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On Structural Concrete and the Theorems of Limit Analysis1)

Application des theoremes fondamentaux de l'analyse limite aux constructions
en beton

Die Anwendung der Fundamentaltheoreme der plastischen Berechnungs¬
methode (Limit Analysis) auf den Eisenbeton

D. C. DRUCKER
Chairman, Physical Sciences Council, Brown University, Providence, Rhode Island, USA

Introduction

Load carrying capacity or ultimate strength calculations are taking on a

more and more important role in the design of structures of steel and of
reinforced and prestressed concrete [l]2). The limit theorems for a steel structure
idealized to behave in a perfectly plastic manner have a sound theoretical
basis [2] and their limitations are well understood [3]. Excellent agreement is
obtained with the behavior of actual framed structures of steel [4], [5].
Concrete, however, is brittle in compression and very weak in tension. Although
the ability to carry compression makes it suitable for heavy piers and footings,
inability to take appreciable tension would seem on first principles to prohibit
its use in beams, frames, and slabs.

In the design and analysis of beams it is said that reinforcing steel takes
the tension and concrete the compression in bending. Design then proceeds
on the basis of beam theory. Should the shear stresses be found too large the
diagonal tension is taken by additional steel. However, tensile stresses around
and between the stirrups or the bent-up steel are not considered explicitly nor
are computations made of the ever present large tensile stresses corresponding
to the shearing stresses of bond. It is true that at ordinary loads the average

x) The results in this paper were obtained in the course of research sponsored by
the National Science Foundation under Grant G-8188.

2) Numbers in brackets refer to the Bibliography at the end of the paper.
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tensile stresses produced by bond or transverse shear are small enough to be
carried by sound concrete without cracking. Also, appreciable tension can be

taken on oblique planes even when shrinkage and longitudinal tension cause
transverse cracking.

Nevertheless, when the load factor N (factor of safety against reaching
the load carrying capacity) is considered, it is the conditions applying at and
near collapse which are of importance along with the subsequent behavior at
working loads once an overload has been applied. Tensile cracking is likely to
occur oli oblique as well as on transverse planes of a beam which is designed
in accordance with present day practice.

There is then some point in starting from the beginning and considering
the analysis and the design of a concrete and steel structure on the safe assumption

that concrete is unable to take any tension. Complete inability to carry
tensile stress does fall within the scope of limit theory as discussed in earlier
applications to soil mechanics and Voussoir arches [6]. Fig. 1 shows the Mises

or octahedral shear stress criterion of yielding in prineipal stress space with
tension cut-off planes. Fig. 2 gives the corresponding picture for the Tresca

a.a.
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Fig. 1. Mises Criterion with
Tension Cut-Off.

Fig. 2. Tresca Criterion with
Tension Cut-Off.
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Fig. 3. Mohr's Circle Envelope

with Tension Cut-Off.
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Fig. 4. Stress-Strain Curve for Concrete
and Perfectly Plastic Idealizations.
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criterion of maximum shearing stress. Fig. 3 is the representation of the
envelope of Mohr's circles familiär from soil mechanics in which the requirement

of zero tension is met by the circle termination as shown. No energy is
dissipated in the formation of a simple tension crack; both normal and shearing
stresses are zero on the plane of Separation.

Unfortunately, brittleness in compression and a failing stress-strain curve
after a maximum strength is reached, Fig. 4, are not compatible with limit
theory. Professor Winter's statements on page 50 of his paper [7] are most
pertinent:

"There is a certain paradox in the fact that recent tendencies to use ever
higher concrete strengths coincide with simultaneous tendencies toward utiliza-
tion of the ductility of concrete in ultimate design. With broader acceptance
of ultimate strength design a more realistic attitude toward concrete strength
is likely to establish itself.''

Suppose temporarily that the deformability of concrete in compression
prior to appreciable fall-off of stress is sufficient to permit the applicability
of limit theory with concrete idealized as perfectly plastic at a yield stress in
compression close to the ultimate stress, fu. Also suppose the steel to have a
flat yield region at stress s0 or to be approximated reasonably well or safely
by such a perfectly plastic idealization. The two limit theorems [2] then may
be phrased as:

Lower Bound. If an equilibrium distribution of stress can be found in the
concrete and the steel which is nowhere tensile in the concrete and is everywhere

at or below yield, the structure will not collapse or will just be at the
point of collapse.

Upper Bound. The structure will collapse if there is any compatible pattern
of plastic deformation for which the rate of work of the external loads exceeds
the rate of internal dissipation.

Simply Supported Rectangular Beams as Illustrations

It is of interest to consider the design of simply supported rectangular
beams b xd from the viewpoint of the limit theorems and to pretend that beam
theory had not been invented. A uniformly loaded beam and a beam of
negligible weight supporting a "concentrated" load at mid-span spread out
just sufficiently to avoid local crushing at collapse are shown in Figs. 5 a and
5 b, respectively. Concrete, which cannot carry tension, must behave as a very
flat arch [8]. The outward thrust of the arch is shown with a slight blurring
of geometry as taken by a steel tension tie between two end plates bearing
on the concrete. The steel tie is unbonded. Efficient use of the material would
seem at first to dictate that at the ultimate or collapse load both steel and
concrete be at their yield stresses s0 and fu, respectively. Furthermore, the
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steel should be at the f depth position to provide the maximum possible
resisting moment equal to that of a homogeneous beam with yield stress fu

Mmax fubd*l4. s0Asdl2 (1)

as s0As fubd/2. (2)

The approach so far has been by means of the lower bound or equilibrium
theorem and so might underestimate the strength of the beam. Fig. 6a is a
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Fig. 5. Arch Action. A Lower Bound or Equilibrium Picture.
Note: Little triangles shown are under equal biaxial compression fu ¦
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Fig. 6 a. Kinematic Picture of Collapse.

No work is done in tensile cracking. Upper bound equals lower bound of Fig. 5, Eq. (3).

kinematic picture which gives an upper bound equal to the lower bound and,
therefore, the correct answer for the idealization. Very closely,

NwL 2NP 2fubd2/L ±s0Asd/L (3)

where N is the load factor, w is the uniform load per unit of length, L is the
span, and P is the "concentrated" load.

The kinematic picture as drawn, showing rotation about the mid-depth
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position, can be interpreted in two independent ways. One is that the steel
tie does not stretch and the shaded areas of concrete at the ends as well as in
the center are crushed plastically. If the maximum rate of deflection is denoted
by A, the maximum crushing rate for the shaded triangle at each end is A d/L,
and is 2Ad\L for the center shaded triangle. Equating external rate of work,
NwLA/2 or NPA to internal rate of dissipation [2 (bd/2) (A d/2 L)+
+ (bdj2) (A d/L)]fu leads to the fu form of Eq. (3). The kinematic picture may
be thought of instead as representing plastic stretching of the steel tie rod at
a rate of A d\2 L at each end plus plastic crushing of the concrete at the center
of the span to the same depth d/2 as before but without deformation of the
concrete at the ends of the beam. There is no change in the external rate of
doing work but the internal dissipation rate becomes [2 As (A d/2 £,)] s0 +
+ [(bd/2) (A d/L)]fu which again leads to Eq. (3) upon Substitution of Eq. (2).

Of course, the difference in the possible control of quality of steel and of
concrete would dictate a larger factor of safety for the concrete than for the
steel. Not only would the value of fu be chosen conservatively but the
continued increase of strength of concrete with the months and years would also
be ignored. Duetile steel therefore would be the actual determining factor in
the load carrying capacity given by the s0 form of Eq. (1) with a little larger
lever arm than d/2. The lower bound picture would show a tied arch as in
Fig. 5 (with compressive stress fu) but s0As/bfu deep instead of d/2. The upper
bound picture would be similar to Fig. 6 a with the rotation taking place about
a pivot s0 Asjb fu from the top of the beam. The steel tie would be taken to
elongate plastically; the concrete at the ends of the beam would not crush.

SEPARATION

Fig. 6 b. Kinematic Picture of Collapse for Load Applied at Mid-Height.
Load carrying capacity is halved.

The vertical location of the point of application of the vertical load is of
great importance in a material unable to take any tension. No downward load
at all could be carried if it were applied to the bottom instead of the top of
the beam. Half the load only could be applied at the mid-height. This is seen
from lower bound considerations because the arch would have only half the
rise. Fig. 6b, the upper bound picture of Separation along the mid-height plane
plus midspan cracking also gives half the dissipation of Fig. 6 a. Agreement of
upper and lower bounds proves that the load carrying capacity is exactly
halved.

Ability to take some tension does, of course, mean that the consequences
are not as drastic in reinforced or prestressed concrete as in the idealized
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material. It does emphasize, however, the greater function of shear reinforcement

when beams are loaded by cross-beams framing into them than when
loads are applied to the top surface of the beam.

Beam Theory

Beam theory, with its plane cross-sections remaining plane, leads to quite
different answers. Steel is thought of as at the very bottom of the effective
depth deff of the beam and is covered primarily for fire protection. In idealized
elastic behavior, Fig. 7 a, the strain and the stress distribution are linear.. In
idealized plastic behavior, with both steel and concrete yielding, the limit

F T Bf-
-*•

(a) Elastic (b) Limiting Plastic
«SO As fub deff

Fig. 7. Beam Theory.

picture of plastic moment would look as shown in Fig. 7 b. Once more, however,
steel governs in practice because of the greater uncertainty in the properties
of concrete. Nevertheless, füll use of the concrete would appear to require
almost twice the amount of steel as in (2)

*oA8 fubdeff (4)

with a consequent doubling to fubd^f/2 of the moment carrying capacity
found previously. However, the percentage of steel would be twice that for
the tied arch picture, Eq. (2)

A i
bd " 2s0' [ }

which is 5% based on the gross area with fu of 3000 psi and eS0 of 30,000 psi,
and 1% for fu of 5000 and s0 of 250,000.

Utilization of the füll plastic moment carrying capacity of a beam would
not only require twice this excessive reinforcement but would also lead to
very large shear and bond stress. The accompanying tensile stress could not
be dealt with by ordinary reinforcing bars or wires.

Beam theory in fact provides neither a lower bound nor an upper bound
of much value in Computing load carrying capacity if a material is unable to
take tension. There is no valid lower bound because there is no consideration
of transmission of force from the steel to the concrete without causing any
tensile stress in the idealized material or without causing appreciable tensile
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stress over an appreciable area in the actual concrete. The upper bound given
by ordinary beam theory is likely to be far too high when the usual plane
section remaining plane mode of deformation is chosen.

As is well known, much can depend upon small changes in the geometry
of the structure. An illustration is the addition of haunched ends which may
prove extremely effective in improving arch action and providing proper
anchorage for the steel. Details must be watched carefully also. For example,
reinforcing bars should pass through or terminate in a region in which at least
biaxial compression is present or can be induced by the bar.

Geometry Changes

Not only is the fully plastic beam moment essentially unobtainable but
the füll tied arch carrying capacity also can not be achieved without diffieulty.
The arch is extremely flat so that its length does not exceed its horizontal
projection by much of a margin. For the case of the concentrated load, the
rise of d/2 in a distance of approximately L\2 makes each half of the arch
about d2/4 L longer than L\2. If the sum of the strain in the concrete plus the
strain in the steel exceeds

e (d*l4L)l{Ll2) l(dlL)* (6)

the arch will flatten out completely. Deflections will be excessive long before
this stage is reached. Large irreversible deformations of the concrete also will
take place much too early in the loading history. Post-stressing of the steel

suggests itself immediately as a means of eliminating almost all of the strain
in the steel under subsequent application of load. However, this alone is

unlikely to reduce the danger of premature brittle collapse sufficiently. The
Solution toward which the designer is forced seems to be a reduetion in the
percentage of steel and a consequent partial rather than füll use of the available
concrete. As shown in Fig. 8, the effective rise of the arch is increased from d/2
by dropping the position of the steel below the f height position and not
depending upon as much of the concrete to participate in the arch action. If

NP

d/4

Afc_
Fig. 8. Less Steel and Less Dependence on Concrete
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half the steel is used and is placed at f d, the load carrying capacity is still f-

as large as in Fig. 5. This result is obtained from both the lower bound picture
of Fig. 8 and from the upper bound sketch which is similar to Fig. 6 with the
axis of rotation at d/4 from the top of the beam instead of d/2. Post-stressing
retains its value in preventing flattening of the arch.

The emphasis on arch action arises from the approach of limit theory
which looks at the equations of equilibrium in the undeformed configuration
of the structure. If the geometry changes [9] of the beam are followed, it may
be seen that as the beam deflects the arch of concrete flattens, and the steel
tie bows downward and maintains the moment carrying capacity. If the
strain in the concrete is not large enough to cause brittle fracture, such
geometry change aids continuous beams and flat slabs in the carrying of load.
Continuous beams usually are too deep compared to their span to take much
advantage of this membrane type of action. Fiat slabs, on the other hand,
with d/L ratios of 1/20 have an arch flattening limiting e of 0.00125 for the
sum of the strains for steel and concrete as given by Eq. (6). Membrane action
will therefore be very strong from almost the very start of loading. The steel
reinforcement required to make the best use of membrane stress is not the
same as for bending alone because the concrete does not contribute its share
in regions of membrane tension.

Although membrane behavior increases the load carrying capacity and so

adds to the safety of the flat slab, it may be misleading in the comparison of
experiment and prediction of limit theory. If, for example, the limit load is
found by an upper bound technique such as the rupture line procedure
described by Johansen [10], it may well be appreciably too high. In an
experimental check of the result, however, the large membrane stresses induced in
the model or prototype may mask the over-estimate completely and convince
the experimenter of the validity of the answer. Other flat slabs of the same

geometry in plan and with the same or smaller values of d\L will behave

properly. However, a flat slab of the same shape in plan but with appreciably
greater depth to span ratio may fail at a load well below the load carrying
capacity predicted by the upper bound. Furthermore, whereas strain-hardening

has a secondary strengthening effect in thick plates of steel or other metals,
the failing off of the stress-strain curve in compression of concrete has a

weakening effect instead.

Fiat Slab Limit Analysis

Despite the great importance of membrane stresses, it is of interest to
compute limit loads for flat slabs on the basis of the original or undeflected
geometry. The arch action equilibrium state for a beam becomes a dorne or
compression membrane or shell for a slab and gives lower bounds. A uniformly
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loaded circular slab of diameter L with balanced or over-ample steel appears
in section exactly as Fig. 5 a. Calling the design load per unit area p and the
load factor N

Np*4fud*l&. (7)

The result for a homogeneous plate of yield stress fu is ßfud2IL2 which provides
an upper bound

Np£6fud*l&. (8)

For a square plate of side L, the lower bound corresponding to two way arch
action and the upper bound corresponding to diagonal rupture lines in a

homogeneous plate are the same as (7) and (8), respectively. Although the
square cannot be stronger than the circle and is likely to be appreciably
weaker, both satisfy

4fud*IL*£Np£6fud*IL*. (9)

Just as for the beam, a lower percentage of steel than needed to develop
the concrete fully will reduce the load carrying capacity. In distinction to the
beam, however, the effects of shear and bond are less critical, and the upper
bounds given by plate theory or the rupture line approach are useful even
when the percentage of steel is high. Also, the need for fire protection insures
that the placement of steel is not too close to the surface of the slab.

Concluding Remarks

An introductory exposition has been presented of the limit analysis of
structures composed of two materials. Beam theory is seen to be inappropriate
in concept for the computation of the load carrying capacity of steel and
concrete structures in which the concrete can carry no tension at all. The limit
theorems do apply, however, if the deformability of the concrete is sufficient.
Although upper and lower bounds coincided in the beam examples chosen for
Illustration, they will not do so in general. Sufficiently close bounds can be

found, however, without excessive effort. Upper bound calculations will
require clever extensions of the kinematic patterns involving Separation and
cracking.

The limit approach may well offer some help to the designer in achieving
structures which more nearly utilize steel and concrete in accordance with
their qualities and in determining ultimate loads for existing structures. A
detailed analytical and spot-checking experimental study of shear reinforcement,

of haunches at the ends of beams, of the placement and curvature of
tensile reinforcement, and of the optimum strength of concrete all should

prove fruitful, although many of the results will turn out to be well known.
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Much more also should be done on plastic analysis beyond limit analysis for
flat slabs and other indeterminate plate and shell structures of reinforced
concrete which develop large membrane stress prior to failure.
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Summary

Although concrete is a material of very limited deformability, indications
are that the load carrying capacity of reinforced and prestressed structures
will, in time, be computed on the basis of the limit theorems of plastic analysis
and design. A discussion is given, therefore, of the significance of the theorems
in terms of the real behavior of structural concrete and its idealizations. The
postulated inability of concrete to take appreciable tension does fall within
the scope of limit analysis. The appropriate statement of the limit theorems
is given, and some simple results are computed for rectangular beams and
flat slabs. A quite different point which falls within existing plasticity theory
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but not limit analysis is that appreciable membrane stresses are developed in
flat slabs and similar structural elements long before the onset of collapse or
structural distress. Comparison of experiment and limit theory then may be

misleading.

Resume

Bien que le materiau beton possede une capacite de deformation tres
restreinte, l'auteur pense que la capacite portante des constructions en beton
arme et en beton precontraint se calculera ä l'avenir en appliquant les
theoremes fondamentaux de l'analyse limite. II examine la signification de ces
theoremes eu egard au comportement reel du beton et ä ses idealisations. Dans
l'analyse limite, il est possible d'inclure l'hypothese que le beton n'a pas de
resistanee appreciable ä la traction. L'auteur indique la maniere appropriee
de formuler les theoremes fondamentaux et donne quelques resultats simples,
concernant des poutres rectangulaires et des dalles. Un tout autre phenomene —
le fait que, dans les dalles et les elements similaires, il se developpe un etat
membranaire appreciable bien avant le debut de la rupture ou de la mise hors
service — peut etre considere dans la theorie actuelle de la plasticite mais pas
dans l'analyse limite. La comparaison de resultats experimentaux avec ceux
donnes par l'analyse limite pourra donc conduire ä des conclusions erronees.

Zusammenfassung

Obgleich Beton ein Baustoff von sehr beschränkter Verformbarkeit ist,
weisen verschiedene Anzeichen darauf hin, daß mit der Zeit die Tragfähigkeit
von Stahlbeton- und Vorspannkonstruktionen mit Hilfe der Fundamentaltheoreme

der plastischen Berechnungsmethode berechnet wird. Der Autor
untersucht die Bedeutung dieser Theoreme unter Berücksichtigung des
tatsächlichen sowie des idealisierten Verhaltens des Betons. Die Annahme, Beton
könne keine nennenswerte Zugspannung aufnehmen, kann in die
Voraussetzungen der plastischen Berechnungsmethode eingegliedert werden. Der
Autor zeigt uns die für Betonkonstruktionen zutreffende Formulierung der
Fundamentaltheoreme sowie einige an rechteckigen Balken und Platten ermittelten

Berechnungsresultate. Eine ganz andere Tatsache ist hingegen, daß in
dünnen Platten und ähnlichen Konstruktionen, lange vor Eintritt des Bruches
oder des Unbrauchbarkeitszustandes, recht ansehnliche Membranspannungen
entstehen können. Diese Tatsache ist wohl mit der bestehenden Plastizitätstheorie,

doch nicht mit der plastischen Berechnungsmethode zu vereinbaren.
So könnten denn Vergleiche zwischen plastischer Berechnungsmethode und
Versuchsresultaten irreführend sein.
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