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Energy Method for Analyzing All Stresses in Rigid Trusses

Une methode energetique pour la determination de toutes les contraintes dans les

treillis ä noeuds rigides

Energiemethode für die Analyse aller Beanspruchungen in Fachwerken mit
starren Knotenverbindungen

SHU-TTEN LI ING-CHANG JONG
Ph. D., F. ASCE, M. IABSE, Professor of M. S., M. IABSE, A. M. ASCE

Civil Engineering
South Dakota School of Mines and Technology, Rapid City, S. Dak.

Introduction

Methods of analyzing pin-connected trusses have inappropriately remained
in use though the latter have long become obsolete. They were first superseded
by riveted trusses about half a Century ago. Since World War II, welded trusses
have gained increasing acceptance. All these modern rigidly-connected trusses,
whether with or without internal or external redundancy, are, by their inherent
nature, highly statically-indeterminate rigid frames. The rigidity of the joints
constitutes the main cause for end moments and transverse shear in each
member.

Including Manderla's1) first enunciation of a method 85 years ago, at least
nine independent methods have been developed, for the Solution of the so-called

"secondary stresses" — stresses caused by conditions ignored in the conventional

analysis of "primary stresses". The problem of secondary stress has, in
reality, arisen from inappropriate Solution of rigidly-connected truss, rather
than from it being truly secondary in nature. By analyzing a rigidly-connected
truss under a given loading as an assemblage or chain of rigid frames, only one

x) Manderla, Heinrich: «Welche Spannungen entstehen in den Streben eines
Fachwerks dadurch, daß die Winkel der Fachwerkdreiecke durch die Belastung eine Änderung
erleiden?» Preisarbeit, Jahresbericht der Technischen Hochschule München, 1878—1879,
P. 18.
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set of perfectly normal genuine stresses will be found existing in such a truss,
thus dispelling the heretofore misnomer of "secondary stresses".

To achieve this elegant ideal of solving all genuine stresses including
secondary stresses in each member of a rigidly-connected truss of any
configuration with any redundancy under any externally applied loading, a matrix-
energy formulation for executing the Solution is proposed herein. The method
enables the determination of all genuine stresses in a unified single set-up; it
adapts to programmed electronic computation; and it provides both exact
and approximate Solutions.

Basic Concepts

A rigidly-connected truss, under a given loading, is equivalent to an otherwise

ideal, pin-connected Version not only identically loaded but also acted
by couples on the bar ends, equal to the internal resisting moments thereat.

In the most general case, if (1) the internal resisting moments at the ends
of the members, (2) the axial stresses in the redundant members, and (3) the
redundant reactions at the supports were all known, a rigidly-connected
indeterminate truss of any redundancy would be completely determined by
statics. These three types of quantities are treated as unknowns in the proposed
method. To ensure that all unknowns are statically independent, equations of
static equilibrium must be fully applied to eliminate dependent unknowns.
Consequently, the number of statically independent unknowns is just equal
to the degree of statical indeterminateness of the truss viewed as an assemblage
of rigid frames. All stresses (internal forces and moments) therein, and hence
the total strain energy of the truss, can be expressed in terms of the externally
applied panel loads and the said unknowns. By appropriate partial differentia-
tions, all the necessary simultaneous equations will be evolved. The following
development in its operative sequence is founded on the above basic concepts.

Constituent Strain-Energy Matrix

The laterally exaggerated elastic curve of any truss member / — J is
represented in Fig. 1.

Notations for any truss member I — J are defined as follows: M^ and M^
are respectively the unknown internal resisting end moment in kip-in at the
I- and J-end; Ni3-, the total axial force in kip; Qtj, the transverse shear in kip;

Mii

7r=
Constant EI;; for Each Bar '

'J

Li] Fig. 1.
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A{j, the cross-sectional area in sq.in.; Iijy the moment of inertia in in4; Lti,
the length in in.; s, the distance from /-end in in.; S the displacement in in.
at a distance s from the /-end, normal to the original centroidal axis; E,
modulus of elasticity of the material in ksi; G, modulus of rigidity of the
material in ksi; fi, Poisson's ratio of the material which may be taken as

equal to 0.3 for structural steel; U^, Vtj, and W^, the strain energy in in-kip
respectively due to bending moment, transverse shear, and axial force.

Let the sign Convention be defined such that (1) positive end moments
produce clockwise rotation of the ends; (2) positive axial forces are in tension;
and (3) a positive pair of end shears forms a counterclockwise couple.

The matrix of constituent strain-energy expressions may now be formulated.
In Fig. 1, recognizing that the moment due to axial force and deviation from
original centroidal axis is usually negligibly small, the true moment about any
point at a distance s from the /-end, that is

M^My-QyS- ¦NitS

may take the simplified form of

Ma=Mii-Qtj8,
where Q.. irZ>ZZxn,

(1)

(2)

(3)

Hence, the constituent strain-energy matrix of any member I — J may be

written according to Menabrea 2) as

fJ[L,W-

Uij

V

ds

f Ml
J EIti

0

Li)
[ Qh

J GAit

ds

ds

1

\E U-iMl-MtjMjt + Mfi)

1+jl
'"¦ij ij

(Mij + MH)2

(4)

in the last of which G Ej2 (1 + /x).

Summing up {W U V}i}- for all members of the truss, the total strain energy,
JJ, of any truss is then

m
P Z[H IJW, U^Vy}, (5)

1

where m is the number of members in the truss.

2) Menabrea, L. F.: A memoir presented to the Academy of Sciences in Turin, 1857.

(Containing the earliest Suggestion in the use of the expression for the strain energy of
the truss.)
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The Matrix Equation of Unknowns and Their Solution

Under the usual conditions of truss analysis, taking all joints as infinitely
rigid, all components as ideally fit, and all supports as unyielding, the application

of Castigliano's second theorem3), or the theorem of least work, to the

present problem, involving trusses with any degree of redundancy, will give
the following relations:

idU 3U 3U\ _.

\YmJnIr\ {() 00}' (6)

where M is the statically independent unknown end moment; N, the unknown
axial force in the redundant member, if any; R, the unknown redundant
reaction, if any. While Eqs. (6) represent minimization of strain energy or zero
"relative" displacements, the last of Eqs. (6) also denotes the condition of
zero settlement of support. In case of non-zero, then according to Castigliano's

Zi TJ P) TT

first theorem3), ^-^ would be equal to the rotation; -^, an over-run or under-

run; and -^, the support settlement.

The unknowns .M's, JV's, and Ä's of any loaded plane truss of any configuration

may be generalized as the unknown column vector {XJ. Repeated appli-
r) TJ

cation of -^=r- 0 will yield a set of n non-homogeneous simultaneous algebraic

linear equations of the type

WWACJ (7)

as the ith equation, in which both i and k 1, 2, i, ,j, n, and the
constant term Gi has been transposed to the right-hand side.

It follows directly from Maxwell's theorem of reciprocity4) that the
coefficient a^ of Xi in the ;? th equation is identical both in sign and magnitude
as the coefficient a{j of Xj in the ith equation, and by virtue of this well-
known fact,

aij aji, (8)

where i + j, giving a Symmetrie coefficient matrix, analogous to the "flexibility

matrix"5). Hence, in abbreviated matrix form, the set of equations
becomes

K]{J<} {CJ, (9)

3) Castigliano, Alberto: «Nuova teoria interno dell'equilibrio dei sistemi elastici».
Atti delle Academia delle Scienze, Torino, 1875.

4) Maxwell, James Clerk: "On the Calculation of the Equilibrium and the Stiffness
of Frames". Phil. Mag., Series 4, Vol. 27, 1864, P. 294.

5) Argyris, J. H.: A series of articles in Aircraft Engineering (London) between
October 1954 and May 1955.
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which always has a general Solution by inverting [atj] unless the matrix [a{j]
is singular. That is to say, if |a^| + 0, the Solution is

{ZJ K,]-1{Q. (10)

Since [a^]"1 is uniquely satisfying [a^1 [ai:l] U (unit matrix), the vector of
Solutions given by [ö^-]_1 {CJ constitutes the only Solutions. In Eqs. (9), because
of symmetry, only \n (n + 1) coefficients are to be evaluated and consequently
the Computer time for inverting the matrix will be correspondingly reduced.
In inverting large matrices, an efficient and fast method such as Li's algorisms6)
is recommended.

The Illustrative Example

To exemplify the numerical process and compare the results with those
obtained by using recognized methods, let the example given by Sutherland
and Bowman 7) be solved by the proposed matrix-energy method.

Statement of the Problem

It is desired to find all genuine stresses at the ends of each member of the
rigidly-connected truss shown in Fig. 2 due to vertical loads of 166 kips at

28

166 166249 166

25 =100

249K

Fig. 2.

each lower panel point except at supports. The makeup of the members is

given in Table 1. For simplicity, assume centroidal axes of members intersect
at theoretical panel points, thus eliminating eccentric moments. Poisson's
ratio, \l, is taken as 0.3.

6) Li, Shti-t'ien: "Converging Matric Algorisms for Solving Systems of Linear
Equations". Trans, of the November 1962 Convention of the Chinese Association for the
Advancement of Science, Taipei, China, Vol. 1, November 1962, PP. 16—22.

7) Sutherland, Hale and Bowman, Harry Lake: "Structural Theory". 4th Edition,
1950, Seventh Printing, 1961; John Wiley & Sons, Inc., New York; PP. 351—357.
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Table 1. Makeup of Members

Bar Section Area in.2 /in.4 L in. I/c in.3 Sketch

1-3 2-[ 15x33.9
I— PI 18x7/i6 27.68 961.0 450.44

167.5
99.1

3-5 2-[ 15x33.9
1 -PI 18 X3/8

26.55 922.8 300.00
156.0
97.6

1-2
2-4 4-L*6x3V2XV2 18.00 175.3 300.00 27.5

2-3 4-[*6x3V2X7/i6 15.88 153.8 336.00 24.1

3-4 4-L56x3V2X3/8 13.68 131.8 450.44 20.7

4-5 4 - Ls 5 X 3 X 3/8 11.44 79.1 336.00 14.7

Solution

In general, for an asymmetrical rigidly-connected truss of m members under
asymmetrical loading, there will be 2 m unknown end moments. In a
symmetrical rigidly-connected truss and under symmetrical loading, if n is the
number of joints, the number (N) of statically independent unknown end
moments is given by

N |(2m — n) ra — \n. (11)

In the present case, ra=13, n 8, therefore, ^=13 —^(8) 9; that is, the
present truss is determinate when pin-connected, but becomes indeterminate
to the 9th degree when rigidly connected.

Let the nine statically independent unknown end moments be represented,
element for element, by the matrix:

~Jfr3, M2,v m2,±;Xx X2 X3 VMU M21 M2Z
X4 X5 X6 Mn M32 M3i —

X7 X8 Xd_ [_Mi2 Mi3 M53

M3,v M3,2, M.

L4'2' L4'3'

3'5'

5'3'_

(12)

Then, by 2 M 0 at joints, 1, 2, 3 and V, 2', 3', six of the remaining dependent
unknown end moments can be expressed, thus

(13)

^12 ~MV27 *i
^23 — Mrv — ¦^2 + ^3
^34_ _MVV_ xi+x5+x6

And by symmetry, we have

{if45 Mbl Qi5} ={000}. (14)

The total axial stress in each member is readily determined by the ' 'extended
method of moments, shears, or joints", which are illustrated for members
1—2, 1—3, and 2—3 as follows:
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A. Extended Method of Moments

Passing a section just to the left of member 2—3 and considering the
equilibrium of the free body to the left, as shown in Fig. 3, we have,

zx4

2

N23

Q23-
rt\ q

X/NI2249M 300^|

Fig. 3.

N12
2"

24

-^—N24
Q,2 '66k

Fig. 4.

by %M3 0, l~N12 X2 249 X4J {336 1 300 1} 0.

Hence, iV12 [X2 X4 IJ {0.002976 0.002976 222.321}.

B. Extended Method of Shears

Taking the same free body as shown in Fig. 3, we have

-X^ + X2 X1 + XA
{Ql2 Qiz) - y 30() 00

andby 27 0,

[N^X^X, -X1 + X2 249j{^
Therefore

28

450.44

25 1

53 450.44(37.53) 300 1=0.

^i3 L^i ~^2 ~X* -IJ {0.002486 0.004469 0.001982 333.808}.

C. Extended Method of Joints

Passing a horseshoe section around Joint 2, as shown in Fig. 4, we have,

by ZY 0, [N23 Q2± Q12 166J{1 1 -1 -1} 0.

Substituting the values of QM and Q12, we get

L^23 X3 + X7 -Xx + X2 166] 1
300 300 -1=0

or

i^23 [-X± X2 -X3 -X7 IJ {0.003333 0.003333 0.003333 0.003333 166.000}.

Similarly, other total axial stresses may be found as listed in Table 2. The
constant term in each N expression is exactly equal to the heretofore so-called

"primary stress" in the same bar if it were pin-jointed.
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Constants in the strain-energy expressions of Eqs. (4) are given in Table 3.

With the aid of Tables 2 and 3, Eqs. (4) give the strain energy multiplied
by E in each member as shown in Table 4.

Table 2. Total Axial Stresses

Member Total Axial Stresses

1—2
1—3
2—3
2—4
3—4

3—5
4—5

0.002976X2 + 0.002976X4 + 222.321
0.002486Xi - 0.004469X2 - 0.001982 X4 - 333.808

- 0.003333Xi + 0.003333X2 - 0.003333X3 - 0.003333X7 + 166.000

- 0.002976X3 + 0.002976X4 + 0.002976X5 + 222.321
0.004469X3 - 0.001982X4 - 0.001982X5 + 0.002486X6 + 0.004469X7 +

+ 0.001982X8 + 0.004469 X9 + 111.269

- 0.002976X7 - 0.002976X8 - 0.002976X9 - 296.429
-0.006667X6-0.006667X9

Table 3. Constants in the Strain-Energy Expressions

Property
Member

1—2 1—3 2—3 2—4 3—4 3—5 4—5

L/A
L/6I

2(l+fi)/AL

16.66667
0.285225
0.000481

16.27311
0.078120
0.000209

21.15869
0.364109
0.000487

16.66667
0.285253
0.000481

32.92689
0.569600
0.000422

11.29944
0.054183
0.000326

29.37063
0.707965
0.000676

Table 4. E Times Strain Energy

Member E Times Strain Energy in Member I-J E(Wij+ Uij+ Vu)

1—2

1—3

2—3

2—4

3—4

3—5

4—5

£(16.66667) (0.002976X2 + 0.002976X4 + 222.321)2 +
+ 0.285225 (X2 + XiX2 + X2.) + J (0.000481) (-Xi + X2)2

1 (16.27311) (0.002486Xi - 0.004469X2 - 0.001982X4 - 333.808)2 +
+ 0.078120 (X2-XiX4 + Xf) +1(0.000209) (Xi + X4)2

1 (21.15869) - 0.003333Xi + 0.003333X2 - 0.003333X3 - 0.003333X7 +
+ 166.000)2 + 0.364109 [(- X2 - X3)2 + (X2 + X3)X5 + X2] +
+ i (0.000487) (- X2 - X3 + X5)2

i (16.66667) (- 0.002976X3 + 0.002976X4 + 0.002976X5 + 222.321)2 +
+ 0.285253 (X2-X3X7 + X2) +1(0.000481) (X3 + X7)2

1 (32.92689) (0.004469X3-0.001982X4-0.001982X5 + 0.002486X6 +
+ 0.004469X7 + 0.001982X8 + 0.004469X9 + 111.269)2 +
+ 0.569600 [(-X4-X5-X6)2 + (X4 + X5 + X6)X8 + X|] +
+ 1(0.000422) (_X4-X5-X6 + X8)2

1 (11.29944) (- 0.002976X7 - 0.002976X8- 0.002976X9 - 296.429)2 +
+ 0.054183 (X|-X6X9 + X2) +1(0.000326) (X6 + X9)2

1 (29.37063) (- 0.006667X6 - 0.006667X9)2
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O TJ

By repeated application of ^E^r- 0, the following matrix equation is

obtained: {xd [^m,
{X^ — {Xx X2 X3 X4 X5 X6 X7 X8 Xd}where

K]-1
0.727716 0.284328 0.000235 -0.077992 0 0 0.000235 0 0

1.300346 0.728471 0.000292 0.363622 0 -0.000235 0 0
1.300734-0.000439 0.363183 0.000366-0.283879 0.000292 0.000658

1.296559 1.139899 1.139460-0.000292 0.569049-0.000292
1.868605 1.139460-0.000292 0.569049-0.000292

1.249171 0.000366 0.569340-0.052838
au below main diagonal 0.571981 0.000392 0.000758

a,t above it 1.139852 0.000392
0.110103

m
{25.2144, -47.0097, 6.3636, -25.5609, -3.7656, -9.1098, -14.6329, -17.2309, -26.3407}.

Table 5. Bending Stresses at Member Ends

Member End Moment (k-in.)
I/c (in.3) Bending Stress (ksi)End Cross Method Proposed Method

2 -67 -66.20 27.5 2.262
1

3 67 66.20
167.5
99.1

0.395 (Top)
0.668 (Bottom)

1 -85 -84.47 27.5 3.072

2 3 45 45.28 24.1 1.879

4 40 39.19 27.5 1.425

1 -11 -13.41
167.5
99.1

0.080 (Top)
0.135 (Bottom)

3
2 43 42.50 24.1 1.763

4 12 11.45 20.7 0.553

_

5

2

-44 -40.54
156.0
97.6

0.260 (Top)
0.415 (Bottom)

- 5 - 5.803 27.5 0.211

4 3 - 9 - 9.309 20.7 0.450

5 0 0 14.7 0

5
3 -263 -258.7

156.0
97.6

1.658 (Top)
2.651 (Bottom)

4 0 0 14.7 0
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Xx X2 X3 66.20 -84.47 39.19" VM1Z M21 M2i
X4 X5 X6 -13.41 42.50 -40.54 M31 M32 MZ5

X7 X8 A9 -5.803 -9.309 -258.8 lMi2 Mi3 Mb3

The Solution of {Xt} in kip-in by electronic digital Computer or otherwise
is recorded, element for element, as

(A)

Dividing the end moments by their respective section moduli (I/c) given in
Table 1, bending stresses in ksi at member ends are as recorded in Table 5.

These correspond to the so-called "secondary-stresses". The values of end
moments as found by Sutherland and Bowman by Cross' method for the
same truss are reproduced in the first column of Table 5 for comparison.

Total axial stresses and transverse shears are obtained by substituting the
values of Xt respectively into Table 2 and Eq. (3). They are recorded in Table 6.

Unit axial stresses are also calculated.

Table 6. Values of Nij, N^/Aij, and Qij

Member 1—2 1—3 2—3 2—4 3—4 3—5 4—5

Nu (kips)
NijlAij{ksi)
Qij (kips)

222.030
12.335
-0.502

-333.239
-12.039

0.118

165.387
10.415
0.261

222.291
12.350
0.111

110.085
8.047
0.005

-295.614
-11.134
-0.998

1.996
0.174
0

The Simplified Method

r) TJ
A study of the equation obtained from 7^7 0 suggests a simplified method

which saves much time in writing the energy expressions and in evaluating
the elements of the matrix [a{j]. Considering the process for obtaining the first
equation from

dXx
0 0.285225 (2 Xt + X2) + 0.000481 (-1)(-X1 + X2)

+ 16.27311 (0.002486) (0.002486 Xx - 0.004469 X2 - 0.001982 Z4 - 333.808)

+ 0.078120 (2 Xx - X4) + 0.000209 (Xx + X4)

+ 21.15869 (0.003333)2(Z1-Z2 + X3 + X7- 166.000/0.003333),

the values of the non-underlined terms are about thousand times of those of
the underlined. An approximate Solution sufficient for engineering accuracy
can, therefore, be most expediently obtained by deleting each strain energy
term due to transverse shears in writing the energy expressions, and only
relrining constituents of axial stresses not dependent on end moments and
shears after partial differentiation. Thus, the simplified form of the first
equation becomes
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[0.7262 0.2852 -0.0781J {X± X2 X4} 25.214

and the Symmetrie matrix equation reduces to:

0.7262 0.2852 0 -

1.2987 0.7282
1.2988

0.0781
0
0

1.2954

0 0

0.3641 0

0.3641 0 -

1.1392 1.1392
1.8674 1.1392

1.2476
a%} below main diagonal
aJ% above it

0

0

0.2853
0

0

0

0.5705

0 0 xr 25.214
0 0 x2 -47.010
0 0 x3 6.364

0.5696 0 x4 -25.561
0.5696 0 x5 - 3.766
0.5696-0.0542 x6 - 9.110

0 0 x7 -14.633
1.1392 0 x8 -17.231

0.1084 x9 -26.341

whose Solution by electronic digital Computer yields

66.9 -84.9 39.0

-10.7 43.4 -44.5
-6.15 -9.25 -265

X1 X2 X3
X4 X5 X6
X7 X8 X9

M13 M21 MM
M31 M32 M35

Mi2 Mi3 M53_

(A')

after which, any axial, bending, and shearing stress in each member of the
truss can be determined by statics. The accuracy of the simplified method can
be seen by comparing Eq. (A') with Eq. (A).

Conclusion

The energy method proposed herein will yield the Solution of axial, bending,
and shearing stresses in all members of a truss in one unified single set-up.
The rigidly-connected truss is treated as an assemblage of rigid frames. With
wide-spread use of electronic Computer, the entire process can be programmed
from given data to end results. It provides both exact and approximate
methods to suit the needs of special investigations and ordinary purposes. The
mysterious category of "secondary" stresses is henceforth dispelled.

Summary

An energy method is formulated for analyzing all genuine stresses, including
secondary stresses, in rigidly-connected trusses. Such trusses, by virtue of
having axial stresses coexisting with flexural and shearing stresses (heretofore
called "secondary stresses"), constitute, in reality, an assemblage of a chain
of rigid frames. To unify their Solution into one single system of strain energy
and matrix procedure, formulae expressing constituent strain energy for plane
trusses of any configuration with any redundancy are developed. A simple
illustrative example showing exact and approximate Solutions is given.
Conclusions are stated.
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Resume

Les auteurs presentent une methode energetique permettant de determiner
toutes les contraintes effectives, y compris les contraintes secondaires, dans
les treillis a nceuds rigides. Ces treillis, sollicites simultanement par des efforts
axiaux et par des moments de flexion et des efforts tranchants (sollicitations
appelees jusqu'ici «contraintes secondaires»), constituent en realite une succes-
sion de portiques rigides. Pour obtenir la Solution ä l'aide d'un Systeme unique
d'energie de deformation et de calcul matriciel, les auteurs developpent des
formules exprimant l'energie de deformation pour des poutres planes de
configuration et de degre d'hyperstaticite quelconque. Ils donnent un exemple
simple et illustratif, montrant la Solution exacte et la Solution approximative
et presentent des conclusions.

Zusammenfassung

Es wird eine Energiemethode für die Bestimmung aller auftretenden
Spannungen, einschließlich der Nebenspannungen, in steifknotigen Fachwerken
dargestellt. Solche Fachwerke, die sowohl Axial- als auch Biege- und Quer-
kräftebeanspruchung (die sogenannten Nebenspannungen) aufweisen, bilden
tatsächlich eine kettenförmige Verbindung starrer Rahmen. Um die Lösung
dieses Problems in ein einziges System von Formänderungsarbeit und
Matrizenberechnung zu vereinigen, werden Formeln entwickelt, die die Formänderungs-
arbeit für ebene Fachwerkträger von beliebiger Form und beliebigem Grad
der statischen Unbestimmtheit ausdrücken. Ein einfaches anschauliches
Beispiel wird gegeben, das sowohl die genaue wie eine Annäherungslösung zeigt.
Schlußfolgerungen sind angegeben.


	Energy method for analyzing all stresses in rigid trusses

