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1. Introduction

Welded built-up members are being used more frequently in steel construction

due to economy, convenience, and esthetics. The residual stresses produced
in the member as a result of the welding play an important role in the buckling
strength of the member.

It hade been believed that residual stresses do not affect the elastic buckling
of structural members, but this is only true for column buckling of the Euler
type.

When a flat plate containing residual stresses is subjected to a thrust, it may
buckle in one of three ways according to the magnitude of the thrust, that is,
either elastic buckling, elastic-plastic buckling, or plastic buckling.

When a thin plate is subjected to compressive forces, shearing forces, or
their combination, the differential equation for the plate in the elastic ränge
takes the form [1]

_
cr*w crw

+ 2
dxi dx2dy2 + ¦

ö*w

w. + h <rw n c-w o'-w

dy2.

where D flexural rigidity of the plate

dxdy
Eh3

12(l-v

0,

w deflection of plate,
ox,oy normal stress components in the cartesian coordinates,

Txy shearing stress in the cartesian coordinates,

_ Young's modulus,
h thickness of plate,
v Poisson's ratio.
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This differential equation was solved for many cases under different boundary
conditions by Timoshenko [1, 2] and many others.

Erom 1924, attempts to extend the theory of plate stabihty into the inelastic
ränge were made by F. Bleich [3], Chwalla [4], Ros and Eichinger [5].

In 1941, Madsen noted and discussed qualitatively the effect of residual
stress on plate buckling [6]; bis work Md directly to the later recognition of
residual stress effects in columns.

As the theory of plasticity developed, new theories were presented for plastic

buckling. One was based on the deformation theory [7], and another on the
flow theory of plasticity [8, 9]. Later, both theories were modified by using the
Shanley concept [10, 11, 12, 13].

In 1960, Okerblom presented a paper [14] concerning the influence of
residual stresses on the stabihty of welded structures and structural members,
based on experimental results. His paper showed that there was a possibility
of elastic buckling ofplate elements of a structure which had been fabricated by
welding.

In the same year, Yoshiki, Fujita and Kawai [15) investigated analyti-
cally the influence of residual stresses on the elastic buckling of centrally
welded plates, and showed that the residual stresses could influence the elastic
buckling of a plate.

These two studies are apparently the only papers concerned with elastic buckling

of plates with residual stresses. There is no theoretical research other than
in the elastic ränge.

In fact, the method of analysis presented in this paper is believed to be the
first approach to the Solution of the elastic-plastie and plastic buckling of plates
with residual stresses.

This paper is based on a dissertation [16] to which reference may be made
for detailed information on the history of the study of plate buckling and
for a complete summary of the theories and formulas involved.

2. Analysis of Buckling Strength

1. General Approach

The buckling strength of a plate with residual stresses is evaluated by the
energy method in this paper. The behavior of a plate is analyzed by the theory
of elasticity and by the two theories of plasticity (the secant modulus
deformation theory and the flow theory). These theories are based on relationships
between stress and strain which are described below, in Section 2.2.

The theorem of minimum potential energy [17] is valid for an elastic body;
it is valid also for a plastic body in which the reversal of strain is not allowed.
Expressions for the total potential energy of a plate with residual stresses were
derived in this study for the elastic and plastic ranges. In the plastic ränge, the
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expression was based on both the deformation theory and on the flow theory,
using the Shanley concept. By adoptmg a suitable stress-strain relationship for
each domain of the plate and by substituting the appropriate deflection
functions, the potential energy in the plate may be evaluated taking into account
the effect of residual stresses in the plate. The minimization of the potential
energy leads to the equihbrium condition according to the theorem of minimum
potential energy. When the Ritz method is employed to minimize the potential
energy, there results a set of simultaneous equations with respect to the coefficients

which appear in the assumed deflection function. In the Ritz method, the
assumed deflection functions must satisfy the geometric boundary conditions
and these functions must be as complete as possible. Eor buckling problems,
the set of simultaneous equatilns are homogeneous. The non-trivial Solution of
this set of homogeneous simultaneous equations is possible only if the coefficient

is equal to zero
The roots of such a coefficient determinant will give the critical values of

buckling strength of the member, these corresponding to the characteristic
values, the lowest of which is the critical buckling strength.

2. Stress-Strain Relationship in the Elastic and Plastic Ranges

The behavior of the plate was analyzed by using the theories of elasticity
and plasticity in the elastic and the plastic parts respectively. Eor material
strained into the plastic ränge, two theories of plasticity were used, one being
the secant modulus deformation theory, and the other the flow theory. In the
plane stress problem, those theories are based on the following stress-strain
relationship :

a) Elastic ränge, from the theory of elasticity [18, 19].

1
r l r i 2(l+r) I

where ex, ey normal strain components in cartesian coordinates,

yxy shearing strain in cartesian coordinates.

b) Plastic ränge, from the secant modulus deformation theroy [7].

for loading:
2(1+*) 1

Yxy jj Txy> (3)

where

1

1 [o

%s

My], ev
i

[°v~-V CT

1 iz

+°l--ox°i + 3- 2

xy

\/4 + 4 + e ^y + Yxy
4

intensity of stress, (4)

intensity of strain;
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for unloading (the material is assumed to behave completely elastically)
1

d
E [d°x dey -jj; [dory - v daJ, dy^ —-^- drxy, (5)

where the relationship is given in the form of a Variation to ehminate the effect
of a permanent set.

c) Plastic ränge, from the flow theory [20].

for loading:
_
1

Ad,

v + -

v + -

A-l

A-l

A + 3

Y~acc + —^av (6)

Yx
2(l+v).

where ex, ey rate of change of strain components in the cartesian coordinates,
&x, &y rate of change of stress components in the cartesian coordinates,
A _/_, Ifat (ratio).

for unloading:

1
e* ~~E [<?x-v&y],

1
r- -i • 2(1+v>

--glciy-vcrj, Yxy - E Txv' (7)

3. Residual Stress Distribution

Steel structures fabricated by welding contain residual stresses due to the
plastic deformations set up by the temperature gradient induced at welding
[21, 22, 23].

In general, two residual stress patterns may be regarded as typical for
welded plates and for shapes fabricated from plates by welding. One is that due
to an edge weld, and the other that due to a center weld [21, 22].

The buckling strength of these plate elements may be investigated on the
basis of these two distributions.

It is advantageous to simplify the residual stress distribution for the
analysis ofthe buckling strength of plates [22, 24]. The residual stress pattern used
in this study will be of the form shown in Eig. 1, which corresponds to the

(a) (b)

Fig. 1. Usual residual stress distributions in edge welded plates.
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pattern obtained in experimental work. Eor this study the residual stress

distribution of Fig. 2 a was chosen as a simple approximation ofthe true pattern. By
adjusting the appropriate parameters, this pattern can be reduced readily to
other patterns such as those shown in Figs. 2 b, 2 c and 2d, which correspond to
different geometric proportions of plates [16].

Ik.

Fig. 2. Simplified residual stress distribution used in the
analysis.

t>-b2= o

b0>0

4. Potential Energy of the Plate

The theorem of minimum potential energy [16, 17] leads to equüibrium
differential equations in the elastic and plastic ranges. In this study, the equilibrium

differential equations in the plastic ränge obtained from the theorem of
minimum potential energy was shown to be the same as those obtained from
consideration ofthe equilibrium of an element ofthe body [16]. The characteristic

values of these differential equations give the values ofthe buckling strength.

If the Solution of the differential equations is difficult to obtain, the energy
method can be used as a powerful tool to solve the problem to sufficient accuracy

for engineering purposes.
The total energy of the plate is obtained in the form of a summation of the

strain energy stored in the plate and the work done by the external forces

acting on the plate, with an additive constant which depends on the reference

position. In this study, the reference position was taken as the loaded sta|||
prior to buckling.

The potential energy at buckling is shown below for the following cases:

a) In the elastic region of the plate,

b) in the plastic region, using both the secant modulus deformation theory and

the flow theory.
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a) For the elastic part of the plate, the energy equation may be shown to be
[1]:

V m. d2w
Jx1 2(1

dx dy
d2w\ fd2'W

^Jx->+9-
öw\ I du

'x'dx)\dyl+cr^\i

dx2] \öy
cw^2'

+
d2wY

dx dy

dxdy,
(8)

where V potential energy stored in the plate.

b) For the plastic part of the plate, based on the secant modulus deformation
theory, modified by using Shanley's concept, the expression derived in this
study is

_, Cx
öx1-

¦C Ö"M)\ lÖ^W
+ G'

n„tdiw\ td'w
+°3W)W

2*dx2)\dy2)^"3\dxdy

n jd2w\l d2w\ n ld2ws2

ax + 2t. dw\ I dw

dxj\dy + cj,

oy'
dw
dy

dxdy

dxdy,

(9)

where i 1-^(1 ¦v2)k,

4cr r/-f 5 wx 'xy n \z

0^2
C" — 2

r2^(1

ax^y IT—„ (1 — V

2)k

4 CT T

07

K 1 A
E'

Dd flexural rigidity of plate in the plastic ränge, based on the
deformation theory _„,,"—r-.J 12(1 — v2)

Eq. (9) is similar to Stowells's equation [11. 12], except for the coefficients
C3 and C3. In Stowells's equation,

3 o-_o-„ + 2tLC — C" i _-- --x"y

Based on the flow theory [13, 20] modified by using Shanley's concept, the
expression derived in this study is:
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V

where

5*
2

'Ch
9

.„?+«' <rw\ id'-w
^dxdyJ+C'^\dx2f\dy2' + CA-,

d2w\l

dw\ Idw
dxf

J ""{dx/ \dy

(l-v2)(A + 3)

(5-4j/)A-(1-2v)2'

+ o-„
dwV
8yJ J

py

dxdy,

dxdy
(10)

CJ 2(l-v),
4(l-v2)(2v + A-l)

~~

(5-4v)A-(l-2v)2'
4A(l-v2)

(5-4v)A-(l-2v)2'
D, flexural rigidity of plate in the plastic ränge, based on the

C

C

flow theory
Eh*

12(l-vV

Eq. (9) coincides with Eq. (8), when it is applied to the elastic zone, where

Et Es E. Likewise, Eq. (10) reduces to Eq. (8), since Et E in the elastic zone.

5. Residual Stresses and the Plate Equation

For an elastic isotropic plate of a constant thickness, h, which is subjected to
an edge thrust in the direction x, the equilibrium differential equation may be

expressed as [1].
d2w

D
d^w diw diw
JxT+ dx2dy2 + JyT

—ct„h (11

When the plate contains residual stress, the stress in the x direction may be

expressed in the form of the summation of the stresses, arx + ox, and Eq. (11)
becomes [16]

_
d*w d^w d*u
IxT+ dx2dy2

+ cjyi
ö'-w

(orrx + ax) h-^—^, (12)

where arx is the residual stress in the x direction.
The energy equation, Eq. (8), modified for the effects of residual stress in

this case, becomes

V
"CD

OX'
+ 2(l-v) dxdy

d2w\ ld2w\ ld2w
V\j^)\dy2) + W dxdy

-(ct^ + o-jI-^I dxdy.
(13)

Similarly, the components of residual stresses, arx, a^ and rxy, may be
introduced into the expression for the potential energy of the plate [16].
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Z>

2

2

dx' + 2(1 ö'w
dxdy,

+ 2v|— — I- dxdy

dx
,öwy n, Idw\ dw\ .low

(14)

dxdy.

where ct^, a^, t^ are the components of residual stresses in the cartesian
coordinates.

The above equations are the elastic domains, but similar equations may be
derived for the plastic domain, by taking into account the yield condition.

The relationship between stress and strain, secant and tangent moduli under
load are shown in Table 1, and illustrated in Fig. 3. These relationship are based
on the assumed residual stress distributions of Figs. 2 a and 3 a.

Table 1. Distribution of Stress and Strain, and Secant and Tangent Moduli in Plates

Original State

Domain Strain Stress Es Et

0 -öo
to — &2

&2-&

— OrlfE
-Uv)ß
am/E^ey

— (Tri

-<t>{y)
Cri^oy

E
E
E

E
E
E

Elastic Buckling

0 -&o
60 — 62

62-6

-[arl/E+ec]
-l<j,(y)/E+ec]

arz/E—€c

— ["r 1 + <rc]

-\.Hy) + °c\
Ori — Oc

E
E
E feg

tel

tel

Elastic-Plastic Buckling

0 -60 — [o> i/_ + ec] — ay _ ay/aTz + ac 0

&0~ &1 -[Hu)IE+cc] — ay E oy/<f>{y) + ac 0

bt-b2 -MW/E+c,-] -[*%) + <"«] E E
bi-b tJfZlE — €c 0>2 — Oc E E

Plastic Bück

0 -60 — [ori/E + fe] — ay E ayfarl + Oc 0

60 — 61 -WM/Ä+Ce] — ay E oyl<t>(y) + ac 0

61-62 -W(ä,)/Ä+ft] — ay E ay/<j>(y) + ac 0

62-6 — [ec — oTifE~\ — ay E ayfac + ar % 0

where <f>(y) ori — {y — 60)
°Vl + °r2 °>i&2-|-0>2 60 o>i + oys
62 — 60 62 — 60 62 — 60

CTc — E €c.
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j__j E iAl

(o) STRAIN AND STRESS DISTRIBUTION
BEFORE LOADING

(RESIDUAL STRESS DISTRIBUTION)

Q_
er..* er.

m
(b) STRAIN AND STRESS DISTRIBUTION

AT ELASTIC BUCKLING

15,
>."^i-r

STRESS

"I
¦E-+«.

__5JRA1N AND SgmESS DISTRIBUTION

AT ELASTIC-PLASTIC BJ5BBg»|
(dj STRAIN AND STRESS DISTRIBUTION

AT PLASTIC BUCKLING

Fig. 3. Relationship between stress and strain in a loaded plate containing residual stresses.

6. Local Buckling of Built-Up Columns

Among the problem ofthe buckling ofplates with residual stresses studied in
the general investigation [16], special attention was paid to the study of the

local buckling of built-up columns.
The method of Solution of this kind of problem is quite similar for both

closed and open sections except for the boundary conditions at the open plate
edges.

In this paper, attention is limited to closed sections.

A closed column section is composed of several walls each of which consists

of a flat plate. That is, the study of the local buckling strength of this kind of a

column is reduced to a study ofthe problem ofthe buckling of plates connected

at their edges. The study of the local buckling is considered under the following
assumptions [19]:

i an

Wi+I

w

Fig. 4. Coordinate axes for plate elements.
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1. The column does not buckle as a column before local buckling of the walls
oceurs.

2. The deflection at the edge of the plate is zero.
3. The deflection and bending moment at both the loading ends are zero.
4. The angle between two adjacent plates does not change.
5. The wave length of buckling is identical on each wall, and therAs no phase

lag of buckling between the walls.

Referring to Fig. 4, these assumptions may be expressed in the form of
equations.

Assumption 2 may be written as

w>4 0 at 2/i=±6«, (15)

where wt deflection of the plate on the side i,
y% — y-axis of the cartesian coordinate of plate on the side i,
W> — half width of plate element on side i.

Assumption 4 may be written as

|Ö|| Mt Mi+1 at Vi H
0, &Vi, Mt Mg at fSSM (16)

where 9t angle of rotation at edge of plate i,
Mt bending moment per unit length of section of plate perpendicular

to the x axis.

Assumptions 3 and 5 suggest the following equation for the deflection function:

wi fi(.yi)sinNj-, (17)

where N number of half waves in the direction of the x axis,
L entire length of column,
ft (yd deflection function expressed in the direction of the x axis.

Special attention should be paid to Assumption 3 concerning the influence of
the aspect ratio fo the plate elements upon the critical strain. According to this
assumption, zero deflection and zero bending moment are assumed at the
loading edges, even though this may not be true in actual cases; this implies
that the longitudinal deflection may be expressed in the form of siniV-^-.
Studies [1, 19] of the elastic buckling of flat plates have shown that, for the
plate with an aspect ratio of more than 4, the buckling strength is almost identical

in both of the following two cases, simply supported or fixed at the loading
edges, regardless of edge conditions. From this, it is quite rational to presume
that the walls of a column will buckle at the ratio of Lfb which gives the lowest
critical value, that is, a plate simply supported at the loading edges, regardless



INELASTIC BUCKLING OE PLATES WITH RESIDUAL STRESSES _1

of the conditions of the other edges, The local buckling strength of a built-up
column may be predicted from this point of view, since the aspect ratio of

plate elements is more than four in most practical cases.

3. Analytical Solutions

Analjälical Solutions were obtained and are presented for the elastic, elastic-

plastio, and plastic buckling of a plate with residual stresses when the plate is

simply supported at the loading edges and at the other edges is:

a) elastically restrained,
b) simply supported,
c) fixed.

From this solutions the local buckling strength of a built-up column of

rectangular cross section will be obtained. Case a) corresponds to a rectangullar

cross section, Case b) to a square cross section, and Case c) to a limiting case.

All these cases are ülustrated in Fig. 5.

3S E R

E R

_P"
Rectangular

Cross Section

-J_
~!>

s.s SS

FixedS.S

--^^j*---

Fixed

-+--
Square

Cross Section

Fixed Edges

Limiting Case

S S i Simply Supported

E R Elastically Restrained

Fig. 5. Boundary conditions of the
plates.

-ya

V

M
Fig. 6. Coordinate axes for a column

of rectangular cross section.

1. Plate Elastically Restrained (Rectangular Gross Section)

The cross section here consists of two different pairs of plates, Fig. 6.

The following additional assumptions [16] are added to those given in Section

2.6.

1. The material properties of all plates are the same: yield point, Young's
modulus, Poisson's ratio; both in the elastic and the plastic ranges respectively.
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2. Each pair of parallel plates are of the same size.
3. Each pair of parallel plates has the same residual stress distribution.
4. The residual stress distribution in both pairs of plates is similar in shape to

each other (Fig. 6).

A combination of two series of sinusoidal functions was chosen [16] as the
deflection function of a plate element of a rectangular box column,

-^-^ *$$) +2 Cln{cos (nTT^j - (- l)»j.

w, J]ct2m cos
2m—1 y2

w6»l- 2C2„|cos^7r||)-(-l)4

siniV7r

sin IV 77

;is)

where o,Xm,a2m,cXn,c2n — coefficients of deflection functions,
m,n — positive integers.

These deflection functions were assumed so that the functions satisfy all the
boundary conditions mentioned above.

For Assumption 4: the angle between two adjacent plates does not change,
that is,

a) Biyl=±l>ll) 02j/j==F&(2>> (19)

b) M1Vl=±m _r8y,_¥W). (20)

Rewriting Eq. (19),

dwx dw.

0yxlvi=±bW \0y2fy,= ^b^
(21)

Substituting w1 and w2 into Eq. (21), the relationship between the coefficients
may be obtained.

_a2m a_°W (22)
6(2)

where

For Eq. (20), the bending moment in the plate may be expressed [24] in the
form of

\dy2 dx2f
(23)

At the edge, w aw o'-w
- 0 and consequently the bending moment takes

the form, M —Dy-^-A, and the boundary condition is

cr-w^(f?) !__»
\oy2fVl=±bm W/„=t&w 24)

where Dx and _ 2 are the respective bending rigidities of the plates,
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Eh3

223

in the elastic ränge

in the plastic ränge
(deformation theory)

v 0.5

in the plastic ränge
(flow theory) v 0.5

_

D,=

A

12(l-v2)'

Esh3 Esh3

12(l-v2) 9

Eh3 Eh3

(25)

12(l-v2)

The boundary condition Eq. (24) gives the relationship between the coefficients

in the expression for wx and w2 as

ZCzn ßZCln, (26)

(DA /6(2)\2
where ]8-= DJ W»

Substituting the relationship of Eqs. (21) and (26), the assumed deflection of

Eq. (18) becomes

w-,

Wo

V ül_cos
2 m — 1 yx

IT

a 2 am C0S

2

2m

+ Y,C„ {cos [n __öd) -1) sinN: L'
1 2/2

2T nW> -ßZGn\cos[nTT^ -(- ;

(27)

sinlW-

The first term in the brackets of the equation corresponds to the deflection

of a plate simply supported at all four edges and the second term is closely
associated with that for a plate simply supported at the loading edges and fixed

at the other edges.

Sufficiently accurate results were obtained by taking only the first term of
each series (ra= 1, n= 1) in Eq. (27) (see Section 4). Then the assumed deflection

becomes
x

W-i

w2

cos'f m+G cos ra'+
a a cos f|§)+^|cos^

M+l}'

#1
iNt _'

(28)

sin^''; L

Introducing the above equations, Eq. (28), into the expressions for the energy
integral and carrying out the Integration in each part (the elastic parts and the

plastic part), and taking into consideration the different stresses and the secant

moduli, the total potential energy is obtained; V =VX+V2 (where Vx and V2

are the potential energy in each plate).
Using the Ritz method, and minimizing the potential energy, the partial

differentation with respect to the coefficients a and c leads to the following
homogeneous equations,

____ ____
da

0 and
de

0 9)
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with the result that
aFxx + cFX2 0, aF2X + cF22 0. (30)

Each component in Eq. (30), Fxx, F22, FX2, F2X, is hsted in Appendix 1, in the
sequence of the cases for elastic, elastic-plastic (deformation theory), elastic-
plastic (flow theory), and plastic buckling (deformation theory).

The requirement that the coefficient determinant of Eq. (30) is zero gives the
stabihty condition

FXxFzz-Fx2F2X Q (31)

from which the critical buckling value can be computed.

2. Plate Simply Supported (Square Cross Section)

In this study, it was assumed that the four plates which compose a square
column are identical in material properties, size of plates, and the distribution
of residual stress.

The symmetry of the structure and of the residual stress distribution render
the analysis comparatively simple. The Solution for this case was obtained as a
hmiting case of the previous problem of rectangular cross section. The assumed
deflection function must satisfy the same boundary conditions as before.
Because of symmetry, only one plate, simply supported at all the edges, need be
investigated.

Choosing only the terms associated with the deflection of a simply supported
plate in Eq. (27), and taking m 2, the following equation is obtained, which
satisfies all the boundary conditions.

w
77 y\ i „ ™„/37r y

g^cos]— H +a2cos. ;
sinN-TT—. (32)

Ju

Following exactly the same procedure as in the previous section,

ax Fxx + a2FX2 0, ax F2X + a2 F22 0 (33)
and FxxF22-F12F2X 0, (34)

which gives the critical strain. Fxx, F22 and FX2(=F2X), are presented in
Appendix 2.

The following equation gives the first approximation for the critical buckling

strain,
Fxx 0. (35)

This corresponds to the hmiting case of a rectangular section, and also to the
case where the deflection is assumed as

(TT
U\ X

— j-\sinNTT^r-. (36)

When there is no residual stress in the plate, this deflection is the exact one [1,3].
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3. Plate Fixed at the Edges

A limiting case of the rectangular section is the one which corresponds to a

pair of opposite plates which have infinite bending rigidity, as, for example,
stiffeners used in ship structures.

The boundary conditions in the case are fundamentally the same as for the

rectangular section, except for the condition that 8X 62 0 at the edges. This
leads to aOT 0 in the deflection function, Eq. (27).

The second term in the brackets of the deflection equation, Eq. (27), fulfills
these boundary conditions. That is,

w ZCn cos \mrT-l — — 1) siniV7r|- (37)
_M 0

and for n 2, ||F22-Fx2F2X 0, (38)

which gives the critical strain.
The components of the determinant, Fxx, F22 and FX2 F2X, are shown in

Appendix 3.

The first approximation of the deflection,

0 <•<>> gglfe l sinNrT^- (39)

is identical to that by Cox [26] for elastic buckling without residual stresses.

As above, Fxx 0, gives the first approximation for the Solution, and is the

same as for the limiting case of rectangular sections.

4. Numerical Illustration

The analytical Solutions were used to obtain the local buckling strength of
built-up columns of square cross section.

When the plate sizes and the distribution of residual stress are specified, the
critical stress or strain of the elastic, elastic-plastic, and plastic buckling may
be obtained from Eqs. (34) and (35).

The numerical calculation was carried out by a digital Computer, the

L. G. P. at Lehigh University [16].
In the numerical calculations, Poisson's ratio was assumed to be 0.3 in the

elastic ränge, and 0.5 in the plastic ränge [16].
The results of numerical calculations from Eqs. (34) and (35) were compared,

and it was concluded that Eq. (35) (considering only the first term for the shape

of the deflection), gives sufficiently accurate answers [16].

1. Elastic Buckling

In this case, the critical stress of buckling obtained from Eq. (35) is a

complicated expression, but can be arranged as
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eher«

__
'T 10

-B, (40)

ratio of critical stress to yield point, for elastic buckling without

residual stresses,
R reduction of buckling strength due to residual stresses

/(^,^,\ay ay

bo bi
b ' b

Eq. (40) implies that the influence of residual stresses may be evaluated from
the residual stress distribution independently of the critical stresses, and that
the crmcal stress, taking account of the residual stresses, may be obtained
readily from the critical stress without residual stresses.

Eq. (40) has been plotted in Figs. 7 and 8.

~-Ab
L-tiAb

t__#ft^
iA'K

Fig. 7. Relationship between residual
stress distribution and reduction in

buckling strength (see Eq. 40).

Fig. 8. Relationship between residual
stress magnitude and reduction in

buckling strength.

According to the results of the numerical calculations, the critical stresses
of elastic buckling may be calculated by the following approximate expressions,
which have been fitted to the plotted curves of Eqs. (40) (Figs. 7 and 8). The
use of them for prediction results in negligible error.

°r7o

vrio

< 0.15,

+ K
Oyj \CTT

> 0.15.

(41)

(42)

where o-rl magnitude of maximum tensile residual stress in the assumed

pattern (Fig. 7)

and K R, for 5_ l.o.
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Tht* factor (l]t>) influences the buckling strength uf a platt*, and at a certain
valu«* of {IIb) the minimum critical strain may be obtained. However, in the
elastic buckling. the influence of residual stress**« on the buckling strength of
ii plat«* is independent ofthe critical load. a-s shown by Eq. (40). The factor (//6)
is contained only in the first term of Eq. (40). but not in the second term. Tlu*
first term give« the elastic buckling strength für a plate without residual
stresses which is a minimum for (/,'6)~ 1.0 [16].

The results ofthe numerical calculations an* summarized in Figs. i* and 11,

for critical stress crit ical and strain respectively. Some of t he curve« for t he clastic

buckling intersect the abscissa. This interesting fact show* the |>ossibility ofthe
buckling of a plat«* without any external loa«! and explains tlu* reason why
plates can Im* distort«*«! solelv du«* to the process of welding.

2. Efast ic-Plastic Bückling

As in the preceding section. a comparison was made of the accuracy obtaine«l

DJ taking the first »ml the first two terms of the deflection equation. The
im um | mt atioii showed that the value for <*„•<! y as obtained by the deflection

equations. differed only by 3% in the worst case [16]. It was judged that the

fco».
te*"

»*>

»O 40 »o

Fig. 0. Bückling strength of plate* with remilunl »tu inras (deformation theory).

bbMC

K «.•01
K- 0>

*- T-

10. Burklir r—i«]i
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Fig. 11. Critical buckling strain of
plate with residual stresses (defor¬

mation theory).
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Fig. 12. Critical buckling strain of
plate with residual stresses (flow

theory).
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use of the first term is accurate enough to carry out a comprehensive numerical

computation with due consideration to the economy of Computer time. (For
instance, using only the first term, the running time of the Computer was only
one fourth of the time spent for the computation using the first two terms.)

Even when only the first term of the deflection equation was used, the

computation did not become much simpler, as was the case for elastic buckling. In
that case, the influence of residual stresses on the buckling strength of a plate
was separated from the original buckling strength of the plate without residual

stresses. For elastic-plastic buckling, it is not possible to separate these two
factors in the equation.

In contrast with the buckling of a single plate, the local buckling of a box

column normally oceurs at the critical (l/b) ratio which gives the minimum
critical stress.

For each residual stress pattern, various values of Ifb were chosen for a

given value of critical strain. From the results of the computation, the curves

(HB) vs. critical (bft) were drawn and the most critical Ifb was determined

corresponding to the minimum critical strain. This is illustrated in Figs. 13 to
17. For example, in Fig. 15, the lowest critical stress corresponds to an l/b ratio
between 0.7 and 0.8 for elastic-plastic buckling of a plate with residual stress.

Figs. 9, 10, 11, and 12 summarize the computation results for the elastic-

plastic local buckling of the box column using the deformation theory and the

flow theory. Figs. 9 and 10 show the ratio of the average critical stress to the

yield point vs. the bft ratio, and Figs. 11 and 12 show the ratio of the average
critical strain to the yield strain vs. the bft ratio. For elastic buckling, the

critical stress is calculated from the critical strain multiplied by Young's
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modulus. But in the elastic-plastic buckling this relationship is no longer
apphcable and the critical stress must be calculated from a more complicated
relationship [16].

As expected [27, 28, 29], the flow theory gives higher critical stresses than
does the deformation theory. The elastic-plastic buckling curves based on the
flow theory he very close to the boundary of the elastic and the elastic-plastic
buckling regions.

The curves which represent the buckling strength of a plate vs. (bft) ratio
are hyperboli for elastic buckling, but are almost straight lines for elastic-
plastic buckling. At the transition from the elastic buckling to the elastic-
plastic buckling, there is a discontinuity in the curve in Figs. 9, 10, 11 and 12.
This is due to the sudden plastification of the material in the plate, because of
the shape of the assumed residual stress distribution.

It should be noted that, even though the plate consists of three parts, an
elastic part, a plastic part, and another elastic part, the first approximate
deflection function gives accurate values for the buckling problem [16].

3. Plastic Bückling

The plate material was assumed to be homogeneous and elastic perfectly
plastic. When the entire plate reaches the yield point, the plate can no longer
carry any additional load although the strains may increase. Consequently, the
critical strain may be investigated. For this reason the results of the numerical
analysis do no appear in Figs. 9 and 10 which are drawn with respect to ajoy
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and bft. On the other hand, the secant modulus is affected by the magnitude of

plastic strain.
As far as the flow theory is concerned, the complete plastification of the

plate may be delayed by the existence of residual stresses, but after the whole

plate has reached the yield point, the plate behaves completely plastically in the

same manner as if the plate had not been subjected to any residual stresses

before. While the residual stresses do not play any role in the flow theory for
the plastic buckling, they do influence the deformation theory because the

secant modulus defines the relationship between stress and strain in the plastic

ränge of an elastic perfectly plastic material.
The result of the numerical calculation according to the deformation theory

is shown in Fig. 11.

For the plastic buckling, the study of the influence of residual stresses is

similar to that for elastic-plastic buckling, that is, no Separation of the effect

of residual stresses is possible.
When the plate is not subject to any residual stresses, the plastic buckling

ofthe plate oceurs at 1//2 ofthe (l/b) ratio which gives the lowest critical strain

[12]. For the plate with residual stresses, the corresponding critical value of

(IIb) is approximately 0.7, which is approximately the same as 1/V2. This fact

suggests that the existence of residual stresses in the plate affects the critical
strain of the plastic buckling of the plate, but not the wave length of buckling.
(Figs. 13, 15 and 17.)

5. Experimental Results

Experiments were condueted to verify the theories for the elastic buckling
and elastic-plastic buckling of plate elements in built-up square columns.

These columns were built up from plates by welding. Both ASTM A 36 steel and

A514 steel (T-l constructional alloy steel) were used.

Ratios of bjt were chosen so that the plate elements would buckle in definite

ranges of elastic, or elastic-plastic buckling, as defined by Figs. 9 and 10.

The experiments consisted of tensile coupon tests, residual stress measurements,

and plate buckling tests.
Table 2 lists the dimensions of the test specimens, and their yield loads.

Specimens designated by S are structural carbon steel and specimens designated

by T are constructional alloy steel. The plate buckling tests were condueted on

short columns to simulate the local buckling of columns without the oecurrence

of column buckling.
The experiments and test results have been described in detail in [30];

only the results will be considered briefly in this paper.
The test results are presented in Table 3, and in Figs. 18, 19, 20 and 21.

Figs. 18 and 19 compare the test results with the deformation theory, and
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Table 2. LHmensions of Specimens

*) Average value of four faces.

*

Specimen
No.

Length
(in) (in)

Ai)
(in)

Area
(in2)

L/B b/t Py
(kips)

S-1 50 11.4 0.256 11.7 4.35 44.5 455
S-ll 83 11.5 0.256 11.8 7.20 45.0 460
S-2 80 16.2 0.253 16.3 4.91 64.0 630
S-21 87 16.3 0.254 16.5 5.34 64.2 635
T-1A 60 11.3 0.256 11.5 5.31 44.0 1340
T-1B 60 11.2 0.255 11.5 5.34 44.0 1340
T-2A 35 6.77 0.258 6.98 5.18 26.2 724
T-2B 35 6.77 0.258 6.98 5.18 26.2 724

Table 3. Test Results

Specimen
No.

Test Results Theoretical Prediction3) Tension
Coupon Test

«vi1) Per2) Pu Per (kips) Per (kips) Py
Oy (kips) (kips) with ar without or (kips)

S-1 0.23 340 357 380 455 455
S-ll 0.23 355 366 383 460 460

S-2 0.16 260 337 348 462 630
S-21 0.16 270 342 350 465 635

T-2A 0.15 620 651 650 724 724
T-2B 0.15 640 657 650 724 724

T-1A 0.10 500 700 510 638 1340
T-1B 0.10 490 694 510 638 1340

Ratio between average compressive residual stress and static yield stress.
2) The critical loads were determined by means ofthe "top-of-the-knee" method [31].
3) Prediction was based on the deformation theory of plasticity.

Figs. 20 and 21 also show the comparison with the flow theory. The ultimate
strengths of the buckled plates are shown for comparison, although this was not
considered in the theoretical study.

The theoretical predietions gave good correlation with the experimental
results for the deformation theory, but were quite high for the flow theory.
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Fig. 18. Plate buckling curve with test
points (A-36 steel).
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The result of these pilot tests have shown that considerable post buckling
strength may be expected for the elastic buckling of plates, but not for the

elastic-plastic buckling.

6. Conclusions

This paper presents the results of an investigation into the elastic, elastic-

plastic, and plastic buckling of plates containing residual stresses. Particular
attention has been paid to the local buckling of plate elements of built-up
columns of box-shaped cross sections. An experimental study was correlated
with the theoretical predictions.

In the theoretical analysis, the pattern of the residual stress distribution
was simplified and the theorem of minimum potential energy was employed
with the restriction that there is no reversal of strain at any point in the plasti-
fied material. The plastic part of the plate was analyzed by plastic theories,
the secant modulus deformation theory and the flow theory.
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The method of analysis presented is believed to be the first approximate
Solution for the elastic-plastic and plastic buckling of a plate with residual
stresses. Analytical Solutions are presented for the elastic, elastic-plastic and
plastic buckling of a plate with residual stresses when the plate is simply
supported at the loading edges and at the other edges is: elastically restrained;
simply supported; or fixed. The result of numerical computations for the
analytical Solution to the local buckling of a welded built-up square column is
presented for elastic, elastic-plastic, and plastic buckling. The results are
presented of a pilot experimental study which verified the theoretical analysis.
The experimental study showed the relationship between the buckling strength
and the ultimate strength of a plate element of the column.

The following conclusions may be drawn from the study:
1. The approximation of using only the first term of the deflection equation

gives an answer which is very close to the exact Solution, and is accurate
enough for analysis of the buckling problem. (Section 4.)

2. For elastic buckling of a plate with residual stresses, the influence of the
residual stresses on the buckling strength of the plate is independent of the
critical stress, and can be evaluated from the residual stress distribution.
(Section 4.1.)

3. The possibility that the plate with residual stresses may buckle without any
external load was demonstrated. This fact explains the reason why a plate can
distort only due to welding. (Section 4.1, Figs. 9, 10.)

4. The ratio of Ifb, which gives the minimum critical strain, is 1.0 for elastic
buckling, 0.7 to 0.8 for elastic-plastic buckling, and 0.7 for plastic buckling.
(Section 4, Figs. 13 to 17.)

5. For elastic-plastic buckling of the plate, the analysis based on the flow
theory gives a much higher critical strain than the one based on the deformation
theory. (Section 4.2, 4.3, Figs. 9 to 12.)

6. A plate containing residual stresses will not buckle until the critical stress
reaches the yield point, if the bft ratio of the plate is less than
a) 1.17 iEfoy based on the deformation theory,
b) 1.83 iEfa7 based on the flow theory regardless ofthe magnitude ofthe resi¬

dual stresses, and less than
c) 1.90 iEfcty for the plate free of residual stresses. (Section 4.2, 4.3, Figs. 9,10.)

7. The experiments verified the vahdity of the theoretical analysis for the
elastic and elastic-plastic buckling of a plate containing residual stresses. The
theory based on the secant modulus deformation theory gave good correlation
with the experimental results, but the theory based on the flow theory did not.
(Section 5, Figs. 18 to 21.)

8. Although considerable post buckling strength occurred for elastic buckling

of the plate, this was not the case for elastic-plastic buckling. (Section 5,
Figs. 18, 19.)
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Nomenclature

aXm,a2m coefficients of deflection functions.
B width of plate.
b half width of plate.
&M half width of plate element on side i.
cXm, c2m coefficients of deflection functions.

Eh3
D flexural rigidity of plate ~ _ g.-.

Dd flexural rigidity of plate in the plastic ränge, based on deformation

theory.
Df flexural rigidity of plate in the plastic ränge, based on flow theory.

_ modulus of elasticity.
Es secant modulus.

_( tangent modulus.
FXX,FX2,F2X,F22 component of the coefficient determinant of the stabihty

equation.
h thickness of plate.
L entire length of column or plate.
21 half wave length of buckling of plate.
(l/b)^ (l/b) ratio giving minimum critical strain of buckling of plate.

Mt bending moment per unit length of section of plate about x axis on
side i.

m, n positive integers.
N number of half waves in the direction of x axis.

P^. critical load.
P ultimate load.

Py yield load.
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R magnitude of reduction of elastic buckling strength due to residual
stresses.

2 t thickness of a plate.
V potential energy of plate.
w deflection of plate.
wt deflection of plate on the side i.
x, y, z cartesian coordinates.
y% t/-axis of cartesian coordinate on a plate on the side i.
Yxy shearing strain in the cartesian coordinates.

y rate of change of shearing strain.
ec critical normal strain.
et intensity of strain.
ex, ey normal strain components in the cartesian coordinates.
er yield strain in tension or compression.
ex, ey rate of change of strain components in the cartesian coordinates.
8i angle of rotation at edge of plate i.
/* a parameter, where 11A b is the width of the tensile residual stress

distribution in the assumed pattern.
v Poisson's ratio.
A EfE,.
o-CT average critical normal stress.

cti intensity of stress.

aTX, ary normal residual stress components in the cartesian coordinates.
o-rl magnitude of maximum compressive residual stress in the assumd

pattern.
crr2 magnitude of maximum tensile residual stress in the assumed

pattern.
ax, o-y normal stress components in the cartesian coordinates.
äx, dy rate of change of stress components in the cartesian coordinates.
cty yield stress in tension or compression.

residual shearing stress in the cartesian coordinates.
shearing stress in the cartesian coordinates.

•rxy

Appendix

Analytical Solutions for Buckling Strength of Plates with Residual Stresses

Analytical Solutions are presented for elastic, elastic-plastic and plastic
buckling of a plate which is simply supported at the loading edges and at other
edges is:

a) elastically restrained,
b) simply supported,
c) fixed.
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rk-Fs* cosm7rr6iog-^—^-(m 77)^ sin m 77 rj(rfe-r6)-(r0-r6)]

[mTT)2-—-cosmTTr6[(rk-r6)2-(r0-r6)2]

+ {m7T)3 (3J3!sin mnF*[{Fk ~Fe)3~ (F° ~ F*)S]

+ {m n)4 (ST!!
C0S mirF<[(I* ~ r«)4~ (r° ~r«)4]

(where & 1 or 2, ra £, 1, 1£, 2, 3 or 4)

For elastic region
For plastic region
For the side 1 of column j= 1.

For the side 2 of column j 2.

i _ and w* 1.

i P and w \.

1. Analytical Solutions for Elastically Restrained Plate

1.1. Additional Notation

\x 7r*[_yr,*+2,r,»+i],
^ tt* [3 wf* + (4 + 3 v) ?rs2 + 4],

^^TT^sw^i+s^ri+ie],
An ^4^yA4-8(l-2v);.r32+16].

2.2. Analytical Solutions

The analytical Solution is given in the form:

FX1F22-FX2F2X 0,

where _FU (r4)2 (» 110) + (v 111),

*i» -_ (A)2 (« 120) + (t? 121),

i„ (A)2(»220) + (»221).

1.2 a. Elastic Buckling

(»110) =u(t 130),

(»120) «(_30),
(»220) =tt(_30),
(»111) =-*1(*140)-is(_51)+*i,(«152)-|-Ä;4(_60),
(»121) - kx (t 240) - k2 (t 251) + ks (t 252) + fc4 (t 260),
(»221) =-Ä;1(«440)-Ä2(_51)-f-Ä;s(*452)-|-/t4(<460).

^[„^-2(1-20^1+1],
3.c|4 tt* [_ yr3* - (4 - 9 v) $1 + 4],

icii 4CTT*[wjri + 4:vjr2],
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(t 130)

(« 140)

(«151)

(«152)

XCXX o zcxx

(«160)

(«230)

(«240)

(«251)

(«252)

(£260)

(«430)

(«440)

(«451)

(«452)

(i-<*sr6)

(i-«3A)

(i-«3A)

(l-a3A)

r0 sin7rr0

(r2 — ro) H— (sin ttF2—sin 7r Fa)

\ (T2 - r02)+- (r2 sin tt r2 - rx sin n rx)

+ (—I (cos 7r r2—cos 7r rx)

(r2- 1) + [—) sin tt r2

LlC13 2C13J I L1C14 2„J 3 TT
'

(l-a2/3A)

(l-a2ßr5)

(i-*2ßr5)

6 r0 2 3tt„+ — sm tt -^ + — sm—r0
77 9. 35 77

sin ZA - sin^ roj + — I sin -^ T2 - sin^ T0
177

— Asin — r2-T0 sin—T0 +3 — cos—r2-cos —r0

+ — (r2 sin -^ r2 - r0 sin -^ r0) + (^) (cos-^ r2 - cos -^ r0

(l-a2ßr5)
2

3^71+sin — r2\ + —|l+sin—rs
377

IT
i33

1 a*

(l-ai32r5

(l-a^r5)

(i-aje2r5)

3roH—sm77jT0+-r— sin 277 ro
TT ZiTT

3 (r2-r0)+—(sin77r2-sinttr0)-f^r-(sin 2 77 r2-sin 2 77 T0)
77 /77

| (F2-F2) +- (F2 sin 77 F2 - Fn sin 77 T0)

j —j (cos77r2-cos77ro)+ —(r2 sin 277 r2-r0 sin 2 77 r0)

+ (cos 2 77 F9 — cos 2 77 ZV

(«460) =(l-a^r5) 3 (r2-1) + — sin77r2 + — sin 2tt F2
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1.2 b. Elastic-plastic Buckling
(Based on the deformation theory)

(»110) =it1(«110)-w2(«120)+»,(«130),

(»120) =tt1(«210)-w2(«220)+w(«230),

(»220) =m1(«410)-w2(«420)+m(«430),

(»111) -(«140)-&2(«151)+k,(«152)+jfc4(«160),

(»121) - («240) - k2 (t 251) + k3 (t 252) + fc4 (f 260),

(»221) =-(«440)-Ä;2(«451)+Ä:3(«452)+Ä;4(«460).

(«110)

(«120)

(«130)

LC11 o 2C11

iril o 2^11

E _°i E
XCXX

ß 2C11

r0+ 1^12 o 2^12
ß'

— sin 77 r.

lOg r1 „' 4A-A 1^12 q 2C12 Äi,

;i-r0)-
1

E _£l EXCXZ g 2C12 - sin 77 Z\,

(«140) =(l-a3r5) [rx sin77^,

(«151) (!-_ rB)

(tlöi :i-a3zy

(r2 — rx) H— (sin ttF2 — sin 77 Fx)

- (F2 - F2) + — (F2 sin 77 T2 - Fx sin 77 Fx)

+ I—] (costt F2 — costt Fx)

(«160) (-a3ZY) (r2-i)+-sinTrr2

(t 210) [cf3 - 2cf3] - sin| r0 + [xcf4 - 2cfJ ^- sin^ r0,

(«220) [xcfs - 2cf3] Äi/2 + [lCf3 - 2cf3] AJ 2,

2

!3t7
(«230) [^-^-(l-sin-Aj-^-^fJ—(l+sin^r!),

(«240 =(l-«»j8rB)
<> 77 „ 2 377 '

— sm— rx+—sm—-Z\

(«251) (1--«2,3A)
'6

77

(«252) (1--a2/5r5)
6

77

sin— Z'a — sin — Z\ +^—|sin-^-Z'2 —sin-7r-Z'.
377

IT 2 * '

r2sin—r2-rxsin-- rx +3 — cos—r2-cos—r2
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(«260) =(l-a2ßr5)

(«410)

-1 -1 +sin-r-r2| + tt-11 + sin — T2
377

9

ßP -L_ CP1°23 ' 42°23Of
r0+ cp +(— c,p1°24 ' 4 2°24

1
sin 77 rn + 1C25 ' 42C25 —sin 277 ro,

_ TT

(«420)

(«430)

ß3
rp +*-- cp1°23 ^ 4 2^23

1°23 ^ „4 2°23

r — rlog4^ 4in rp +t_ ß1 24 ^ „4 2°?./..?
4 2^24 Ä} + I^9K 1 a 9$

ß3 „p 8\,

BI ß3
4 a4 2 24 — sin 7r rx

TT

B3
CE ,H_ CE

125 „4 2°25 tt— sin 2-nFx.9 TT

(«440) =(l-aS2r5)

(«451) =(l-aß2r5)
1

i ¦

3Z\-I—sin7rZ,1+—- sin 2 tt Tx
TT 2 TT

3 (A-ZV) +— (sin77T2-sin tt A)

+ ^r—(sin 2 77 Z'rj — sin 2 77 Z1,)

(«452) (l-aß2ZYj - (r2 - r2) +- (r2 sin 77 r2- rx sin 77 rx)

2\2 1

+ I—I (cos 77 r2 — cos 77 Z\) + tt-- (ZV sin 2 77 Z"2 — Z\ sin 277 Z1-,)
\ TT / V. TT

+ ^— I (cos 2 77 ZI2 — cos 2 77 Z\

(«460) (l-aß2ZY)
4 1

3 (r2-l)H—sin77r2 + -— sin277r2

1.2c. Elastic-plastic Buckling
(Based on the flow theory)

(»110) u0 (t 110)+u(t 130),

(»120) u0 (t 210)+u(t 230),

(»220) =w0(«410)+tt(«430),
(»111) - (t 140) - k2 (t 151) + k3 (t 152) + jfe4 («160),

(v 121) - («240) - &a («251) + k3 (t 252) + fc4 («260),

(»221) -(«440)-Ä,2(«451)+&3(i452)+Ä;4(«460).

(«110)

(«130)

irll o 2 „
i°ll o 2°11 __h

1^12 -I2 „ (—sin 77 ZU,

1C12 — ö 2C12 ¦sin77ZT1,

(«210) [1cfz-2cx%]-sin-rx + [xcpi-2cpii^zsin^rx,
m

:i 7~~X^
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(«230) [lCf3 - 2cf3]- 1 -sin- rx\ - [lCf4 - 2cf4] — (1 + sin^A
377

(«410)

(«430)

rp -l-t_ rplü23 ' 4 2°23
a

rE j_tL rE1 „ t 4 2°23

A+ sin77Z\ + sin 2 7r rx,

(i-A)
ß3

r-E _]__. _/vE -sin 77 Z1!

ß3
ß-E 4-_ ßS125 ~4 2 2S —sin 277 rx,

(«140), («151), («152), («160), («240), («251), («252), («260), («440), («451),
(«452) and («460) are the same as in Section 1.2b.

1.2 d. Plastic Buckling
(Based on the deformation theory)

(»110) % («110) -u2 (t 120) +uz (t 130),

(» 120) ux («210) -u2 («220) + u3 (t 130),

(» 220) ux (t 410) - u2 (t 420) + us (t 430),

(»111) («140),

(»121) («240),

(»222) («440).

(«110)

(«120)

(«130)

cp-- cpX°XX o z°xx

c-P-- cp1°11 o 2°11

P - a pxcxx + ~ö 2cll

r0+ cp-- cp1°12 q 2°12
l sin 77 Z'o,

log ra-r,
r0-r6 + rp _" rpX°XZ O 2Ü12 S2ox,

fi-r, 1C12 o 2C12

1
sin 77 r2,

(«140) =(i-a3rs),
2 77 2 377

(«210) [jcf3- 2cf3] — sin — T0 + [xcf4 - 2c£] — sin—ro,

(t 220) [lCf3 - 2cf3] SD, + [xcf4 - 2cfJ S21/2:

(«230) Liyi3 2"13. ^(l-smlr^-^-^fjA^+s^r^
(«240) =(l-a2ßr5).

(«410)

(«420)

rp 4-C- rp1^23 ' 4 2°23 A +
1

sin 77 Z'o +
ß3

rp +c_ rP126 «4 2 25 —-sin277r0,

ßP J.L. rP
a4 2 log +

ß3
ßP +_ rp124 fY4 2 4 s2+ ßP 4. _. ßP1°25 i 4 2^25 #i,
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(«440)
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1C23 "r" 4 2C23 (1-A) r.p 4-_. ßP1°24 ^ 4 2°24 - sin 77 ro

ß3
r,p -4-^- rp125 ~4 2 25

¦3(l-aß2r5),

1
sin 2 77 Z"2,

2. Analytical Solutions for Simply Supported Plates

2.1. Additional Notation

774or34+2r32+i],
774 [w r34+(6+4 v) ri+9],

rwr,4-2(i • r32+i],
cf4 774 [w rs4- 2 (3 - 8 v) ri+9],

_ H TT4774[w>Z,34+18Z,32 + 81], 774[t»r84+i8vr32+8i].

2.2. Analytical Solutions

The analytical Solution is given in the form:

or

where

Pgfg
¦„-„-•_-_ °>

Ai (A)2(^no) + (»Mi),
-fi2 Z21 (r4)2(»120) + (»121),

i„ (r4)2(»220) + (»221).

2.2 a. Elastic Buckling

(»110) =zt(«130),
(»120) 0,

(»220) =it(«430),
(»111) -A1(«140)-Ä;2(«151)+Ä;3(«152)+Ä;4(«160),

(»121) =-&!(« 240) - £2 («251)+£3(« 252)+jfc4(« 260),

(»221) -&1(«440)-feä(«451)+&3(«452)+Ä:4(«460).

(«130) =cf1:

(«140) =T0 + —sin77r0,

(«151) r2-r0+—[sin77r2-sin77r0],
77

(«152) =-^ [r22- r02)+-[r2 sin 77 r2-r0 sin 77 r0] + (-) [cos77r2-cos77r0],

(«160) =r2-i+—sin77r2
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(«240) =—sin77Z'0 + —sin277Z'0.
77 277

(«251) — [sin 77 T2-sin tt Z'o]+—- [sin 2 77 A - sin 2 77 ZY] <

77 277

(«252) =—[r2 sin-77 r2-r0 sin T0]+^—[ra sin 2 77 T2-r0 sin 2 77 T0]
77 _ 77

+ —« [cos77r2 — cos tt ro] + xg[cos 27rjT2 — cos27r.ro],
77 (277)

('«260) =— sinTTTa + rr—sin27r T2,
77 277

(«430) =cf5,

(«440) =r0 + —-sin377r0,
077

(«451) =r2-r0 + ^-[sin377r2-sin377r0],3 77

(«452) | [r22 - r02]+-^-[r2 sin 3 77 r2-r0 sin 3 77 r0]/ 077

+ 1—1 [cos 3 77 r2 — cos 3 77 Z'o],

(«460) =r2-l+-— sin 3 77 T2,
377

2.2b. Elastic-plastic Buckling
(Based on the deformation theory)

(»110) ux (tll0)-u2 (t 120) +u (t 130),

(» 120) ux («210) -u2 («220) +u(«230),

(» 220) ux («410) - M2 («420) +m («430),

(»111) -(tU0)-k2(tl51)+k3(tl52)+ki(tl60),
(»121) =-(«240)-&2(«251)+&3(«252)+;fc4(i260),

(»221) =-(«440)-&2(«451)+M«452)+M«460).

(«110) =cfiro + -cf2sin77r0,

(tl20)Hc£log A-A
A-Aj +cp2S\

(«130) =cf2(l-rx) cf2sinTTrx,

(«140) =A + — sin tt A
77



INELASTIC BUCKLING OB BLATES WITH RESIDUAL STRESSES 245

(«151) (A~A)+—[sin 77 A~ sm 77 AL
77

(«152) =i(r22-r12)+-[Asin77A-Asin^A] + (H [coswA-coswrj,

(«160) =r2-l+—sin77r2,
77

(«210) =— cfisin77A+7r-ci4sin277A*
77 277

(«220) =cf3Äi3 + cf4^4,

(«230) cSsin77Z'1— -—cSsin77 Z\,
77 277

(«240) =— sin 77 Z^—sin 2 77 Z\,
77 277

(«251) =—[sin77r2-sin77A]+7^[sin277A-sin277A]>
77

M -^77

(«252) =— [r2sm77A-Asm77ri]+—[Asin277A-Asin277A]
77 277

+ -r- [cos 77 a - cos7r A] + ,0 N2 [cos 277 r2- cos 277 r0],
77 (2 77)

(«260) =—sin77r2 + ^—sin277A.
77 277

(«410) =cf5+^-cf6sin3 77r0,
077

(«420) =cf5log-^^ + cf6^A-A
(«430) ^-cft _______!8__JBI

O 77

(«440) =T1+-—sin377ri;
O 77

(«451) =A~A+F~" [sin 3 77 A~ sin 3 77 TJ.
_ 77

(«452) I (ri - A2) +H [A sin 3 77 A -A sin 3 77 A]
2 o 77

+ I—-1 [cos 3 77 A — cos ^7r AJ'

(«460) A-l+^— sin377A>
077
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2.2 c. Elastic-plastic Buckling
(Based on the flow theory)

(»110) u0 (t 110)+u(t 130),

(»120) =«0(«210)+m(«230),
(» 220) u0 (t 410) + u (t 430),

(»111) - («140) - k2 (t 151) + k3 (t 152) + kt (t 160),

(»121) =-(«240)-Ä.2(«251)+jfc3(«252)+Ä;4(«260),

(»221) - («440) -k2 («451) +ks («452) + kt («460).

(«110) =cfiA + — cf2sin77A>
77

(«130) =cf1(l-rx)-—cf2simTrx,
77

(«210) =—cf3sin7rA + 7^-cf4sin277A)
77 277

(«230) cgsin77Z'1 + -—cSsm277A-
77 277

(«410) cp A +^- cf6 sin 3 77 rx,
077

(«430) =cf5(l-rx)-— cf6sin3TTrx,
1

3~-,

(«140), («151), («152), («160), («240), («251), («252), («260), («440), («451),
(«452) and («460) are the same as in Section 2.2b.

2.2d. Plastic Buckling
(Based on the deformation theory)

(»110) ux (t 110) - u2 (t 120) + u3 (t 130),

(»120) ux(t 210) -u2 («220) +u3 («230),

(»220) =w1(«410)-w2(«420)+«3(«430),

(»111) =-1,
(»121) =0,
(»221) -1,

(«110) =cfir0 + -cf2sin77A,
77

(«120) =cp log^^+ <££?,
¦* 0~ J 6

(«130) =cf1(l-r2)--cf2sin77AI
77
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(«210) =— cgsin77A+ö— c„sin277A»

(«220) =cf3S? + cf4.S'2,

(«230) — cS. sm 77 A+'^—cli sin 2-rr T2,
77 277

(«410) =cf5A+^-cf6sin377A>
077

(«420) _cf5log|^ + cf6S2,

(«430) =cf5(l-A)-^cf6sin377A)
1

3tt'

3. Analytical Solution for Fixed Plates

3.1. Additional Notation

9 774[3w>A4 + 8A2+16]> B 4774[t»A4 + 4"A2].
M TTi[wr3i-8(i-2v) ri+iQ], m -2t74w a4,

c{5 =7r4[_M;r4 + 4(4_)/) r82 + 64], cj6 2t74[m>A4+16vA2].

c|7 =TT*[u>r3i-4:(4c-9v) A2 + 64]= c25 774[3^»A4+32A2 + 64]>

-774[^»A4+16(1-'')A2]> c27=774[«;A4-32(1-2>')A2 + 64].
^26

3.2. Analytical Solutions

The analytical Solution is given in the form:

Ai o

or AiA2_ -Aa Ai ° >

where Ai (A)2(*> H0) + (» Hl).
A2 Ai (A)2 (^ 120) + (» 121),

A2 (A)2(«220) + (»221).

3.2a. Elastic Buckling

(»110) =it(«130),

(»120) «(«230),

(»220) it(«430),

(»111) -Jfc1(«140)-fc2(«151) + &3(«152)+Ä:4(«160),

(»121) =-&,(« 240) - &2 (« 251)+&3(« 252)+&4(« 260),

(»221) =-^(«440)-ä;2(«451)+ä;3(«452)+ä4(«460),
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(«130) =cf1;

(«140) =3A + — B_wA + «r-Bin2wr0>
77 2 77

4 1
(«151) 3(r2-r0)+ — [s_77r2-sin77A]+^-[sill27rA-sin277A]!

77 Zlt

(«152) =-(A2-A2)+-[Asin77A-Asin77r0] + (|-) [cos 77 T2 - cos 77 jy
+ l2^l[Asin277A-Asin277r0] + |^| [cos 2 77 r2-cos 2 77 ro],

(«230) =cf4,

(«160) 3 (A- 1) + (-) sin77r2+—sin277 At

(«240) =-2T0 sin77r0 + —sin277r0 + ^-sin377ro,
77 77 3 77

(«251) -2(r2-r0) [sin77r2-sin77A]+ — [sin 2 77 T2-sin 2 77 T0]
77 77

+ — [sin 3 77 r*2 — sin 3 77 ro],
O 77

(«252) - (r2 - r2) -- [r2 sin 77 r2 - r0 sin 77 rQ] - (~\% [cos 77 r2 - cos 77 r0]

+ p) [A sin 2 77 T2 - T0 sin 2 77 T0] + 2/^)2 [cos 2 77 T2 - cos 2 77 r0]

+ 1^—J[A sin 3-77 r2~r0 sin 377 r0] +l—l [cos 3 77 T2- cos 3 77 ro],

(«260) =-2(r2-l)- —sin77r2 + —sin77r2 + -^-sin377r.
77 77 3 77 2'

(«430) =cf5,
2 1

(«440) =3A sin277r0 + -—sin477r0,
77 4:77

(«451) 3 (A-A) [sin277Z,2-sin277r0]+-!-[sin477A-sin477r0]!
77 „77

(«452) | (F2 - r2) -1 [r2 sin 2 77 T2 - T0 sin 2 77 ro]

-j [cos 277r2 - cos 277ZYI + {—] [r2sin477r2-r0sin477T0]

+ 1—1 [cos 477 T2-cos 4 77 r0],

(«460) =4(r2-l) sin 2 77 r2 +-—sin 4 77 T,
77 477
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3.2b. Elastic-plastic Buckling
(Based on the deformation theory)

(»110) ux (t 110) - u2 (t 120) + u (t 130),

(»120) =«1(«210)-u2(«220)+«(«230),

(» 220) ux (t 420) - u2 (t 420) + u (t 430),

(»111) - («140) - k2 (t 151) + k3 (t 152) + fc4 («160),

(»121) - («240) - k2 (t 251) + k3 (t 252) + &4 («260),

(»221) =-(«440)-&2(«451)+&3(«452)+&4(«460).

(«110) cf,A +— cf2sin77r0 + —cf3sin277r0,
77 .677

(«120) =cf1log^^ + cf2Äi,
1 0 x 6

(«130) =c{\(l-rx) cfssSin-rrZ1!- — cf3 sin 2 77 Z^,

4 1
(«140) 3A + — sin tt A +ir- sin277A

77 277

(«151) 3(A~A)+ —[sin77A-sin77ri]+ —[sin277A-sin277ri],

9.\2
(«152) =!(A2~A2)+-[Asm rr r2-Zi sin 77 Z\] + (-l [cos 77 F2 - cos tt TJ

Z 77 v77/

+ J_[r2Sin277r2-risin277A] + (2^) [cos 2tt A~ cos 277 AI

(«160) 3(A-1)+ — sin77r2 + ^-sin277A
77 ^77

(«210) cf4A + -cf5sinttA + ö— „0° 2 tt r^ +^-cf, sin 3 ttro,
77 ^5 77 O 77

(«220) cfAog^f^ + cp5Sl + cpSl + cpSl,
10 -'s

(«230) =cf4(l-A) cgsinTrA- —cf6sin277A-^-cf7sin377A.

(«240) -2A sinTr A + — sin277A + F_sin37,'A>
v

77 TT OTT

(«251) - 2 (A - A) [sin 77 A - sin tt AI + — [sin 2 77 F2 - sin 2 77 A]
v 77 77

+ —- [sin 3 77 P2 — sin 3 77 AI >

377
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(«252) - (A2- A2) -^ [A sin 77 A -A sin 771 - (-) l [cos 77 A - cos 77 fj
+ — [Aam2wra-ri*_i2wrj + 2(-_) [cos277A~cos277A]

+ (3^][Asin377A-Asin377rj + [—J [cos3t7A-cos3t7AL

1 _ 1 _ „ 1
Sm 277 A + 7T-

77
2 3-77

(«260) =-2(A-l)+3s_77A + 3sin277A + ;r-sin377A,

(«410) cp A + (^) c£ sin 2 77 A + (~) |§ sin 4 77 A,
A-A
A-A(«420) cp log4^4^ + o£ £| + c£ -SJ,

(«430) =ci(l-A)-^-cf6sin277A-j^cf7sin477,
^77 477

(«440) =3A sin277A + -1-sin477A,
77 477

(«451) 3 (A-A) [sin277A-sin277A]+^-[sin477A-sin477A])
77 477

(«452) =|(A2-A2)-|"[Asin277A-Asin277A]-(^)2[cos277A-cos277A]

1 / 1 \2
+ ^-[Asin477A-Asin477A]-(7-) [cos47rA-cos4ttA],

(«460) =3(A-1) sin277A + ^-sin477A-
77 477

3.2c. Elastic-plastic Buckling
(Based on the flow theory)

(»110) =m0(«110)+«(«130),
(»120) =m0(«210)+w(«230),
(» 220) u0 (t 410) + u (t 430),

(»111) - («140) - k2 (t 151) + k3 (t 152) +\ (t 160),

(»121) =-(«240)-Ä,2(«251)+&3(«252)+<M«260),
(»221) - («440) -k2 («451) +k3 («452) +\ («460).

(«110) cf, A + (^) cp sin 77 A + (^) cp sin 2 77 A,

(«130) =cf1(l-A)--cf2sin77A-7^-cf3sin277A3
77 _ 77

(«210) cf4A + -cf5sin77A + ii-cf6sin277A + ^cf7sin377A,
TT ZTT A tt
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(«230) =cf4(l-A) cf5sin77A-77-cf6sin277A-^—cf7sin377A.
77 ^77 O 77

(«410) cf5A+K-c26sin277A + T-c27sin4-77A>
277 477

(«430) c|(l-A)-2^cf6sin277A-^:cf7sin477A-

(«140), («151), («152), («160), («240), («251), («252), («260), («440), («451),

(«452) and («460) are the same as in Section 3.2b.

3.2d. Plastic Buckling
(Based on the deformation theory)

(»110) ux («110) -u2 (t 120) +u3 (t 130),

(»120) =u1(«210)-ii2(«220)+«3(«230),

(»220) ux («410) -u2 («420) +MS («430),

(»111) =-3,
(»121) 2,

(»221) =-3.

(«110) c?xr0+—cf2sinT7 A + ^-cf3sin2-77A,
77 -^77

(«120) cp1logrf^ + cpS2 + cp3Sl
1 0 l 6

(«130) =1-A sin tt A—5- sin277A>
77 277

1 „ _!„.„„.(«210) =cf4A + — cf6sin77A+7r-cf6sia27rA + ^— cgsin.377A,
77 ^77 O 77

(«220) cf4 log^^ + cp S2 + cf, S2 + cp SI,

(«230) cf4(l-A) cfisin7rA--s—cgsin27rA-^—cf7sin377A
77 2t 77 O 77

(«410) cf5A + ^— 0^8^277 A + T-cf7sin477A.
_77 4 77

(«420) cf6 log^f^- + cpS22 + cp S2,
1 0 1 6

1 1
(«430) =cS(l-A)—s-sin27rA-^—sin4wA-V ' 2Ö x *'2 TT 4 77
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Summary

This paper presents the results of a theoretical investigation into the elastic,

elastic-plastic, and plastic buckling of steel plates containing residual stresses

and simply supported at the loading edges with the other edges:

a) elastically restrained,
b) simply supported,
c) fixed.

Numerical illustrations are presented for the analytical Solution of the

strength of square built-up columns which fail by local buckling. This study
showed that the first term of the series of the assumed deflection function,

w acos^^sinN~ was sufficient to investigate the elastic, elastic-plastic,
2 o L

and plastic buckling of the plate with residual stresses.

The theoretical predictions were correlated with experimental results

obtained from pilot tests on square welded columns of ASTM A 36 steel and of
ASTM A 514 steel (T-l constructional alloy steel).

Resume

Les auteurs communiquent les resultats d'une etude theorique ayant pour
objet le voilement elastique, elasto-plastique et plastique d'ames metalliques

comportant des contraintes residuelles et simplement appuyees aux bords

charges tandis que les autres bords sont:

a) elastiquement encastres,

b) simplement appuyes,
c) encastres.
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Des exemples numeriques illustrent le calcul de la resistance de poteaux
composes, de section carree, perissant par voilement. La pr6sente etude a fait
ressortir que, pour analyser le voilement elastique, elasto-plastique et plastique
des ämes comportant des contraintes residuelles, il etait süffisant de ne retenir
que le premier terme du developpement en serie de la fonction admise pour
representer la deformation, w a cos ^ ^ sin N ¦%-.

Zu JU

On a determine la correlation existant entre les previsions donnees par le
calcul et les resultats d'essais pilote executes sur des poteaux soudes de section
carree en acier ASTM A 36 et en acier ASTM A 514 (acier de construction allie
T-l).

Zusammenfassung

Dieser Aufsatz berichtet über die Ergebnisse einer theoretischen Untersuchung

des elastischen, elastisch-plastischen und plastischen Ausbeulens von
Stahlplatten mit Eigenspannungen. In allen Fällen sind die Belastungskanten
gestützt, die anderen Kanten

a) elastisch gehalten,
b) gestützt,
c) eingespannt.

Die analytische Lösung für die Festigkeit quadratisch zusammengebauter
Knickstäbe, die durch örtliches Ausbeulen versagen, wird durch Zahlenbeispiele
veranschaulicht. Aus dieser Untersuchung ergab sieh, daß das erste Ghed des

Reihenausdrucks für die angenommene Auslenkimgsfunktion w=acos^^-sinN^rZu ._•

zur Untersuchung des elastischen, elastisch-plastischen und plastischen Ausbeulens

der Platte mit Eigenspannungen ausreichte.
Die theoretischen Resultate wurden mit den in praktischen Versuchen mit

geschweißten quadratischen Säulen aus Stählen ASTM A 36 und ASTM A 514
(Legierungs-Baustahl T-l) gewonnenen verghchen.
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