had to deal with a stability problem.

The following calculation shows how the results shown in Fig. 3 are modified
when the material has tensile strength.

Assume a=lkp/cm2, E= 10000kp/cm2, h/d 25. Then

Pw.d -fc4-625
10000 + 21 a cot I — a I. (15)

We obtain the dot-line curve (1) in Fig. 3. This curve is compared with
the dash-line curve (A).

A certain tensile strength of the material causes an increase in H at very
small loads P. This is further emphasised by the dot-line curve (5), which
was calculated for er 5 kp/cm2, the other values being unchanged.

In the above calculations it was assumed that the transverse load H is
that load at which the tensile strength of the material is exceeded, i. e. the
cracking load. Now cracking does not necessarily imply that the load-carrying
capacity of the member has been exhausted. A position of equilibrium which
involves a partly cracked cross section and a certain tensile zone is fully
conceivable. Such a possibility would permit a substantial increase in H above
the cracking load in certain cases. Thus, it would be possible to raise the
relevant portions of the curve (1) in Fig. 3 above the curve (^4). However, it
may be imagined that the stress concentration at the root of the crack would
give rise to almost total cracking on the side in tension. Therefore, the case
where the material has no tensile strength should for the time being be regarded
as a lower limit on the safe side. Accordingly, the maximum transverse load
H is determined either by the cracking load calculated from the tensile strength
of the material in question, or by the ultimate load of the material having no
tensile strength, whichever of these two values is the greater.

Example, See Fig. 6

^tensile 1 kp/cm2
E 10000 kp/cm2
L 6 m
d 12 cm
P 4 Mp/m

Fig. 6. Example
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h — 300 cm,
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h 300
d 25 =12' ^ 0>0001>

Pe
tt2 10000-100-123

P_ _
PE ~ 15 800

From Eq. (14)

#12

12-3002

4000

15 800 kp/m,

0,253, a y-rr 0,501.

15 800
— •0,0001122 + ^0,253Vo,501cot^-0,50l] =0,141,

H 185 kp/m cracking load).

From Fig. 3, Curve (A), J^J ~ 12 0,24,

# 0>24'15800
320 kp/m ^ ultimate load).

1A

Appendix

The elastic curve of a compression member made of a material having no
tensile strength is assumed to have the general shape shown in Fig. 7. The
total length h of the member is calculated in a way which is in principle
indicated in this figure. Cf. [5] and [1].
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Fig. 7. Elastic Curve of a Compression Member Made of a Material Having no Tensile

Strength.
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The function f f(p,m), which is different in 3 intervals, is dependent on

p 3 — — \ as follows:

/i (P> m) i V{l-p)(S-m)(l + 2p-m)

m 6| and p 3^ — ^ as follows:

+ i(l-P)3/ain2-m + y+K(3i:^)(1 + 2y-w), (AI)
'W? —• 1

/,(p,m)= l/p(l-p) + |(l-ppln
1 + l/p

+ are sin V J-J?— are sin (mV } f (A 2)ri + 3p \ r 1 + 32?/
v '

0^m<l, 0^p<l.
m

1z (p,»») -g - arc sin"f^2^'
m —1 (A3)

^p<0, O^m^l.

where m1 is the relative eccentricity at the top end of the member and m2 is
the relative eccentricity at the bottom end of the member.

The angle of rotation cpVl of an end of the compression member is dependent
on p and m as follows

gP,A
x- 2±hy-üjF{Vimi)> (A4)

where F (p,m1) is different in 3 intervals so that F± corresponds to /2, etc.

_, 1,/ l + 2p-m1 _F^'m^lUi-PHs-^ (A5)

^(P,™) j/^^-™I (A6)

F3(p,m) iV(l + 2p)*-ml. (A7)

We consider half the compression member in accordance with Fig. 1. We
calculate the angle of rotation at the centre, observing that m2 0 and h h/2
in Eq. (A4)

h
2d9*~ 6 ¦¦4i£F^-3-iiwj *<*>">>' (A8)

From Eq. (5) we get
Xh h e Hh _x
-d-<P« 2d<?v d-TPd- (A9)
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Eqs. (A8) and (A9) yield
Hh
Pd 2hy^jF(p,mi). (A10)

From Eqs. (A1) to (A3) and Fig. 7 we find

A]/^=2[/(p,0)-/(2>,m1)]> (AH)

which, together with Eq. (A10), gives

§^=4LU(p,0)-f(p,m1)]F(p,m1), (A12)

where m1 -~r, cf. Eq. (4).

By substituting PE ——~— and by squaring Eq. (All), we obtain

p =4-[/(p>°)-/(p>™i>]8 (Ai3)
EPv 77

and multiplying by Eq. (A12) gives

jr| ^U(P,0)-f(p,m1)]*F(iJ,m1). (AU)

Eqs. (A12), (A13), and (A14) give a Solution to the problem of finding a
maximum value of H as a function of P or PjPE.

If the compression member is acted upon by two transverse loads, then
the respective analytical expressions <pVa and cpv are substituted in Eq. (10),
and the calculation is similar to that in the case where a single transverse load
is applied at the centre. An analogous procedure is used in the case of several
transverse loads.
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Summary

This paper is a study of the load-carrying capacity of transversely loaded
compression members which are made of materials having no tensile strength.
Detailed calculations were carried out in the cases of one and two symmetri-
cally applied, concentrated transverse loads, see Figs. 1 and 4, respectively.
The former case was also compared with Solutions relating to materials having
tensile strength. The case of no tensile strength is a stability problem, while
the case of tensile strength is a stress problem. The results are shown in Fig. 3.

Resume

Le present rapport est une etude de la capacite portante des pieces
comprimees et flechies transversalement, formees de materiaux sans resistanee
a la traction. Des calculs detailles ont ete faits en considerant une ou deux
charges transversales concentrees symetriques (voir fig. 1 et 4). En outre, dans
le premier cas, on a compare la Solution obtenue a celles relatives aux materiaux

resistants ä la traction. Le cas sans resistanee a la traction est un
probleme de stabilite, tandis que le cas avec resistanee a la traction est un
probleme de contraintes. Les resultats sont representes ä la fig. 3.

Zusammenfassung

Dieser Bericht behandelt die Tragfähigkeit von querbelasteten, gedrückten
Bauteilen, die aus Baustoffen ohne Zugfestigkeit hergestellt sind. In den Fällen
einer bzw. zweier symmetrisch angebrachten Einzelquerlasten, siehe Abb. 1

bzw. 4, wurden ausführliche Berechnungen angestellt. Der erstgenannte Fall
wurde auch mit Lösungen verglichen, die sich auf Baustoffe mit Zugfestigkeit
beziehen. Der Fall ohne Zugfestigkeit ist ein Stabilitätsproblem, während der
Fall mit Zugfestigkeit ein Spannungsproblem ist. Die Ergebnisse sind in
Abb. 3 dargestellt.
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