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Prismatic Shells Continuous over Transverse Diaphragms

Voiles prismatiques Continus sur diaphragmes transversaux

Durchlaufende Faltwerke mit Querscheiben

S. L. LEE A. M. MOTJSA

Ph. D., Professor of Civil Engineering, Ph. D., Minister of Defense, Ministry of
Northwestern University, Evanston, Uli- Defense, Khartoum, Sudan

nois, TJ.S.A.

Introduction

The increasing interest in the analysis of prismatic shell structures, also

known as folded or hipped plate structures, in the last few years has Md to the

development of several techniques of analysis. Gaafar [l]1), Yitzhaki [2],
Scordelis [3], Parme and Sbarounis [4] and Meek [5], among others, sug-

gested approximate methods for analyzing simply supported prismatic shell

structures. Reviews of the various approximate methods for analyzing such

structures can be found in the report of the ASCE Task Committee on folded

plate construction [6], in which an extensive list of references is given, and in the
work of Powell [7]. An exact method for analyzing the same problem was
presented by Goldberg and Leve [8]. More recently the analysis of continuous

prismatic shell structures has received some attention. Yitzhaki andREiss [9],
Sharma and Goyal [10], and Beaufait [11] discussed approximate methods

for analyzing continuous prismatic shell structures. Exact Solutions for such

problems have been suggested byLEE, Pulmano and Lin [12], Pulmano and

Lee [13], and Goldberg, Gutzwiller and Lee [14].
This paper presents a method for analyzing multiple bay, multiple span

prismatic shell structures, continuous over intermediate transverse diaphragms
and simply supported at the two end diaphragms as shown in Fig. 1.

The proposed method is based on the following assumptions: The material
is homogeneous and isotropic with equal moduli of elasticity in tension and

x) Numbers in brackets refer to items in the list of References.
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compression; it is not strained beyond its elastic limit; plane sections of each
individual plate remain plane after bending; the displacements are small for
each plate; the supporting diaphragms are infinitely rigid in their planes but
flexible normal to their planes; and the influence of the membrane forces on
the bending of the plate is neglected. These assumptions result in tow fourth-
order differential equations, which govern the bending of the plate under the
action of the normal load component and the membrane action of the plate
under the in-plane load components.

End diaphrogm __^&^ ^f-^.

.iA/.\y/y.iy//

-Intermediate
diaphrogm

I—I j r 1— i- End diaphragm

Inferior bay 7 L ^-A Exterior bay

Fig. 1. Prismatic shells with intermediate diaphragms.

End diaphragm

W-

Plate A

Diaphragm i

Plate B

End diaphragm

Fig. 2. Orientation of coordinate axes.

The adoption of a clear sign Convention is essential especially when the problem

is programmed for Computer analysis. The three orthogonal coordinate axes,
x, y and z are taken, respectively, along the longitudinal, transverse and
normal directions, as shown in Fig. 2, with the corner as the origin. The angle 6,
which defines the slope of each plate, is measured clockwise from a horizonal
plane passing through the origin to the positive y axis. 6' is the absolute value
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of the acute angle between the horizontal plane and the plane of the plate. The
positive directions of the load components X, Y and Z, and the stress result-
ants are shown in Figs. 3a and 3b. The displacement components, u, v and w are

positive in the positive directions of the coordinate axes x, y and z, respectively.

X1—=

3NNx- N„ + ^-^-dx

SNxy

3N„
Nyx+-äy w

SN
N» + -^dy"' ö-y

a) Membrane stress resultants.

Qx

3MX
x+ -ä^dx

Mvx

0<+ -r^dx°My
MVx+ -£—ayi äy

I Qy+ —r^-dy

Mxy+ "ä7"d,t

b) Bending stress resultants.

Fig. 3. Positive directions of stress resultants and load components.

The method of analysis consists of the following steps:
a) The reactions at an intermediate diaphragm are resolved into components

along the normal and transverse directions, respectively. The exact distributions
of the diaphragm reactions are not known a priori and will be approximated by
uniform step functions for the normal and transverse components, shown in
Figs. 4a and 4b respectively, which are then expaned into double Fourier series

satisfying the boundary conditions at the two transverse edges.

b) The normal and transverse displacements at the center of each step reaction

resulting from the applied loads, in the absence of the intermediate
diaphragms, are determined.

c) The flexibility influence coefficients at these locations are calculated by
applying unit step reactions along the normal and transverse directions,
respectively.

d) Using the results of steps b and c, the correct value of the step reactions
along the normal and transverse directions are determined from the compata-
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bility conditions that the normal and transverse displacements at the center of
the step reactions vanish.

e) With the step reactions at the intermediate diaphragms along the normal
and transverse directions known, superposition of steps b, c give the total stress
resultants and displacements of the structure due to the applied loads.

Vj
-b/2s

— y

a) Normal component.

b

yj

•4-Z&T b/2s

-Yn

b) Transverse component.

Fig. 4. Approximation by step functions of reactions of intermediate diaphragm at x xi.

Bending Action

The differential equation governing the bending of the plates [15] subjected
to normal load component Z is given by

V^w ZfD, (1)

in which D Eh3f[12 (1 — /x2)], h denotes plate thickness, E the modulus of
elasticity, and p Poisson's ratio. The general Solution of Eq. (1) is

w wp+wc, (2)

in which wp is a particular integral and wc the complementary Solution. A
particular integral satisfying Eq. (1) and the boundary conditions at the two
transverse edges can be obtained by expanding wp and Z in double series of the
form
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CO CO

wp 2 2 wmnsinaxcos0?/, (3)
m=l «.=0

CO 00

Z(x,y)= 2 2 -Zwsinaxcosß2/. (4)
m=ln=0

where a.=mTr\a, ß=mrfb, and Wmn and Zmn are Fourier coefficients. Substi-

tuting Eqs. (3), (4) into Eq. (1) gives

y
"mn X>(a2 + j82)2' \ >

a b

in which Zmn=—- Z(x,y) sinax cos ßydxdy for n 4= 0, (6)

o o

a
2 f

Zm0 =— \Z(x,y)sm.axdx for» 0. (7)
Ch I

0

In view of Eq. (3) it can be seen that the complementary Solution wc, satis-

fying the homogeneous part of Eq. (1) and the boundary conditions at x 0 and

x=a, can be taken in the form
00

we 2 fmsinax, (8)
m=l

where Wm is a function of y only. Substituting Eq. (8) into Eq. (1) and setting
Z 0, it can be shown that Wm takes the form

Wm K{Blme«v + BZme-°<y+B3mccye°<v + BimKye-«v}, (9)

where K is a load factor introduced to nondimentionalize the constants of
Integration Blm to Bim and will be defined for particular loading later.

The complete Solution is then obtained by substituting Eqs. (3), (8), (9) into
Eq. (2), yielding

OO 00 00

w= 2 2 Wmnsinaxcosßy + K 2 {Blme<™ + B2me~«v
m=X n=0 m=\ (10)

+ BSmocye«v + Bimoiye-«v}2smccx.

The corrsponding bending stress resultants [15], shown in Fig. 3b, are given by
00 00 oo

Mx =D 2 2 (<*2 + Miß2) Wmnsinocxcosßy + DK 2 «2{-ßim(1-/-t)eay
m=l«.=0 m=l

+ B2m(l-rie-*y + B,m[*y(l-H.)-2A*v (11)

+ i?41 [a y (1 - ju,) + 2 ju,] e-a »} sin a x,
CO CO CO

My =D % 2 (j82 +/x a8)W^„sinax cosjSy-iJZ' 2 «H5!«!1-/4)«11'
m=ln=0 m=l

+ 58Bl(l-At)e-^» +5,m[ay(l-/i)+2]e«v (12)

+ Bim [a ?/ (1 - li) - 2] e-«"} sin ax,
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CO CO

Mxv Myx D(l-ri 2 2 *ßWmncos«xsmßy
m=ln=l

-D(l-p)K 2 a2{Blme«v-B2me-«v (13)

+ BSm(ccy + l) e«v+Bim(l -ccy) e-av}coso.x.
00 00

öx =-^2 2 &{<x2 + ß2) WmncosOCX cosßy
m=l 7i=0

CO

-2DK 2 a3{53mca2'-£4me-a3'}cosax,
771 1

CO CO

Qy =-DZ Z ß(«?+ß2) Wmnsm ax sin ßy
771=1 7&=1

00

-2DK 2 ocs{B3meav + Bime-av}sinax,
777,= 1

CO CO

-B« =-0 2 2 a{a2+J82(2-^)}PFmracosaxcosJ82/
771=1 71=0

-DK 2 «3(5^(1-^6^ + 5^(1-^)6^

(14)

(15)

(16)

+ -B8m[«»(l-/*)+ 2(2-/i)] ca«' + J54Bl[ay(l-/i)-2(2-/4)]e-*«'} cosax,
CO CO

-By =--»2 2 /3[/32 + a2(2-/i)]TFmrisinaxsinJ82/
771=1 71=1

+ DiT 2 a3{JBlm(l-Ai)e^-52m(l-ia)e-^ (1?)
771=1

+^3m[a2/(l-M)-(l+^)]eav + 54m[a2/(/x-l)_(l+/x)]e-«J'}sinax,

in which üfx, My and Jkf^ are the longitudinal, transverse and torsional
moments per unit length respectively, Qx and Qy the longitudinal and transverse
shearing force per unit length respectively, and Rx and Ry the longitudinal and
transverse edge reactions per unit length respectively.

Membrane Action

For the common case where the longitudinal in-plane load component X is
zero, the differential equation governing the plane stress problem of the plates
[16] subjected to the transverse load component Y is given by

where cf> is an Airy stress function related to the stress resultants by

N. =jf> (19)
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JV ^ü- (21)

in which Nx, Ny and N^ are the longitudinal normal force, the transverse
normal force, and the membrane shearing force, per unit length, respectively.

The general Solution of Eq. (18) takes the form

4> 4>p + 4>o (22)

in which <f>p is a particular integral of Eq. (18) and cf>c the complementary Solution.

A particular integral satisfying Eq. (18) and the boundary conditions at the
two transverse edges x 0 and x a, can be obtained by expanding cf>p and Y in
double series of the form

CO CO

<f>P 2 2 cf>mnsinccx<30sßy, (23)
771=1 71=0

CO OO

Y(x,y)= 2 2 Ymnsw.etxsinßy, (24)
771 1 71=1

a b

in which Ymn —j-
\ \Y(x, y) sinax sinßy dx dy. (25)

o o

Integrating Eq. (24) with respect to y yields
00 00 I

$Ydy - 2 2 YMTjBmaxeoaßy+Fix), (26)
771=1 71=1 P

in which F (x) is a constant of Integration and can be expanded in a single series

of the form
CO

F(x) 2 -fmsinax, (27)
771=1

substituting Eq. (27) into Eq. (26) leads to
CO CO I 00

JTcfy -2 2 Ymn-öSmccxcosßy+ 2-*,msinaa:> (28)
771=1 71 1 P 771=1

substituting Eqs. (23), (24), (28) into Eq. (18) and solving for <f>mn yield

Ko ~^m forrc 0, (29)

' '2
Ymn for 7**0. (30)Tmn ß^ + ß*)*

Referring to Eqs. (19) to (21), it is seen that Fm given by Eq. (29) has no effect

on the in-plane stresses and is given only for completeness of the Solution.
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In view of Eqs. (19), (23), the complementary Solution cf>0 satisfying the
boundary conditions at the transverse edges x 0 and x a, can be taken in the
form

co

<f>c= 2 ÜmSin-ccx, (31)
m=l

in which £m is a function of y only. Substituting Eq. (31) into Eq. (18) and

setting Y 0, it can be shown that the Solution of the resulting equation takes
the form

£m L{Alme«v + A2me-*v + ASm,xye«v + Aimxye-°'v}, (32)

in which L is another load factor which nondimentionalizes the costants of
integration Alm to Aim.

The complete Solution of Eq. (18) is obtained by substituting Eqs. (23), (31),

(32) into Eq. (22), giving
CO CO CO

<£= 2 ZKnS™-«x™sßy + LZ{Alme«v + A2me-«v
m=\ ji=1 m=l V°°^

+ A3mxy eay + Aimocy e~av} sin a x.

Substituting Eqs. (24), (33) into Eqs. (19) to (21) gives the membrane stress
resultants

Nx =-Z 2^n/32sinaxcosJ82/ + i2«2{Amea!'
771=1 71=1 771 1

+ .42me-a*' + ^m(2 + ay)ea" + .44m(-2 + ay)e-^}sinax,

Nv =-2 fl4>mnoc2smocxcosßy-LZcx^{Almea«
771=1 71 1 771=1

+ Aime-"v + A3mccye«v+Aimccye-«v}sin ax,
CO CO CO

NxV= 2 2 ^mn^ß^sccxsinßy-L 2 oc2{Almeav
771 1 71=1 771=1

-Aame-*" + Aam{l+*y)ePv + Alm(l-*y)er*v}coBctx.

(34)

(35)

(36)

Membrane Displacements

The relationship between the membrane stress resultants and the longitudinal

and transverse displacements of the middle plate surface are [16]

I Eh [du dv\ .„_.Nx 71 1 ¦n_+/in-> 37x (1— fj?)\dx dy/
Eh [dv 8u\

I Eh [dv du\^ 2(iT^)fc + ^)- (39)
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Substituting Eqs. (34), (35) into Eqs. (37), (38) and solving for u and v yield

00 CO

1 V V f ß2 11
u ~Wk Li Z-jl^a flct>mnCC + pYmn-~-g\cos*xcosßy

m=l n=l * P>

L °°

-pj 2«{^im(l+M)ea!/ + ^2m(l+^)c-av + ^3m(2 + a2/ + ^a2/)ea1' (40)

+ Aim(-2 + ocy + ixcxy)e-ay}cosocx + -^jS(y),
CO CO

"=|y2j Yj\^^ß~^^+Ymn-öi\sm.ixxsinßy
771=1 71=1 l P P > (41)
L °°

- p- 2 ^{Alm(\+ix)eay-Aim(\+lJ.)e-ay-A3m[(\-li)-a.y(l + i7.)-\e'-y
Mi tlm=l

-Aim[(l-ix) + ccy(l+fM)]e-ay}smocx + -jj^R(x),

where -wr S (y) and -=rr i? (x) are constants of integration. These can be ex-

panded into single series of the form

.Cf co

S{y)=^+ZSncosßy, (42)
¦^ 71=1

R(x) 2i?msinax, (43)
m=\

b
9

in which Sn t- | S(y) cosßydy (n 0,1,2...), (44)

o

9 /*

Rm - .ß(x)sinaxdx (m= 1,2,3...). (45)

o

Substituting Eqs. (36), (40), (41) into Eq. (39), multiplying both sides ofthe
resulting equation by cosßy and integrating with respect to x from zero to a
give

r> Vjl (oc2+ß2)2 a \^Ymn(oc2-iiß2)
%m=L<l>mn ,g smßy- L m \B2 smßy-

«*ß ™ M «*ß*
(46)

Repeating the same proceduer, but multiplying both sides by sinßy, integrating

with respect to y from zero to b and giving regard to Eq. (46) leads to
Sn 0 for all values of n.

It can be readily verified that the Solutions, Eqs. (10), (40), (41), satisfy
the boundary conditions at the two simply supported transverse edges at x 0

and x a, i. e., Nx v w Mx 0.
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Applied Loads

For a uniformly distributed load in the longitudinal and transverse directions,
the Fourier coefficients Zmn and Ymn defined by Eqs. (6), (7), (25) are given
respectively by

Zmn 0 f°r ßven morn + 0, (47)

\0= for odd m, n 0, (48)
mir

Ymn 0 for even m, n, (49)

16 7 for odd m, n. (50)

For uniformly distributed dead load q per unit area of the middle surface,
the load components are defined by

Y qsin9, (51)

Z=qcosd. (52)

The corresponding dimensional factor K and L in Eqs. (9), (32) are

K aiqcos9/D, (53)

L as q sin 9. (54)

The components of a uniformly distributed live load p per unit area of
horizontal projection are

Y p sin 6 cos 9, (55)

Z p cos2 9. (56)

The corresponding K and .ZJ in Eqs. (9), (32) are, in this case

K aip cos2 6/D, (57)

L a3p sin 9 cos 9. (58)

Reactions of Intermediate Diaphragms

The line reactions of an intermediate transverse diaphragm, diaphragm i at
x x^, are resolved into normal and transverse components along the z and y
axes respectively for each individual plate. An approximation for the
distribution of the normal component Z(xi,y) can be obtained by dividing the
length b of the diaphragm into s equal divisions and assuming that the intensity

of the line reaction in each division is uniform. This approximation is

represented by the step function shown in Fig. 4 a. The intensity of the step
reaction, the center of which is located at x=xi and y=yi, is defined by Z^.
Similarly the distribution of the transverse component Y (x^, y) of the reactions
of diaphragm i will be approximated by another step function as shown in
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Fig. 4b. The intensity of the step reaction, the center of which is located at

x=xt and y y{, is defined by Yi}.
In view of Eqs. (4), (24), the step reactions Z€i and Y^ can be represented

by the double Fourier series

WM 2 ZZijmn^^xcosßy, (59)
777,= 71=0

Ya 2 2 Yiimnsinocxsmßy, (60)
771=1 71 1

in which
Xi+TJ 2//+C

Zi}-mn =—r-lim -^sinaxcosßy dxdy —r^sinßcsmocxicosßyj (61)

Xi—l) Vj-c for n =j= o,
xt+-q Vj+c

Ziim0 ==-—lim -^-sinocxdxdy r^sinax^ for n 0, (62)

Xt—Ij Vj—C

(63)

a*+7j 3/,-+c

Yijmn -T11111 ^sinaxsinßyctxd?/ ¦^sinßcsina.xis,mßyi
a° 7)^0 J J zrl au p

xi—i\ yj—c

and c ö/(2s).
For the normal step reaction Zi}-, K and Z/ in Eqs. (9), (32) are given by

K a3Ziicos9ID, (64)

L=a2Zijsin9. (65)

For the transverse step reaction Igt K and Z take the form

K a*Yijcos9fD, (66)

L =a2ri3.sinÖ. (67)

The value of Zi} and Yi}- are obtained by applying the compatability
conditions that the normal and transverse displacement components at the center
of each step reaction are zeros. These conditions are expressed by

ii%iA+<=°. (68)
i=l7=1

2 2XÄ +^ 0, (69)
i=l j=l

in which r denotes the number of intermediate transverse diaphragms, s the
number of step reactions in each diaphragm defined previously, w^ and v%\ the
normal and transverse displacement components at point xk, yz respectively due

to the applied loads alone, and wmi and vkUj the normal and transverse
displacement components at point xk, yx due to Zti 1 and 3# 1 respectively. These

values of w and v are computed by means of Eqs. (10), (41) respectively.
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Solution for Typical Interior Bay

As an illustrative example, consider the two-plate symmetrical bay in a
continuous prismatic shell roof such as the one shown in Fig. 1. Assuming that
the number of bays is large, for the purpose of analyzing a typical interior bay
this number may be assumed to be infinite for design purposes. Hence each
longitudinal edge lies in a vertical plane of symmetry and only one plate need be
considered. The boundary conditions on the two longitudinal edges are

(70)

(71)

(72)

(73)

Consider plate B of an interior bay shown in Fig. 2, which is subjected to
uniformly distributed dead and/or live loads, and normal and transverse step
reactions at the intermediate transverse diaphragms. Substituting the
Fourier coefficients Zmn and Ymn from Eqs. (48), (50); the load factors K and L
from Eqs. (53), (45) for dead load, and from Eqs. (57), (58) for live load; the
Fourier coefficients Zi1mn and Yijmn from Eqs. (61) to (63) for the step reactions;
the corresponding load factors K and L from Eqs. (64) to (67); the displacement
components w and v from Eqs. (10), (41); and the stress resultants Ry, Ny, Nxy
from Eqs. (17), (35), (36) into Eqs. (70) to (73) Mad to, for y 0,

4».-4»+ 43m + i4« 0, (74)

£lm-Büm + Sam + Sim °> (75)

Am +^m + mTT{-Blm(l-Li)+Bim(l-fi)+B3m(l+ijr)+Bim(l + Lj.)}cot2e

^ 0,
dw
dy
vcos9—wsin9 0,

Ny sin 9 + Ry cos 6 0.

16(6/a) y 1 < mi-{fJ.m2n2a2lb2)}
mPir5 nJ-J35n2\ \m2 + (n2a2fb2)J ^^

CO

Ssinax.; y 1 \ m2-{jj,n2a2fb2)+ €
m2 tt* (a/b) sin 9 nL23n2( [m+(n2a2lmb2)]2jSm"CSmPy''

71=1,2,3

4m(l+/i)-i2m(l+/i)-i3m(l-ft)-i4m(l-/i)
/a\812(1-,*),-, ^ ,/a\248(l-u2)

/a\2 48 (l-/x2) sinax^c/fc) 2 y sinßccosßyj
a\hf "

m tt6 cos 9 \ m4 Tt nL% 3n[m2+ (n2 a2/b2)]2)

and, for y b,

Am6ab-A2me-at' + A3m(l+ocb)eab + Aim(l-ocb)e-ab 0, (78)

Blme«b-B2me-«b+B3m(l + xb)e«<> + Bim(l-ocb)e-«b 0, (79)
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Almeab + A2me^b+A3mcxbeal>+Aimctbe-a1>-mTT{Blm(l-iJ.)eab

-B2m(l-[t,)e-b + B3m[ocb(l-i^)-(l + lt-)]eab

- Bim [a b (1 - iu,) + (1 + ft.)] e-b} cot2 9

16(6/a) V 1 fi. mi-{fim2n2a2fb2)\ (80)
A lo(6/«) V

¦m.3 tt5 ^-Lms ^5 Zj n2 Y [m2 + (n2 a2/b2)]2
m 1,3,5 v L \ i / j

8 sinax, y (-l)"f m2-(/xn2a2/62) 1

+ 6m27r*(a/Ö)sinc?7i=4:'2)3 »2 \ [m + (rc2a2/m&2)]2J '

I /a\212(l-a2)f„
-^4m{(l-/,) + a6(l+^)}e-^ + U L, (*i.

^lro(l+/x)ea6-4am(l+/x)e-a6-43m{(l-/a)-a6(l-r-/i)}ea6

\h) m,TT

+B2me-«b + B3mocbe«b + Bimocbe-«b}

/a\248(l-/x2) /a\2 48(1-/j.2) sin ax,f(c/6)
_ \/fy (mw)6 °\Ä/ m7r5cosö

2 y sin^ccos^vy,-
+

7, Z-i l *' n[m2 + {n2a2fb2)f
n l,2,3 L ' ¦

In Eqs. (76), (77), (80), (81), the values of A, e and ct are set as follows. When

the structure is subjected to uniformly distributed dead and/or live loads in the
absence of the intermediate diaphragms, A 1 and o- e 0. For the case of the
normal step reaction Z^, acting alone, tr l and A e 0. Similarly when the

transverse step reaction Zy acts alone, e= 1 and A ct 0. The eight constants

of Integration AXm to Aim and Blm to Bim for each harmonic are readily
computed by means of Eqs. (74) to (81), and the intensities ofthe step reactions Z^
and Yi} by means of Eqs. (68), (69).

The analysis of the interior bay of a continuous prismatic shell structure
subjected to uniform dead load of intensity q, is programmed for a CDC 3400

Computer following the steps outlined above. The shell parameters are taken as

a[h — 200, b\a 0.15, /t 0.2 and 9 =7r/6. The stress resultants and displacements
for one intermediate diaphragm located at midspan and two intermadiate
diaphragms at the third points, are calculated to the number of terms where the

last term is less than 1/4% of the partial sum of the series.

The accuracy of the method is dependent upon the number of step reactions

s, which is taken as 5, 7 and 9. For 5 9, the maximum normal and transverse

displacement components at the intermediate diaphragms are less than 1% of
the maximum normal and transverse displacement components in the structure

respectively. For design purposes, this degree of accuracy seems to be sufficient
and s 9 will be adopted in the illustrative examples. Better accuracy can of
course be obtained by using larger value of s. The stress resultants, the normal

component of the displacements and the step reactions at the intermediate

diaphragms are shown in Figs. 5 to 10. It is seen, as expected, that the magnitude

of Nx, Nxy, and w decreases with the increase of the number of interme-
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Fig. 5. Longitudinal normal force, Nx.
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Fig. 7. Shear force, Nxv.
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Fig. 8. Transverse bending moment, My.
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Fig. 9. Normal displacement component, w.
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One diaphragm

one diaphragm

Yii_|

-two diaphragms —two diophragms

a) Normal step reactions, Zij. b) Transverse step reactions, Fy.

Fig. 10. Normal and transverse components of step reactions at intermediate diaphragms.

diäte diaphragms, as shown in Figs. 5, 7, 9 respectively, whereas the magnitude
of Ny and My remains practically the same except at the intermediate
diaphragms as shown in Figs. 6, 8. It is expected that the errors in Ny and My at
the intermediate diaphragms are larger than elsewhere due to the fact that the
normal and transverse displacement components at the intermediate diaphragms
vanish only at the center of each step reaction as prescribed by Eqs. (68), (69).

The small error in the normal displacement component at the diaphragms can
be seen in Fig. 9.

Discussions and Conclusions

To compare the results of the proposed method with those obtained by
Goldberg, Gutzwiller and Lee [14] using finite difference technique, a

two-plate, single bay prismatic shell structure, similar to the one shown in
Fig. 2, simply supported on one transverse edge and fixed on the other, with
both longitudinal edge free and subjected to uniformly distributed live load of
intensity p, is analyzed by the proposed method. This structure may be treated
as one half of a continuous prismatic shell structure, twice as long in longitudinal

span, simply supported on the two transverse edges and continuous over
a center diaphragm. The center longitudinal edge lies in a plane of symmetry
and the two outer longitudinal edges are free. Hence only one plate need be

analyzed.
The boundary conditions on the free longitudinal edge are

(82)

(83)

(84)

(85)

Taking i/ 0as the free longitudinal edge, as in plate A of Fig. 2, appropriate
Substitution for the stress resultants in Eqs. (82) to (85) as before leads to

4-lm-Am +A3m + Äim Q> (86)

Blm(l-fi)-B2m(l-lx)-B3m(l+H.)-Bim(l+ix) 0, (87)

N¦" XV o,

Ny 0,

My 0,

Ry 0.
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_A16(6/g) y l( 1

Alm+A2m-/\ mZ^
> n

+ e
8 (b/a) sin « xt

m2 tt* sin 9

71=1,3.5
CO

y - 1

(ii,n2a2/m2b2)\

[l + (w2a2/m2ö2)]2J

(fin2a2/m2b2)

Blm(l-H.) + B2m(l-n) + 2B3m

4 sin a x.

[l+(%2a2/m262)]2

4/x

sin ß c sin ß ?/.,•,

2-B4m ^

+ CT-

TO7r)4 cos( /*(c/6) +- Jl

(mir)5

/i -I- (%2 a2/m2 ö2)
„ sinßccosßvJ.

tt n^2 3n[l + (n2a2/m262)]2 r r *JJ

(88)

(89)

The boundary conditions on the central longitudinal edge, which fies in a
plane of symmetry, are given by Eqs. (78) to (81).

The Solution is obtained in identical manner as before. A comparison of
the stress resultants Nx and My is shown in Fig. 11. It is seen that the proposed
Solution is in good agreement with the extrapolated Solution given by Gold-
berg, Gutzwtller and Lee [14]. The agreement is closer in Nx than My.

The proposed method of analysis is quite general and can be used for the
analysis of any bay of a multiple span, multiple bay prismatic shell structures
simply supported on the two transverse edges and continuous over intermediate

transverse diaphragms. An extension of the method to include flexible
intermediate transverse diaphragms presents no fundamental difficulties. In

Longitudinal distribution of longitudinal normal force, Nx.

ro.05

/-S-0.25
My -0
Po2

b) Transverse distribution of transverse bending moment, My.

Fig. 11. Comparison of Solutions by Goldbbrg, Gtttzwixlee, and Leb and proposed
method.

¦- coarse grid
fine grid \ Goldbekg, Gtjtzwiller and Lee [14]
extrapolation I

proposed method
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this case, Eqs. (68), (69) should be modified to take into consideration the
deflections of the intermediate diaphragms due to the step reactions.
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Summary

The theory of elasticity is applied to the analysis of multiple bay, multiple
span prismatic shell structures, continuous over intermediate transverse
diaphragms and simply supported at the two end diaphragms. The exact
distribution of intermediate diaphragm reactions is approximated by uniform
step functions expanded into double Fourier series. A comparison ofthe results
with those obtained by a finite difference technique is also presented.

Resume

La theorie de l'elasticite est appliquee au calcul des formes prismatiques
ä baies multiples et ä travees multiples, continues sur des diaphragmes inter-
mediaires et simplement appuyees aux deux diaphragmes extremes. On obtient
une approximation de la distribution reelle des reactions aux diaphragmes
intermediaires en developpant des fonctions en escalier uniformes en double
serie de Fourier. On compare egalement les resultats ainsi obtenus avec ceux
donnes par l'application d'une methode aux differences finies.

Zusammenfassung

Die Elastizitätstheorie wird auf die Analyse mehrfeldriger, durchlaufender
Faltwerke, mit Querscheiben an den Enden und bei den Zwischenunterstützungen,

angewandt. Die genaue Verteilung der Reaktionen auf den Zwischen-
querscheiben wird angenähert ausgedrückt durch Stufenfunktionen, die in
doppelte Fourierreihen entwickelt werden. Ein Vergleich mit den durch ein
Differenzenverfahren ermittelten Ergebnissen ist ebenfalls dargestellt.
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