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Introduction

The structural framework of a modern, multi-story building consists in a
three-dimensional rigid frame of an extremely high degree of statical indeter-
minacy, and having enormous numbers of degrees of joint-displacement
freedom. Before the advent of automatic digital computers, the complexity
of such structures precluded any attempt at exact analyses. Even with the
aid of powerful computers, the computational problem associated with the
direct analysis of a multi-story building is very great. For example, the upper
stories of a relatively slender, high-rise structure might appear as shown in
Fig. 1. This framework has 18 joints in each story or, considering 6 degrees of
freedom per joint, 108 degrees of freedom per story. The direct displacement
method analysis of a 30 story building of this configuration would thus require
the solution of 3240 simultaneous equations, a formidable task even with the
best of modern computational equipment. It is the purpose of this paper to
present a simpler and more practical approach to the computer analysis of
multi-story building frames such as this, taking account of their actual three-
dimensional character.

Because of the magnitude of the computational task involved in the analysis
of large three-dimensional frames, and also because of the special charac-
teristics of typical multi-story building frameworks, it is customary and per-
missible to make various simplifying assumptions and approximations in their
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analysis (in addition to the ordinary assumptions of linear structural analysis).
The rectangular arrangement of the framing members leads naturally to the
treatment of the system as two sets of parallel plane frames, designated
xz-frames and y-frames in Fig. 1. These frames are all interconnected by floor
slabs (diaphragms) at each floor level. Except for this diaphragm coupling,
however, it is assumed that each frame acts in its own plane, independently
of all others.
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Fig. 1. Three dimensional building frame.

The floor diaphragms are assumed to be infinitely rigid in their own plane
(but with no rigidity out of this plane). As a result of this assumption, the
building has only three degrees of translational freedom per story, and all
girders are constrained against axial deformations. Two additional assump-
tions are sufficient to decouple the various plane frames in all respects except
for the diaphragm action:

1. Torsional rigidity of all girders is neglected. Thus the y-frame girders
do not carry over joint rotation effects from one x-frame to another, or vice
versa. It is also customary (but not essential) to neglect the torsional rigidity
of the columns. In most structures, the torsional rigidity of all members is
small enough that this assumption has little effect on the results.

2. Joints are constrained against vertical displacement. This assumption is
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essential to the independence of frame action, because any vertical joint dis-
placement obviously will cause a transfer of forces through the girders to
adjacent frames in both the x and y directions. Such vertical displacements
might result from axial column deformations as well as from rotations in a
vertical plane of columns having finite width (generally known as ‘‘shear
walls’’). In a tall slender frame, vertical joint displacements can have a signi-
ficant effect on the distribution of foreces throughout the frame; thus this
assumption limits the validity of the analysis. An approach to eliminating
this assumption is discussed at the end of the paper.

Within the limitations of these assumptions, the method presented herein
provides an ‘‘exact’’ analysis of any three-dimensional building frame. In
contrast with most other building frame analysis procedures, this method
considers the complete assemblage of plane frames rather than each frame or
each axis of the building separately. It takes account of the twisting of the
building about a vertical axis, as well as translational displacements along
both axes, and thus is suited to the analysis of unsymmetrical structures as
well as to symmetrical frameworks subjected to eccentric loadings.

Because the complete building is considered to be an assemblage of indepen-
dent plane frames, the basic operation of this method of analysis is the evalua-
tion of the lateral stiffnesses of the individual z- and y-frames. The lateral
stiffness of any given frame is found by use of recursion equations applied
successively to each story level from the top downwards. The computational
effort increases only linearly with the height of the building and with the
number of frames, thus the method is ideally suited to the analysis of tall
buildings having many different types of frames.

For convenience in identifying the numerous members and joints contained
in a multi-story building, a triple subscripting system has been adopted, as
shown in Fig. 1. The successive subseripts refer respectively to the story level,
the y-frame number, and the x-frame number, and are designated n, m, and p.
It should be noted that the story levels are numbered from the top downwards,
in accordance with the sequence of the recursion solution.

Lateral Stiffness of a Single Frame

The procedure which is used for determining the lateral stiffness of an
individual frame is based upon treating it as an assemblage of individual story
segments. It is a modification of the “tri-diagonal’’ solution technique which
has been applied to building frame analyses previously [1]. The modified
lateral stiffness analysis technique also has been described before [2], but only
with regard to deformations in a single plane. The general treatment of a
three-dimensional building frame by this approach is presented here for the
first time.
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Stiffness of a Story Segment

The first step in the analysis procedure is the evaluation of the stiffness of
each single story segment of the frame. This may be accomplished by standard
matrix analysis techniques which have been described many times before
[1,2,3,4], so the technique will be outlined only briefly here. First, the stiff-
ness, k,, of each column and girder within the segment is defined by means of
the well-known matrix expression shown in Fig. 2. Then, using the displace-
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Fig. 2. Typical frame member.

S IS I e

Level n
FORCES
P
r:"—p» Level ntl

UMnH,{,p UMnH,Z,a ‘\) ‘\) U

MnH,S,p Mn+1,4,p MnH,S,o
Un,p . - Xn,4,p Xn,5,p
- 3

=

Ln DISPLACEMENTS

nH,2,p Cntl,30 Cnyap  Ankisp
Typical member-segment deformation relationships:
member “a’’: ¢fi = cxn+1,1,p+————z——————,
n

j Un+1l,p —Un,p
¢u = dn,1,p + L )
n

member “b”’: ¢} = an,1,p,
‘H; = on,2,p.

Fig. 3. Story segment ‘“n’’ of frame “p’’.



ANALYSIS OF THREE-DIMENSIONAL BUILDING FRAMES 19

ment transformation matrix, a,, which expresses the relationship between the
member deformations and the joint displacements of the structure (as shown
for typical members in Fig. 3), each member stiffness may be expressed in
terms of the segment displacement coordinates, as follows:

k) = al kya,, (1)
where the superscript ‘‘zero’’ shows that the term is related to the segment
displacement coordinates. Finally, the complete segment stiffness, expressed
in the segment coordinates, is obtained by merely adding together the member
stiffnesses, k9, which contribute to each joint. The result of this operation

for story segment “n’’ may be expressed:

!

M, K, ¢, €e(d
M = | ()" kG, e|ahy, (2)
P (@) (eR)" k] (w

in which

M = vector of all joint moments applied at the top of segment “n’’.
M? = vector of all joint moments applied at the bottom of segment “n’’.

of, = vector of joint rotations at top of segment.

o? = vector of joint rotations at bottom of segment.

P = vector of lateral forces applied at all levels of frame.
w = vector of corresponding displacements.

It will be noted that the force and displacement vectors acting in the story
segment have been partitioned so as to separate the rotative effects at the
top, the rotative effects at the bottom, and all lateral displacements. Each
of the nine stiffness submatrices of Eq. (2) relates force and displacement
effects of these three types; thus ¢, represents the moments at the top due to
rotations at the bottom, k, represents lateral forces at all levels (contributed
by story segment ‘“n’’) due to lateral displacements at all levels, ete. It is
important to note that e, and %, have dimensions relating to the number of
stories in the complete structure, but have non-zero elements only in positions
corresponding with the location of element “n’’.

The moments M! in Eq. 2 represent moments applied externally at the
top joints of the segment. Generally these result from vertical loads acting
on the segment girders; i.e., they are the “fixed end moments’’ of the well-
known moment distribution procedure. Because no girders are included at the
bottom of the segment, the moments M? generally are not present. The
forces P represent the lateral loads applied externally to the given frame.
However, because the lateral loads are usually assumed to be applied to the
building as a whole, rather than to an individual frame, these loads also
generally are zero.
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Stiffness of the Complete Frame

When the individual story segment stiffnesses have been evaluated, the
stiffness of the complete frame may be obtained merely by summing appro-
priate submatrices of the segment stiffnesses. The result of this process may
be expressed as follows:

M3 0 cg' ].63 .o 0 O .. 0 63 o.tS
M, ;=10 0 0 k, c, 0 e, %, (3)
Mn—H 0 0 0 ce Crif (Cn+1 T 0 .en+1 °fn+1
M“V 0 O O O O O ev OC‘\‘
in which M, = M}, o = o,
etce. ete.
ky, =k, e, =€)
ete. ete.
_ N .
K= %k,

and where the subscript NV represents the total number of stories in the frame.
The physical significance of each of the terms in the stiffness matrix of Eq. (3)
is obvious. The tri-diagonal relationship between M and « results from the
fact that each story segment is connected only to segments above and below,
thus forces are carried over only from one level to the next.

Reduction to Lateral Stiffness

The recursive reduction process which may be used to evaluate the lateral
frame stiffness from Eq. (3) is a direct consequence of this tri-diagonal arrange-
ment of the stiffness submatrices relating M and «. Considering first Eq. (3a),
which may be written as follows:

My =lkiog+ciog+e,u (3a)
the rotations at the top of the frame may be expressed
oy =kt My —kileiop—kile u. (4)
Rewriting Eq. (3b) as follows:
M, =cfa;+kyoy+coog+e,u (3b)
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and substituting Eq. (4) for «; yields:
My =cl k' My—cTkitciap—cl ke u+kyay+cyog+e,u
Introducing the new symbols
My, =M,—cTkyi M,,
= ky—c{ k7lcq,

o=

]

2 =ey—cf ki'e,
this equation becomes
which has the same form as Eq. (3a), but with all subscripts increased by one.

Following the same procedure, a general recursive relationship may be
established for step ‘“n —1°’ of the reduction process:

M, =k, o,+Cp o+, U, (5)
in which M,=M,—cl k;1, M, _,,

70 =kn '—C? 11"7)1167)—17 (6)

e, =e, —cL k'8, 4.

A similar reduction process must also be applied to Eq. (3¢), which in its
original form may be written:

P=cloj+eloag+ -+ +eloy+Ku. (3c)
Substituting o, from Eq. (4), and introducing the new symbols
B = P —el k' M,
el =ef —elkylc,, (= transpose of e,, above)
I_fl =K —el kite,,
this becomes:

Po=eloast+efogt - +efay+ K u,

which has the form of Eq. (3¢), but with pertinent subsecripts increased by
one. The second general recursion relationship for step “n—1’’ thus becomes:

B =, +elayq+- - +efay+K,  u, (7)
in which P, =P _, -2 kM, ,,
er  =e, —eT 1 kztiCo s, (8)
Kn 1= K _en lknllen—-l'

Applying these recursive relationships (Egs. (5), (6), (7), (8)) successively
from the top of the frame downward, the rotational displacements are eli-
minated consecutively from the equations of equilibrium, so that at the next
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to the last step of the process Eq. (3) has been reduced to the form:

-G
Py, e Kyl lu

The final reduction then leads to
B, = Kyu, (10)

in Wthh K, represents the lateral stiffness matrix of the frame, relatmg the
translational displacements u to the effective lateral forces Py .

This reduction process has physical significance which is worthy of note.
The original stiffness matrix of Eq. (3) represents the complete stiffness of
the structure, in which each of the joints is restrained against rotation and
each floor level against translation. The reduction process represents the
relaxation of rotational constraints at the successive levels from the top
downward. The modified force and stiffness matrices of Eqs. (6) and (8) repre-
sent the changes in these quantities at level “n’’ resulting from relaxation of
the rotational constraints at level “n—1"’. Thus K, represents the lateral
stiffness of the frame when all rotational joint constraints have been relaxed.
Similarly, Py represents the effective lateral forces when the rotational con-
straints are relaxed. They result directly from the vertical load fixed-end
moments in the girders.

Analysis of the Complete Building

A plan view depicting the arrangement of the x- and y-frames, as well as
the lateral loads applied to a typical building is shown in Fig. 4a. In order
to identify the various frame stiffnesses and loadings in this figure, the nota-
tion of Eq. (10) has been modified and amplified as follows:

Equation (10) New notation
z-frames y-frames
Lateral Frame Stiffness: Ky I?f, Kv
Lateral Frame Loading: Py ]_3;, Q.

The vertical axis of the building, representing the origin of the z —y coordinate
system shown in the figure, is located arbitrarily. It is necessary however, that
it have the same plan location for each story, i.e. that it be represented by a
vertical line.

The rigid body displacements (translation and rotation) of story “n’’ of
the building are indicated in Fig. 4b. The relationship between the trans-
lational displacements of arbitrary - and y-frames at this level and the story
displacement components may be expressed as follows:

Unp = Un“*‘yp@qw

Vom = Vo —%, 0y, (1)
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where each of the symbols is defined in the figure. The resultant loads acting
in the nth level floor diaphragm, which include the lateral frame loads as well
as the externally applied forces X, and Y, , are given similarly by the relation-
ships:

2
D
n = n+z nm > (12)

in which the symbols in the right hand members of the equations are defined
in Fig. 4a and those to the left represent the story force resultants.

The relationship between the complete vector of story resultants (of dimen-
sions 3 V) and the corresponding displacements, may then be written:
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Fig. 4b. Story and frame displacements.
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X| [Kgx O Kyr] (U
T Krx —Kpy Kpp]lO
A .
in which X = X2 ;Y = Y‘“ oo =2
Xy Yy Ty

The stiffness matrix of Eq. (13) is made up of submatrices each having the
dimensions (N) of the number of stories in the building. These submatrices
are defined as follows:

Kxr = leﬁ Yp = (Kpx)7,
»
Kyy = 2 K}, (14)

Kyp =Y K2, = (Kpp)7,
Kpp = ZK%%%‘FZK_%IM?M
D m

in which the distances of the frames from the building axis, given by y, and
x,,, are scalar multipliers of the lateral frame stiffness matrices.

After the stiffness matrix of Eq. (13), defining the stiffness properties of
the complete building, has been established and the applied loads of Eq. (12)
have been determined, the building story displacements U, V and 6 may be
obtained from Eq. (13) by standard simultaneous equation solution tech-
niques. Although a large system of equations may still be involved (for
example, for a 30 story building there will be 90 equations) the size of this
computational problem generally will be orders of magnitude less than would
be required for the direct analysis of the complete building. For example, in
the building of Fig. 1, there are only 1/;. as many equations to be solved
simultaneously. Moreover, Eq. (13) may be partitioned readily to take advan-
tage of its zero submatrices, thus reducing the inversion problem to matrices
of order N.

When the displacement components of the floor diaphragms have been
computed from Eq. (13), the displacements of each of the components of the
building may be determined by a ‘“back substitution’’ process. First, the
displacements of the individual frames are found from a matrix equation
analogous to Eq. (11). Then for each frame, the first of the two equations
given by matrix equation (9):

is solved for the joint rotations, «, , at the lowest story level:

— -1 7
oy = ky MN—kNleNu,
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Rotations of joints at successive levels above this may then be found by
successive application of equations of the form:

— -1 T—1 —1 3
ayn_y =kyty My, — k3, Cy_1oy—kyt ey u, (15)

which is equivalent to Eq. (4).

After all joint displacements in the frame have been determined, the defor-
mations of all members can be found from expressions equivalent to those
presented in Fig. 3, and finally the member forces are found from the member
stiffness expressions of Fig. 2. Only the member moments will be obtained
directly by this process. However, the member shears can be computed easily
from their end moments, and column axial forces can be obtained by simple
summations of the pertinent girder shears and the axial force in the column
above.

Automatic Computer Analysis

Although the analysis procedure described herein is simple in principle, it
is clear that the volume of computations required for treatment of even a
rather small building makes the method practicable only for use with auto-
matic digital computers. Fortunately, the highly systematized procedure (and
its matrix formulation) is ideally suited to computer programming, and it is
not difficult to write a standard program capable of analyzing any building
which fits within the size limitations of the particular computer hardware to
be used.

One such standard program (Program “HIRISE’’) has been written for
the IBM 7090 operated by the University of California Computer Centre.
This program will analyze any structure of not more than 50 stories, made
up of not more than 10 different frame configurations. There may be as many
as ten identical frames of each type, and each frame may have up to 11 column
lines!). Thus the largest building which can be treated would have 121 joints
per story for 50 stories, which totals up to 36,300 degrees of freedom (or 12,250
according to the assumed diaphragm behaviour). Although treatment of a
structure of this size has not yet been attempted by this program, its analysis
is completely practicable and would not require an exhorbitant amount of
computer time.

The computer program generally follows the sequence of operations out-
lined above: the lateral stiffness of each frame is computed first (and stored
on magnetic tape) and then the stiffness of the complete structure is formed
by means of Eq. (14). The input data provides a complete description of the
structure and the applied loads (three different loading conditions may be

1) It should be noted that these size limitations were arbitrary, and could have been
doubled without difficulty.
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treated in a single analysis operation). This descriptive data is punched on
cards in the following sequence: General information cards, identifying the
problem, specifying numbers of frames in the x and y directions, ete.; story
cards, listing story heights, applied lateral story loads X,,, Y,,, etc.; and frame
description cards, specifying the bay widths, the size of each column and
girder in each frame, as well as the vertical loads applied to the girders.

The output of the program includes a listing of the building displacements
U,, V,, and 6§, for each story; then for each frame, story by story, a listing
of the story displacements, the girder end moments, and the column end
moments, shear and axial force.

Partial results of the analysis of an example building are presented in
Figs. 5 and 6. The general arrangment of the six story, L-shaped building is
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Fig. 5a. Examples building with applied loads.

—_——————————— e —_—— —

V|I N

Uy 64

Fig. 5b. Displacement of top story.



ANALYSIS OF THREE-DIMENSIONAL BUILDING FRAMES 27

shown in Fig. 5a. The applied load is assumed to be a wind pressure acting
parallel with the y-axis. The computed displacement of the top story is indi-
cated (to an exaggerated scale) in Fig. 5b. The twisting deformation which
results from this symmetrical loading acting on the unsymmetrical framework
is quite apparent. Additional representations of the deflected shape of the
structure are shown in Fig. 6.
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Fig. 6b. Displacements of front face of building.

Discussion

The method of analysis presented in this paper will provide an exact
solution of any multi-story building framework, within the limitations of the
assumptions which were defined at the outset. However it is clear that the
reliability of the results is dependent directly upon the wvalidity of these
assumptions, thus it is advisable to consider them again. For modern, high-
rise buildings, the assumption that the floor diaphragm is rigid in its own plane
is quite reasonable and should lead to no impotant discrepancies. It is evident,
however, that the floor slab rigidity in the vertical direction is not negligible:
it may contribute significantly to the flexural stiffness of the girders and its
effect should be considered in assessing the girder properties. On the other
hand, the vertical coupling between adjacent frames provided by the slab
probably can be neglected without significant error, as can the torsional
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rigidity of the girders. Thus the majority of the assumptions made in the
analysis are not expected to lead to significant errors.

The one remaining assumption, however, that there are no vertical displace-
ments of the joints, can be an important source of error. In the analysis of a
single plane frame of relatively slender proportions (for which vertical joint
displacement effects can be included without difficulty) [1, 2], axial column
deformations can be shown to cause significant changes in the member moments
and axial forces as well as a reduction of the lateral stiffness of the frame. In
addition, the vertical joint displacement effects associated with the flexural
deformation of vertical shear walls certainly cannot be neglected. Thus, it is
clear that the method of analysis presented here , although it provides a first
step toward the analysis of complete three-dimensional building frames, cannot
be considered the final answer to the problem.

At present, the most effective method for including vertical joint displace-
ment effects in a three-dimensional building analysis appears to be by means of
an iteration process. The analysis described herein, which neglects vertical
joint displacements, provides the first step in the iteration and yields a first
estimate of the axial column forces. Then, knowing these forces and having
derived the vertical joint stiffnesses (which include both axial column stiffness
and girder shear stiffness) the vertical joint displacements are computed using
an iterative process similar to that described in Reference 1, while constraining
the structure against other forms of displacement. As a result of these vertical
displacements, additional girder moments are developed in both z- and y-
frames. Calculation of the response of the structure to these new fixed-end
moments represents the next stage of the iteration process and is carried out
in exactly the same way as was the original analysis (i.e. without vertical
joint motion). This is followed by another vertical joint displacement iteration,
etc., until satisfactory convergence of the process is achieved. Because the
vertical joint displacement effects are of a secondary nature (at least in
buildings of moderate height), it is likely that the iteration would converge
very quickly, probably requiring no more than two or three vertical adjust-
ment cycles.
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Summary

A typical multistory building may be assumed to behave as an assemblage
of independent frames, oriented in the « and y directions and coupled at each
floor level by a diaphragm which is rigid in its own plane. The paper presents
a method of analysis for such structures which takes account of twisting of
the building about its vertical axis, as well as translations in the x and y direc-
tions. The method involves evaluation of the lateral stiffness of each individual
frame, making use of recursion equations derived from the “‘tri-diagonal’’
character of the frame stiffness matrix. The complete building stiffness is then
obtained by appropriate combination of the frame stiffnesses.

The method of analysis is intended to be programmed for solution by digital
computer, and the basic features of a program written for the IBM 7090 are
described. Displacements and member forces produced by arbitrary combina-
tions of vertical and lateral loads may be evaluated. Partial results of the
analysis of an example building are presented.

Résumé

On peut considérer que l'ossature d’un immeuble & plusieurs étages se
comporte comme un assemblage de portiques indépendants, orientés dans les
directions x et y et solidarisés a chaque niveau par un diaphragme rigide dans
son propre plan. On présente une méthode de calcul de ces ossatures qui tient
compte de la torsion autour de I’axe vertical ainsi que des translations inter-
venant dans les directions z et y. On évalue d’abord la rigidité latérale de
chaque portique au moyen des équations de récurrence déduites en tirant parti
du caractére «tri-diagonal» de la matrice de rigidité. On obtient ensuite la
rigidité de I’ensemble en combinant convenablement les rigidités des portiques.

Cette méthode de calcul est destinée a étre programmée sur un calculateur
digital et 1'on décrit les caractéristiques fondamentales d’'un programme
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destiné & I'IBM 7090. On peut calculer les déplacements et les sollicitations
dans les éléments dus & des combinaisons arbitraires de charges verticales et
latérales. On présente les résultats partiels du calcul d’un batiment type.

Zusammenfassung

Die Tragkonstruktion eines normalen, mehrstockigen Gebidudes kann als
Zusammensetzung unabhéingiger, in jedem Stockwerk durch in ihrer Ebene
starre Decken verbundener Rahmen betrachtet werden, deren Achsen parallel
zur x-, bzw. y-Richtung verlaufen. Es wird eine Methode zur Berechnung sol-
cher Tragwerke beschrieben, welche die Verdrehung des Gebdudes um seine
vertikale Achse und dessen Verschiebungen in z- und y-Richtung beriick-
sichtigt. Zuerst wird die Quersteifigkeit jedes einzelnen Rahmens mit Hilfe
von Rekursionsgleichungen ermittelt, die aus der besonderen Form der Steifig-
keitsmatrix (dreigliedrig) hergeleitet werden. Die Gesamtsteifigkeit des Gebéu-
des wird durch geeignete Zusammensetzung der einzelnen Rahmensteifigkeiten
ermittelt.

Die Berechnungsmethode soll fiir einen Digitalrechner programmiert wer-
den. Die Grundlagen eines Programmes fiir die IBM 7090 werden beschrieben.
Die Verschiebungen und die Beanspruchungen, die von einer beliebigen Kom-
bination vertikaler und seitlicher Krafte hervorgerufen werden, konnen ermit-
telt werden. Teilergebnisse der Berechnung eines Mustergebdudes werden
angegeben.
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