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A Contribution to the Bending Theory of Elliptic Paraboloid shells

Contribution ä la theorie de la flexion des voiles minces en forme de

paraboloide elliptique

Beitrag zur Biegetheorie der elliptischen Paraboloidschalen

ASBJÖRN AASS, JR.

Dipl. Ing., Southampton

1. Introduction

a) In recent years shells of double curvature have been of great interest to
engineers and architects. Although the hyperbolic paraboloid is the most
populär type, due to its attractive form and simple construetion, investigations
have also been carried out in the field of paraboloid shells of positive Gaussian
curvature. These shells, also very attractive from an architectural point of
view, have the important advantage that the bending stresses are confined to
narrow zones along the boundaries and are very small. Thus the membrane
theory provides already a good approximation for the stress condition of the
surface. For proper design, it is nevertheless necessary to calculate bending
stresses due to edge conditions incompatible with the membrane theory. For
the calculation of shear forces Nxy at the corners it is also necessary to take
bending stresses into consideration1).

b) Numerous authors have dealt with the analysis of 2£P-shells, but very
few consider bending stresses. A general bending theory for shallow shells was
first presented by K. Marguerre [2] in 1938. In 1944 V. Z. Vlasov [3] published
his basic theory, and based upon this S. A. Ambartsumyan [4] presented a
Solution for shallow shells, rectangular in plan and simply supported along the
edges in 1947. This Solution, of the Navier-type using double trigonometric
series is, however, of little practical importance as the series are very slowly
convergent.

*) The shear forces Nxy are singular at the corners. (See for instance Timoshenko [1],
p. 464.)
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An approximate Solution to the bending theory was given by K. Hruban
[5] in 1953. From the general theory of Vlasov he obtained, by approximation,
a fourth order differential equation identical to the one for cylindrical
Containers. A better approximation was obtained by W. Zerna [6] also in 1953.
Here the Solution again leads to the fourth order differential equation for
cylindrical Containers, only in this case the coefficient k is no more a constant.
In 1957 V. Z. Vlasov [7] proposed a Levy-type Solution where two opposite
edges are simply supported and the two remaining edges may have arbitrary
boundary conditions. A Solution for the case of clamped boundaries is given
by W. A. Nash and P. L. Sheng [8] also in 1957.

For the special case where k1 k2=llli (sphere!) B. B. Dikovich [9]
presented a very useful contribution in 1960. The shells, having the base proportions

1:1 or 1:2, are assumed to be simply supported along the edges. With
these limitations Dikovich established graphs for the distribution of the
stress resultants depending on one parameter only.

A very extensive study of paraboloid shells with elastic edge members has
been carried out by H. C. Shah [10] (1960). The Solution is obtained by using
double trigonometric series, for which the convergence is so hopeless that a

practicable application seems almost impossible.
Levy-type Solutions, similar to the one treated by V. Z. Vlasov [7], are

presented by A. L. Bouma [11] (1959), K. Apeland [12] (1961) and I. Doga-
noff [13] (1961). Doganoff gives also a simplified Solution for simply supported
edges suitable for pre-dimensioning. K. Apeland and E. P. Popov [14] have
established tables for paraboloidal shells of positive and negative Gaussian
curvature, similar to those for circular cylindrical shells compiled by D.
Rudiger and J. Urban.

c) The papers mentioned above have two features in common2):

1. The Solutions consist of infinite series.
2. The Solutions satisfy the basic equations exactly and satisfy the boundary

conditions approximately.

In most cases the shell is assumed to be simply supported on shear
diaphragms perpendicular to the shell surface, at least on two opposite edges.
The boundary conditions were therefore:

v 0, w 0, N1 0, M1=0. (a)

In practice the diaphragms are, however, always made vertical and the more
realistic boundary conditions should therefore be

v o, wGoscp0 — usmcp0 0, Nx cos <p0 + Qx sin <p0 0, M1 0, (b)

as was mentioned by Bouma [11]. It is readily seen that sin«^ is not negligible;

2) This does not apply to the approximate Solutions given by Prof. Hruban [5] and
by Prof. Zerna [6].
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a square spherical shell with a total rise to span ratio of 1/5 has the slope
990 22.5° at the edges. Thus cos<p0 0.92 and sin 990 0,38. How the boundary
conditions (b) can be considered will be shown in § 6.

d) In this paper the writer proposes another way in which the Solutions
satisfy the boundary conditions exactly but the basic equations only approximately.

To obtain such a Solution a variational technique has been used in
connection with the matrix progression method and numerial computation
with the aid of digital Computers3).

The procedure is applied to shallow elliptic paraboloids, rectangular in
plan, for the following boundary conditions:

1. Edges rigidly clamped.
2. Edges simply supported on shear diaphragms perpendicular to the shell

surface (Navier, equation (a)).
3. Edges simply supported on vertical shear diaphragms (equation (b))4).

subjected to uniformly distributed loads.

2. Geometry

The equation for a surface in the form of an elliptic paraboloid is given by
(see Fig. 1):

b®M$ (i)

H*h

/
Fig. 1.

The prineipal curvatures are thus

k1
d*Z

_ 2hi
"Bö* ~ + a?~' &2 —

d*z 2h9

8y*
+ 62

32Z

dxdy
(2)

Introducing the slopes of the surface at the edges

3) The technique was first introduced by S. M. K. Chetty [15] for hyperbolic
paraboloid shells. The mathematical foundation for variational methods may be found in
[16] and their applications for shell problems are discussed by H. Tottenham [17] and
Chetty [15]. The matrix progression method, first introduced for analysis of shells by
H. Tottenham [18], has been elementarily by the writer [19].

4) In this case the shell must be square in plan and ki k2.
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2hl n„A *_ 2h2
ot ± and ß r1 (3)

a r b

the expressions for the prineipal curvature take the forms

#1 — ~" > ^2 — ~~ ir> %2 — 0. (2a)

3. Basic Equations

a) From the shallow shell theory of V. Z. Vlasov [20] the following
equilibrium equations are obtained:

l-v2Lx(u,v,w) u" + \{l-v)u" + \{l + v)v" + (k1 + vk2)wf w~rx>
Mi t

l-v2L2(u,v,w) v" +±(l-v)v" + ±(l+v)u" + (k2 + vk1)w' —eTY} (4)

L3 (u, v, w) (k± + v k2) u' + (k2 + v k±) v + (Jc\ + 2 v kx k2 + k\) w
t2 „. 1-V2rr+ T2V*W +-ETZ'

Here u, v and w are the displacements, X, Y and Z the external loads, positive
in the positive direction of the co-ordinate axes. Li denotes a linear differential
Operator.

The stress resultants, as functions of the displacements, are given by:

N1 + 2[uf + w' + (k1 + vk2)w'\,

F t
N2 + 2[v' +vu' + (k2 + vk1)w],

m Et _ /n8 =+w^)[u+vh
Et* r »

1 =+12(l-v2)[W + "W ]'
(5)

^12
Et3

12(l+v)
M>"

öl
Ets

12 (l-v2;:[«/"+«/" 1.

#2
Et*

ion „2':tw" '+w'''•]•

The sign Conventions for the stress resultants are as shown in Fig. 2.
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For convenience the non-dimensional co-ordinates

x - and y t~ (6a)
a * b v '

and the dimensionless unknown displacements

u - v _ w
u=—, v t, w — — (ob)

a b a
are introduced.

hf*
Wu Fig. 2.

Introducing the expressions (2a) for the curvatures and the non-dimensional
co-ordinates and displacements (6) in the basic Eqs. (4) and (5), we obtain
the non-dimensional basic equations:

L,(u,v,w) u" + J(l — v)r%u" + \(\ +v)v" — (<x + vrß)w' — (1 — v2)- —,t Mi

L2(u,v,w) v"+±(l-v)^v" + ±( + v)u"-(rß + vot)w' -(l-v2)-r-g, (7)

Ls(u,v,w) — (a + v r ß) u' — (r ß + v a) v + (a2 + 2 v r a ß -f r2 ß2) w

+ -(w"" + 2r2w"" +r*w~") +(l-v2)^ -§•
y t Ht

F t
Nx +——-2-[u' + vv'-~(oc + vrß)w],

F t
N2 +—-—2-[v'+vu'-(rß + vot)w],

Et r 1 ,]S +nn Aru +-v'\,(l+v)L r J2(

^ +12(1^)~K'+-2- ]

Et* 1

12(l-v2)a
Et* 1

12(l+i/) "6

ig*3 1

12(l-v2)^
ff*3 1

12(l-v2)^

^2 =+1Q/i ^r^^'+^H,
^12 -,o/t ¦ _,x 17^",

öi --T^-^-2K,,+^2^,]?
02 =~io/l ^72^3^'"+^"']?

(8)

where a -, ß r1, y 12 — and r=-r. (9)
a ' b t2 b
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In Eqs. (7) and (8) the bars introduced in (6) have been omitted for
convenience. The three partial differential equations for the three non-dimensional
quantities u, v and w have now to be solved in order to obtain the stress
resultants (8) at any point P(x,y) of the surface.

b) Assuming a Solution in the form

u c1f1(x)g1(y), v c2f2(x)g2(y), w c3f3(x)g3(y), (10)

where /x (x) and gi (y) are functions of one variable only and ci are unknown
constants, we like to determine ci such that the energy of the system is a

minimum, i.e. -— 0. This provides three equations for the three unknowns

c-5):
M[Li(u,v,w)-Qi]figidxdy 0 (i 1,2 and 3), (11)

where Li is the differential Operator and Qi denotes the loading term in (7).
The equation (11) is the well-known Galerkin equation.

c) Assuming a Solution in the form

^ /_»_/i (y), v f2(x)92(y)> w fs(x)9s(y), (12)

where gi are known, we obtain three equations for the three unknowns fi (x)

are

j[Li(u,v,w)-Qi]gidxdy 0. (13)

putting ttj-t-t 0. These are^ ö dfi(x)

S

4. Solution for Rigidly Clamped Edges

a) Boundary conditions

At the edges x ± 1 and y ± 1 there shall be no movement and the
rotation of the normal must vanish. Thus

ktx ±l u 0, v 0, w 0, w' 0. (14)

Aty ±l u 0, v 0, w 0, w'=0. (15)

b) Kantorovich method. (Reduetion to ordinary differential equations.)

The Solution is sought in the form

™ /]»_7i(y)> v f2(%)92(y)> ™ fAx)Q'Ay)> (16)

where fi (x) and gi (y) are functions of only one variable, x or y respectively.
As a first approximation we assume the distributions gi (y) in the y-direc-

tion, such that the boundary conditions at the edges y ± 1 are satisfied.

5) The functions fi and gi are here assumed to be known.
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Under uniformly distributed loads it is seen that

9i(y) ~ even function, g2(y) odd function, g${y) even function. (17)

We assume thus polynomials of the simplest possible forms:

u f1(x)(l-y2), v f2(x)(y-y*), w f3(x) (1 -y*)\ (18)

Differentiating and substituting in the basic Eqs. (7), we obtain three ordinary
differential equations with variable coefficients for the three unknown functions

f{:
/i'(l -2/a) + i(l-v)r2( -2/1) + i(l +v)/^(l-32/2)-(a + vriS)/^(l-2/2)2

-6f2y + i(l-v)±f»(y-y3) + i(l+v)ti(-2y)-(rß + voc)f3(-±)(I-yZ)

n 2^6^

-(* + yrß)fl(l-y*)-(rß + vtx)ft(l-3y*) + (ct* + 2vreiß + r*ß*)fa{l-yi)*

+ ^[/s"(l-2/2)2 + 2r2/a-4)(l-3^+^24/3] +(l-v2)|^.
The error made by using the assumed functions (18) will now be minimized

using Eq. (13). Integrating over the area bounded by y= ±1 we thus obtain
minimum potential energy and in the same time the equations will be
transformed to equations with constant coefficients. These are:

1.0667/;' -1.3333(l-v)r2/1 + 0.2667(l+v)/2-0.9143(a + vri8)/3 0,

lo.0762(l-v)/2,-1.6/2-0.2667(l+v)/i + 0.6095(riS + va)/3 0,

- 0.9173 (a + vrß) f[- 0.6095 (rß + voc)f2 + 0.8127 (a2 + 2 vraß + r2ß2)f3

+ -[0.8127/£"-4.8768 r2/3' +25.6r4/3] + 1.0667 (1 -v2)°- -f-,
y t E

if we assume normal loading only, i. e.

X Y 0 and Z constant.

c) Tottenham's method for solving the equations

For the Solution of the Eqs. (20), it is convenient to use the matrix
progression method due to Tottenham [14,19]. With this method the equations
are integrated directly without using the laborious traditional way in finding
the roots of the auxiliary and the particular integral.

Introducing the new functions:

/* /;, /. /_. /e /s, /7 /a /i. fs K n K, (21)
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we have from (20) and (21) the following eight first order differential equations,
with constant coefficients, for the eight unknown functions f1, f2,. fs:

72 — /5>

/i /a.

/. /i' +1.25 (l-v)»-2/! -0.25 (l+v)/5-0.8572(a + vri8)/6,

fi /,' + 21.0^,2 + 3.5^2/4 + 8.oM±^2/3,
/6 /7 j

Jl ~ /8'
f8 +0.75y(ri8 + va)/2-[y(a2 + 2v/'aj8-fr2jS2)-|-31.5r4]/3

(22)

+ 1.125 (a + vrj8)/4 + 6.0r2/7 + 1.3125 {l-v2

or in matrix form:

aZ^
]1~e'>

/i
/2

/a

d /4

dx
/e

u
fs

+ 1

+ 1

+ 1

Hl a45 a46

a52 a53 a54

+ 1

+ 1

«82 «83 «84

/l
/.
/a

/4

h
u
u

Js

+

b
8_

which may be written as

dx (22)

Here Z is a column matrix containing the unknown functions /x, /2. • • /s >

^4 is a 8 x 8 square matrix and £ a column matrix with the coefficients

«14 + l >

«25 + 1
>

a36 + 1,

a41 +1.25(l-v)r2,
a45 =-0.25(l+v), (22)

a46 -0.8572(a + vr/3),

aM +21 l-v'
«53 +3.5^r2,
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rß + v*
«54 +8-0_TZ r '

«67 + 1
>

«78 + 1

«82 +0.75y(ri8 + va),
«83 -y(a2 + 2vra/3 + r2iß2)-31.5r4, (22)

a84 +1.125(a + vrj8)y,
a87 +6.0r2,

b8 ^+1.3125(l-v2)|^y

the remaining coefficients being zero.
The Eq. (21) is the same as the one for a simple beam6) and the Solution

will readily be found to be

Z (x) eAx Z0-[I- eAx] A'1 B,

where Z0 are the values of Z (x) at x 0 and / is the unit matrix.
Introducing

ö(^ e^ /+4f+4r + ---==/+^a;[/+^(7+^(/+-'-))]
and Z(x) -[I- eAx] A~x B

we have thus the matrix progression equation8)

Z(x) G(x)Z0 + Z{x) (23)

In (23) Z (x) are the unknown functions fi
G (x) eAx is called the distribution matrix,
Z0 are the eight unknown values of Z (x) for x 0,

Z{x) —\I — eAx\A-x B is called the loading Solution matrix.

Having solved the equations, it remains to determine ZQ according to the
boundary conditions.

d) Determination of Z0 from the boundary conditions

If the shell is symmetrically loaded about the x and y axes, the stressed
state of the shell must also be Symmetrie about the x and y axes. Therefore

6) See (19).
7) In this quickly convergent matrix series 12 terms will be more than sufficient for

the accuracy required.
8) See for example (19).
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it will be seen that u is an odd function of x,
v is an even function of x,
w is an even function of x.

We thus have the following four conditions at x 0:

u fx 0, fl' /5 0, w /e 0, ww /8 0.

We have hence only four unknowns in ZQ and we write

z0

U

x=0

+ 1

+ 1

+ 1

+ 1

— «-1 -^0 >

X=0

where Z0 contains the four unknowns /2 (0), /3 (0), /4 (0) and /7 (0).
At x= +1 we have, according to (14). (25) and (23)

Z(x=l) Mi)
Ml) ö(1.0)/fc1Z0 + _/(1.0).

(24)

(25)

(26)

AU)
_/s(l)J

The first, second, third and sixth equations provide four equations for the four
unknowns ZQ. Using the "Isolation Matrix"

+ 1

• +1 •

• +1 •

+1

Ko — (27)

we have thus k2Z (1.0) &2G!(1.0)Ä:1Z0 + Jfc2_5(1.0) 0

and hence Z0 - [lc2 0 (1.0) fcj"1 ks Z (1.0).

From (25) the unknown functions Z0 are thus

Z0 -kx [jfc2 ö (1.0) jfcj]-1 fc, Z (1.0). (28)

All matrices on the R. H. S. of Eq. (28) are known and with (23) the unknown
functions may readily be calculated with the aid of a digital Computer.
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It is interesting to notice that also Eq. (28) coincides with the one for a

simple beam9).

e) Improvements to the Solution

1. Having found the functions ft from

Z(x) G{x)Z0 + Z{x) (23)

we can compute the displacements from (18) and the stress resultants from (8).
It may be expected that the distribution in the ^-direction will be reasonably
good; the distribution in the ^/-direction, however, may be very erroneous. In
order to obtain a better approximation we assume firstly that the shell is
almost square in plan (say \b<a<2b). In this case it may be assumed that
the stress distributions in the two directions will have the same pattern if the
load is uniformly distributed over the surface. Therefore g1 {y) will be equal
to f2 {x), g2 {y) equal to f± {x) and g3 {y) equal to f3 (x), apart from some constant
factors. We have thus as a second approximation

u =c1f1{x)f2{y), v c2f2{x)f1{y), w c3f3{x)f3{y). (29)

The constants ci may now be determined from the known conditions at the
lines x 0 and y 0. Comparing the values of u and w given by (29) and (18)
at these lines we find

from (18) u (x,0) f±{x), from (29) u (x,0) =c1f1{x)f2{0),
w{0,0)=f3{x), w(0,0)=c3f3{0)f3{0),

it is readily seen that

Ci 7—TAT and Co
MO) d MO)-

Due to symmetry we can also put
_ __ _

1
Co — C-i —

MO)

and we have the second approximation

u=rw)^(x)^2(2/)' v== rw^2^^(2/)' w=rw>^(x)^^* (30)

2. By using the system (30) instead of (18), the energy will no longer be
a minimum. Assuming

U cir7ö)/i(^/2(2/)? v c2j-—f2{x)f1{y), w c3——f3{x)f3{y) (31)

9) See for instance (19).
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O 777

and minimizing the energy w.r.t. ci, i.e. ^—7 0, we get the Galerkin Eq. (11):

iir[Li(fk)-Qi]fi(x)gi(y)dxdy 0.
1 -1

(11)

Here Z,,- denotes the L. H. S. of the basic differential Eq. (7) and Qt the loading
terms of same.

Substituting (31) in (7) we find
MO)[-ix-GJ c1/;/2 + i(l-v)r2c1/1/^ + Hl+v)c2/5/4-(« + vr^)c3/6/3 MO)*

[i8-ga] ca/a/i + i(l-v)lca/i/1 + i(l+v)c1/4/6-(rj.+v«)c8/8/6^|,

[Ls-Q3] -(« + vrß)c1fif2-(rß + ™)c2f2fi + (oc* + 2vrxß + r*ßZ)c3f3f3 M£)
/a(0)

+ ^3[/^3 + 2r2/7/7 + rV3/8]^-(l-»'2)/2(0)f4,
where, for example, j±{x)f2{y) is abbreviated to /4/2 etc. In these expressions
all functions fx. ./8 are known from the first approximation, and the functions
/4 f'b and /8 can be expressed as functions of/x. ./8 through the Eq. (22).

We are now able to construct the integrands VLi{fk) — Qi\fi{x)gi{y) in the
Galerkin equation. In matrix form these may be expressed as

(32)

A.
or RC-Q, (32)

where rn (f'JJUM + Hl-^tiifJUtf*),
••_=l(l+v)(/5/l)(/l/.).

r1, -(« + vrj3)^(/8/1)(/8/2)>

ry ry ry'll '12 '13 "A
ry ry ry'21 '22 '23 c2 -
Jz\ r32 ^33- Lc3J Ld

7a (0)

*-«i (/a/a)(/l/i) + *(l-")i(/6/a)(/i/i)»
*-aa i(l+")(/4/a)(/5/i).

r,23_-(^ + va)^S(/3 /2)(Ml),7a (0)

r32 -(rß + v*)(f2f3)(fj3),

r33 (<x2 + 2vr<xß + r*ßZ)
MO)
/a(0)

(/a/a)(/a/a)

+ £ |{^ [(/s /a) (/a /») + 2 r2 (/, /») (/, /») + ^4 (/a /a) (/s /a)]

and g +(l-v2)/2(0)|^(/3)(/3). (32)
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In the expressions (32) the abbreviations (/4/1M/2/2) have been used for
f'^{x)f1{x)f2{y)f2{y), etc.

Using (32), the Galerkin Eq. (11) may now be written as

+ 1 +1 +1 +1
J* J Rcdxdy— J J* Qdxdy 0,

-1 -1 -1 -1
+ 1+1 +1+1

whence we have <? +[ J J Bdxdy]~~x / J Qdxdy. (33)
-1 -1 -1 -1

In (33) c will be a (3x1) matrix, providing the three wanted constants cl5 c2

and c3. With (33) and (31) we have thus established a third approximation.
3. Note on computation. The formulae (23) and (28) may easily be pro-

grammed for a digital Computer, thus providing numerical values for the functions

/i-../8 for, say, 11 points (# 0, 0.1, 0.2. 1.0). These values may be
stored in the machine as a (11 x 8) matrix. Denoting this matrix as {F, 11x8),
we have for instance /4 as a column matrix denoted by (/4,11 X 1). The inte-
grations in expression (33) can now be performed numerically with, for example,
Simpson's formula with step h 0.1 (here). The coefficients of this formula
are to be considered as a diagonal matrix. This is, if we omit the common

factor-^-, (Ä, 11/) Diag(l 4 242424 24 1).

The integration of, for instance, r12 in (31) is thus as follows:

r12dxdy =+i(l+^)(/5,lxll)(Ä,ll/)(/1,llXl)(/4,lXll)(/S,ll/)(/2,llXl)
where {fi, 1 X 11) is simply the transpose of (ft, 11 X 1).

5. Edges Simply Supported on Diaphragms Perpendicular to the Surfase

The procedure for this case will be exactly as for the clamped edges described
in § 4. By examination of the Solution established in the previous paragraph,
it will be seen that the only differences between the two cases are the coefficients

of the matrices A, B and k2 (Eqs. (22) and (27)). Therefore the same
Computer programme may be used for the two cases provided the appropriate
data matrices are used.

a) Boundary conditions

According to Eq. (a) we have at x ±1

v =0,
w =0,

Et
l^vNx =T—--2[u' + vv'-{oc + vrß)w] 0,

^ i2f^>''+-2^ °-
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Assuming that the shear diaphragms are rigid in their plane, we may put
v' w" 0

and the boundary conditions take the form

At x ± 1

v 0, w 0, u' 0, w" 0 (and v' w" 0). (34)

At y +1, similarly
u 0, w 0, v'=0, w"=0 (and u' w" 0). (35)

b) Solution

1. Similarly to (19) we assume

." /i(^)(l-2/2)5 v f2(x)i{3y~y3), w f3(x)(l-1.2y2 + 0.2y% (36)

These functions satisfy the boundary conditions at y ± 1, as may easily be
checked. Substituting these expressions in the basic differential Eqs. (7) and
integrating over the area bounded by y +1, using (15), we obtain:

+ 0.8127/;'- 1.2191 (l-v)r2/1 + 0.6857(l+v)/^-0.8940(a + ^ri8)/3 0,

+ 0.48ö7(l-v)-4/J-2.4/a-0.6857(l+v)/i+1.5543(rj8 + va)/8 0,

- 0.8940 (a + vrß) f[ - 1.5543 (rj8 + i/a)/2 + 1.0077 (a2 + 2 vr aß + r2ß2)f3

+-[1.0077/£"-4.9738 r2/3' +6.1440 r4/3] i-2^ (1 -v2)- -§.
y t E

The coefficients of the A and B matrix are thus

«14 +1,
«25 +1,
«36 +1,
«41 +1.5(l-v)r2,
«45 -0.8437 (l+v),
«46 +l.l{oc + vrß),

«52 — I A Q/l Ifi
1 —v

2

— qo/ro 1 ,.ff\ r
«53 — o.A yr p-\-v et)

1 —v

«54
l+v+1.4119, r2,

1 —v

«67 =+i,
«78 + i,

(37)
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a82 +1.5425(rj8 + va)y,
a83 -(*2 + 2vr(xß + r2ß2)y-Q.0973r*,
aM +0.8872(oc + vrß)y,
a87 + 4.9360 r2,

a Z
b8 +1.2703 (l-v2)y t E'

2. The first Solution is as before

Z(x) G(x)Z0 + Z(x)

where

Here

Z0 - kx [k2 G (1.0) k^-1 k2Z (1.0).

G(x) eAx,

Z(x) -(I-eAx)A-1B

and kx

+i
+ i

+i

+i

as for the clamped case. The k2 matrix takes now the form

• +1
"

/c2 —
+ 1

+ 1

+ 1

(37)

(23)

(28)

(25)

(38)

3. The improvements to this first approximation may be obtained as
described in § 4e.

6. Edges Simply Supported on Vertical Diaphragms

a) Boundary conditions

In this case we use the boundary conditions (b) which may be written in
the form:

At x + 1 v 0,

w — utg(p0 0,

~[w +vrlw ] 0,12(l-v2)av
TP' fö 1 TP t

127IA^ ^ K" + r2 m;'-•] tg<p0 +1—^ [«'+ v«• - (a + vr^) tu] 0.
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Introducing tgq>0 — a from expression (3) and remembering that again
w" w'" =v' =0 at the boundaries x ± 1, the boundary conditions may be

written as:

At x ± 1

v 0, w + (xu 0, w" 0, olw'" +yu' -y(oc + vrß)w 0. (39)

At y ±1, similarly
u — 0, w + rßv 0, w"=0, r3w'" +yv —y(r ß + voc)w 0. (40)

b) Functions g (y) satisfying the boundary conditions at y ±1

Similarly to Eq. (36) we assume

n f1(x)(l-y2)2, v f2(x)±(c1y-y*), w f3 (x) (c2- 1.2y2 + 0.2y*), (41)

where c± and c2 are constants10) to be determined such that the boundary
conditions (40) are satisfied. Introducing (41) in (40) we find

2 9.6r3j8 l/3 0*0
c±=l + l+rß(rß + voc) l+rß(rß + voc)y f2(x)

and c =1 Vß U{X)
I

4-8^2 l
2 l+rß(rß + voc)f3(x)^ l+rß(rß + v*)y-

Substituting these expressions in (41) we find

u fi(*)(i-y2)2,
v =f2{x)W+D)y-y*]-f3{x)Fy,
w =fs(x)[(l+rßF)-1.2y2 + 0.2y*]-f2(x)r-£D,

9
where D

and F

(42)

l+rß(rß + va)
4.8 r3 1

l+rß(rß + voc) y'

The expressions (42) satisfy the boundary conditions (40) as may easily be
1 t2

checked. The factor F, however, is very small since it contains —
12 2.

In the expression for w it is readily seen that rßF may be neglected against 1;

in the expression for v it is not so obvious that F can be put equal to zero.
We may, however, predict that f3 (x) will not be much more than 10—20 times
greater than f2(x). In such cases, and if /3 a=l/5, v 0, y 2.105, say, it is
seen that here also the influence of F will be negligible.

We have thus the following functions satisfying the boundary conditions
at y ± 1 with reasonable accuracy:

10) I. e. constants w. r. t. y.
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where

u =fx(x)(l-y*Y,
v =f2(x)±[(l+D)y-y3],

rßw =fa(x)[l-1.2y* + 0.2y*l-ft(z)-gD,

D
l+rß(rß + v<x)'

(43)

c) Solution

Substituting the expressions (43) in the basic differential Eq. (7) and
integrating (13) using the approximate functions

(1-2/2 9, l(3y-y»), g3 (l-1.2y* + 0.2y%

as weighting functions, we get as before the matrix equation

where A a,

—-Z AZ + B,
cx

«14 '

* «25 *

* «36 '

41
*

• a52 a53

a45 a46

«54 ' * * '

«67
* «78

and B

«82 «83 «84 ' ' «87 '
_ J8_

The coefficients of A and B are:

(44)

(44)

«14 + 1
>

a2b + 1,

«36 + 1
>

a41 +1.5(l-v)r2,
a45 -(0.1876 + 0.3281Z))(l+v)-0.6562rßZ)(a + vri8),

«46 + 11 (oc + vrß),
ab2 +2Ar2N,
a53 -1.55±Zr2(rß + v(x)N,

a54 +0.6857 r2(l+v)N,
«67 ~^~ i J

v78 + 1,
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a82 +(0.2722 + 0.635lD)(rß + va)y
+ (oc2 + 2vrocß + r2ß2)My + Ma52S,

a83 -(a2 + 2vr*ß + r2ß2)y-6.0973r* + Ma53S,

a84 +0 8872(a + vrj8)y + JfaM(Ä + a41),

a87 + 4.9360 r2 + Jf(a53 + a54a46)

a Z
and K +1.2703 (l-^)y--.
Here 2a Base length in x direction,

r «/&,

t thickness,

Z external, uniformly distributed normal load,

E Young's modulus,

V Poisson's ratio,

2\oc

a

2h2
ß " b '

12 a2
y ~ t2 '

D
2

~ l+rß(rß + voc)'

M

AT

O.m^lrßD,
1

(0.08571 + 0.2D) (l-v)'
S =ab2 + a^a^.

Putting the slope at the edges a /? 0n), we obtain the A matrix for the case
where the diaphragms are perpendicular to the shell surface (37). The Solution
of (44) is as before

Z(x) G(x)Z0 + Z(x), (23)

where Z0 - kx [k2 G2 (1.0) fcj-1 k2 Z (1.0),
(28)

G (x) eAx and Z(x) -(!- eAx) A^B.

11) The terms (a + vrß) and (r ß + va) due to the curvatures must not be put equal
to zero!
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Here kx is the same as in previous cases:

19

fc1

+ 1

+ 1

+ 1

+ 1

(25)

k2 has to be determined according to the four conditions (39) at x +1.
Substituting (43) in (39) it is readily seen that the boundary conditions only
can be satisfied at given points y constant. Choosing the point «/ 0as the
most significant, we get:

At x +1, y 0

v 0 (i.e. f2 0 at all points (l,y)),
r ß

otu + w ocf1 + f3-^Df2 0,
(45)

«vr + u'-(* + vrß)w -fZ-"^Dß +f^y y y _. _s

Here /2 f'b and f"2 fl are given by (44). The k2 matrix is hence:

ko —

• h
^21 ^22 ^23

%2 %3 ^34 /Cn

Z" Z" Z* Z* Z* Z*
/C41 ft42 At43 /i/44 /(,45 «/46

(46)

where fc12 — + 1,

k21 +oc,

k --'-Id^22 —
2

^23 ~t~ ¦*¦ j

& --r-lDa^32 —
2 52'

& --r-lna^33 — 9 53?

& --rll)a^34 —
2 ^a54>

%7 — + 1
5
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« rß n (46)

y 2

r)8.

&41 — —
Ä# 9 ^«54 «41?
y __

k±2 +-~D{oi + vrß),

^43 -{oc + vrß),
^44 + 1

&45 £ # («52 + «54 «45) >

y __

^46 £D («53 + «54 «4ö) >

^48 ~ +~*

Putting a ß 0 we obtain the k2 matrix for the case where the diaphragms
are perpendicular to the shell surface (38).

d) Improvements to the Solution

1. Having found the functions fx. ./8, we assume similar to (29):

u c1f1 (x) f2 (y), v c2 f2 (x) f± (y), w c3 f3 (x) f3 (v) + c1 f2 (x) f2 (y). (47)

Here the constants ct are not arbitrary, but have to be determined such that
they satisfy the boundary conditions at# ±l,?/ 0 and at x 0, y= ±1.
Using the conditions (45) already imposed on the functions f1. .f8 (for the
argument +1), we obtain by substituting (47) in (39):

and c4 —£D8c3, (48)

where

The first and the fourth conditions being identically satisfied. Substituting (47)
in (40), the first and the third conditions are identically satisfied. The second

gives

c2 -yß8c3 (49)

and the fourth takes the form

^%(l)-^r^D%(l) + ^h-(rß + v«)f3(l) + (rß + v*)r-£Df2(l) 0.

Cl 8c3

c4 -r-^D8c3,

8
/a(0)
/2(0)'
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Comparing this with the imposed condition (45 d) it is seen that the fourth
boundary conditions in this case can be identically satisfied only if

and r 1

oc ß
(50)

which means that the shell must have a square base and that the parabolae
in the x and y direction must be identical.

With these restrictions we obtain, by substituting (48) and (49) in (47)

u 8c3f1(x)f2(y),

v =8c3f2{x)f1(y),

w c3f3 (x) f3 (y)-8c3-Df2 (x)f2 (y),

where S
MO)
MO)"

Similar to (30) it will be readily seen that c3 will have the approximate
value of + 1

/s(0) With this we have as a third approximation

u c

V c

1

MO)

MO)

h 0*0 /2 (y) >

U(p)fi(y)> (52)

w c
1

fZx)h{y)ADTT*Mx)h(y)\L/3(o) 2 MO)'

where c is a constant with the approximate value of + 1.

2. Instead of determining the best value of c by considering the energy, we
will now determine c such that the errors made by introducing (52) in the
basic Eqs. (7) are minimum (method of least Squares):

SS [£i + €i + ei] ^ x d y minimum

JJ 2^eldxdy 0i.e.

or

Here, for instance,

c

de

+ 1 +1^3

j;,?a?dxdy 0. (53)

1 -1

k (0) [/i/2 + 1(1-v)/1/2+K1+>')/{/2-|(1+v)/3/3 + yJ5(1+v)/^2]
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Proceeding as in § 4e, we can integrate (53) numerically with a digital
Computer and thus find the wanted constant c. Having found c we can compute
all quantities of interest using the known values of f1. .f8.

It must be remembered that the boundary conditions are satisfied only at
the points (±1,0) and (0, ± 1) and that this Solution only ib valid for shells
with a square base and where the generatrix and the directrix have the same
rise (Eq. (50)).

7. Numerical Example

Since the Solution for the case with diaphragms perpendicular to the surface
has been extensively treated by Dr. Dikovich [9], it will be of interest to test
the accuracy of our method by comparing the results obtained for a particular
example:

Consider a spherical cap over a square base, simply supported on diaphragms
perpendicular to the surface, with the following dimensions and properties:

a b llm,
hx h2= 1.43m,

T jr R 42.3™,
K-± fC2

Thickness t 8cm,

v 0.

The results are as follows:

Deflections w at the line y=0

+ 20--

+ 10- W*-Kw IO3 Q -f-

l 1

02 04 06 08 09 10

Moments M, ot the Ime y =0

f80
+6 0

Mi =+km, "1SF '°4
+4 0

+2 0

02 04 06 08 10
Difference at-g- =0 9 ~2%

Shear forces S at the Ime y +1

Ks ¦

+ 1 5 -

S + Ks -^r io3
+ 1 0

+0 5 -

02 04 06 06 10
Difference ot ¦£ - I 0 ~ 7 5%

Shear forces 0, at the line y +1

Kn. i

+2 0

z t»
Qi=-7_.t KQ1 '°6

02 04 06 08 IO

Aass Difference at -§- 0 8 ~ 12%
Dikovich

The curve for w practically coincides with the one given by Dr. Dikovich.
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8. Conclusions

On the basis of the numerical example given in § 7, one may conclude that
the method will give sufficiently accurate results for practical purposes. Since
the actual Computing time is very short12), the procedure will provide a cheap
means for analysing EP shells.

For the special case where r a\b 1 and a ß (i. e. kx k2), it is also possible
to take the slope at the edges into consideration by formulating the boundary
conditions (vertical edge members!). By given values of Poisson's ratio, the
wanted functions f1. .f8 and the unknown constant c may easily be tabulated

for different values of the two parameters a and y— 2 In a forth-

coming publication a study of numerical values for this case will be presented.
Introducing given displacements along the boundaries, it will also be possible

to establish "edge load" tables for calculation oi EP shells supported on
elastic edge members. This will be the subject of a paper to be published
shortly.
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Notation

2 a Base length in x direction
2 6 Base length in y direction
fi Function of x
gi Function of y
hx Maximum rise of the parabola in the x direction
h2 Maximum rise of the parabola in the y direction

d2w
dx2^l ~~
P ^2

k2 " dy2

k12

d2w
Yy2

d2w

dx dy

Curvatures

12) The programme consisted of approximately 150 matrix Instructions.
13) Reader in Structural Engineering at the University of Southampton, England.
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r a/b

t shell thickness

displacements in the direction of the axes

co-ordinate axes

2hx
a

2 ho
shell parameters__^

12 a2

r +-p-
e Error
v Poisson's ratio
A Matrix (8 x 8)

B Matrix (8x1)
C Arbitrary constant

E Young's modulus
G (x) eAx Distribution matrix

I Unit matrix
kx Initial value matrix (at x 0)

k2 Boundary restraint matrix (at x= + 1)

Li Linear differential Operator

X
Y External loads
Z

Z(x) Action matrix (8x1), containing the unknown functions f1. f8

ZQ Z(x)x=o

Z(x)= —(I — eAx) A~x B Loading Solution matrix
N1,N2, S, M1, M2, M12,QX,Q2 Stress resultants according to Fig. 2

d2
K } dx2

w a „.2dy2
d2 &

p2 _ j

dx2 dy2

[74 r/2 {72
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Summary

The writer presents a variational method for the analysis of elliptic para-
boloidal shells with the following boundary conditions:

1. Edges rigidly clamped.
2. Edges simply supported on shear diaphragms perpendicular to the surface.
3. Edges simply supported on vertical shear diaphragms.

In an example the accuracy of the method is tested by comparing the
results with those given by B. B. Dikovich [9].

Resume

L'auteur presente une methode variationelle pour l'etude des voiles minces

en forme de paraboloide elliptique. II considere les conditions au contour
suivantes:

1. Bords encastres.
2. Bords simplement appuyes sur des tympans perpendiculaires ä la surface.
3. Bords simplement appuyes sur des tympans verticaux.

Dans un exemple, il verifie l'exactitude de la methode en comparant ses

resultats avec ceux donnes par B. B. Dikovich [9].

Zusammenfassung

Der Autor beschreibt eine Variationsmethode zur Berechnung von
elliptischen Paraboloidschalen mit den folgenden Randbedingungen:

1. Die Ränder sind fest eingespannt.
2. Die Ränder sind frei drehbar auf Randscheiben gelagert, die senkrecht zur

Schalenfläche angeordnet sind.
3. Die Ränder sind frei drehbar auf vertikalen Randscheiben gelagert.

Die Genauigkeit der Methode wird an einem Beispiel, durch Vergleich mit
den Ergebnissen der Methode B. B. Dikovich [9], geprüft.
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