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Ultimate Strength Design of Multi-Cell Rectangular Reinforced
Concrete Bridge Piers

Calcul de la résistance limite des piles de ponts de section rectangulaire,
multicellulaire en béton armé

Traglastverfahren fiir mehrzellige, rechteckige Hisenbeton- Briickenpfeiler

H.J. BRETTLE
Senior Lecturer, School of Civil Engineering, University of New South Wales.

Introduction

During the past thirty years the economical spans of both reinforced con-
crete and prestressed concrete bridge decks have increased dramatically due
to the advent of improved materials, new construction techniques and struc-
tural sophistication. This improved technology has permitted the use of thin-
wall tee and box section beams which greatly reduces material quantity and
has resulted in many extremely graceful deck profiles. In the same period
technological advances have not produced similar thin-wall bridge piers.

Publications in structural journals indicate far more interest with structural
systems subjected to flexure than with frameworks loaded mainly in compres-
sion. This could be due to the simpler theory for solution of flexure problems
and to the case of application of large bending moments to full sized flexural
members to verify such theory. Although the greatest savings have occurred
in deck systems, effort should be made to minimise the cost of the complete
bridge including the substructure, consequently a study of bridge pier design
has been commenced by the author.

Greater economy will probably result from the use of smaller quantities of
material placed at more appropriate positions and sustaining higher average
stresses. Ultimate strength analysis should predict the collapse load of such
structural members and as the latest codes tend to include lower load factors
less material will continue to be required. Such matters as crack widths,
deflection, vibration, fatigue, ete., will become more important but it is
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probable that the minimum material will result from using the least load
factor with ultimate strength design.

Bridge piers are subjected to axial loads and to horizontal forces both
along and transverse to a bridge centre line. The lateral forces are minimised
by restricting pier end widths and the longitudinal forces greatly decreased by
using low friction type bearings. Piers usually traverse the full width of a
bridge deck consequently narrow rectangular shapes often result. Large
rectangular piers of solid section are usually far too strong for the loads imposed
so thin-walled members were considered. A method of analysing rectangular
thin-wall reinforced concrete members subjected to compression and biaxial
bending was therefore untertaken to determine a satisfactory ultimate strength
design procedure.

Since ultimate strength analysis for biaxial bending presents considerable
computational difficulties, unsymmetrical reinforced concrete columns are
rarely proportined in design practice to carry their ultimate loads. To the
author’s knowledge no design procedure or method has been published for
either the ultimate strength or permissible working stress design of hollow
rectangular reinforced concrete members subjected to biaxial bending when
tensile stress exists over portion of the cross-section. However, approximate
methods [1,2] and graphs [3,4] are available for the design of the simplest
cases of solid square or rectangular columns containing symmetrically placed
reinforcement and subjected to biaxial bending.

BRETTLE and WARNER in a previous paper [12] have produced a general
method of analysis of reinforced concrete members of any arbitary cross-
section for both ultimate strength and working stress design when subjected
to compression and biaxial bending. The method has been developed for use
with a digital computer and used to prepare graphs for the ultimate strength
design of solid rectangular sections [13].

In this paper the method is adapted for the analysis of hollow rectangular
and hollow triple box sections of various width to depth ratios. Design charts
have been included for the ultimate strength design of such sections.

Notation

F,  axial load at failure with zero eccentricity

P, load at failure having double eccentricities

b overall width of a rectangular cross-section

b’ distance in the x direction between centre lines of steel layers adjacent
to the sides of the member

b” width of hollow rectangular areas within the cross-section
¢ overall depth of a rectangular cross-section
t distance in the y direction between centre lines of steel layers adjacent

to the top and bottom faces of the member
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total depth of hollow rectangular areas within the cross-section
elements of a rectangular array C used to define the shape of the con-
crete cross-section

non-dimensionalised x co-ordinates of centroids of regularly spaced
array elements C;

non-dimensionalised ¥ co-ordinate of centroids of regularly spaced array
elements (;;

a rectangular array whose elements are the x,; co-ordinates of the
elements C;; when the array C has irregular column widths

a rectangular array whose elements are the y,; co-ordinates of the
elements C;; when the array C has irregular row depths

elements of a rectangular array S used to define the position and
relative magnitude of the steel reinforcement

non-dimensionalised x co-ordinates of centroids of regularly spaced
array elements S;;

non-dimensionalised y co-ordinates of centroids of regularly spaced
array elements S,;

a rectangular array whose elements are the x; co-ordinates of the
elements S;; when the array S has irregular column widths

a rectangular array whose elements are the 7, co-ordinates of the ele-
ments S;; when the array S has irregular row depths

number of columns in arrays C, X,; and Y,

number of rows in arrays C, X ; and ¥;

total number of elements that replace the total concrete area

total concrete area

area of a concrete element = 4,/n,

concrete area 4 4, at the (¢,7)th location of array C

number of columns in arrays S, X ; and ¥

number of rows in arrays S, X; and ¥Y;

total number of elements that replace the total steel area

total steel area

area of steel element = A /n,

steel area 4 A, at the (¢,7)th location of array S

steel proportion = 4,/4,

eccentricity of loading in the z direction measured from the plastic
centroid of the cross-section

eccentricity of loading in the y direction measured from the plastic
centroid of the cross-section

resultant eccentricity = \/ei +e2

eccentricity of loading in the z direction measured from the point of
maximum compressive strain used as the origin shown in Figs. 2 and 3
eccentricity of loading in the y direction measured from the point of
maximum compressive strain used as the origin shown in Figs. 2 and 3
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distance to any fibre measured from the origin in a direction perpen-
dicular to the neutral axis

maximum value of z

perpendicular distance from neutral axis to the origin

angle defining the inclination of the neutral axis with respect to the
2 axis

angle defining the direction to the point of application of the eccentric
load P, with respect to the x axis

concrete strain

concrete strain at centroid of the (¢,7)th elemental area 4 4,
maximum concrete compressive strain at failure of an axially loaded
concrete section

maximum concrete compressive strain at failure of a thin flanged hollow
rectangular section subjected to uniaxial bending about a principal
axis and when the neutral axis is within the section

maximum concrete compressive strain at failure of a thin webbed
rectangular section when subjected to biaxial bending about any axis
maximum concrete compressive strain in a section at failure

concrete stress

concrete stress at centroid of the (¢,7)th element 4 4
concrete control cylinder strength

ratio of concrete strength in a compression member to its control cylin-
der strength

dimensionless parameter reflecting the effect of inclination of neutral
axis angle 6, on the ultimate strain.

steel strain

steel strain at centroid of the (¢,7)th elemental area 4 A
steel yield strain

steel stress

steel yield stress

ctj

stj

reinforcement ratio = Z—lf%
[+
e
ns
A,
ns
non-dimensionalised concrete stress = %cf—
e

value of R, at centroid of the (¢, 7)th elemental area 4 A
non-dimensionalised steel stress = f/f,,

value of R, at centroid of the (i, j)th elemental area 4 4,
value of R, for all elements 4 4, when axial load P, is applied
normalised concrete strain = ¢,/e,

normalised steel strain = ¢,/

cij

€sy
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Material Properties in Thin-Wall Members

To the author’s knowledge no test results are yet available on the physical
characteristics of hollow rectangular concrete sections. This may be due to
the difficulty in application of the large longitudinal forces required to cause
failure of reasonably sized members. It is, therefore, necessary to examine
test results of members whose dimensions and shape are similar or equivalent
to portions of hollow rectangular bridge piers to permit a reasonable approxi-
mation of the required properties.

A multi-cell rectangular cross-section consists of a set of thin walls joined
together at their edges. Some experimental work has been reported on plain
concrete and lightly reinforced walls without end constraint, which should
provide conservative data for the prediction of the strength characteristics
of continuously reinforced intersecting walls in a bridge pier. In addition
various codes provide instruction for the design of thin reinforced concrete
walls.

Ultimate strength tests carried out at the British Building Research Sta-
tion [5] have shown that uniformly distributed axial force applied to unrein-
forced concrete walls of height/thickness ratio less than 30, caused material
collapse rather than buckling failure when the average axial compressive stress
reached 859, of the cylinder strength f,. When small quantities of both hori-
zontal and vertical reinforcement were placed adjacent to both wall faces
collapse occurred when the average crushing strength equalled f, and the
steel yielded. Whereas two layers of steel appreciably increased the apparent
concrete strength, a single steel layer only increased the wall carrying capacity
by the steel area times its yield stress.

The ACI building code [6] includes recommendations for both working
stress and ultimate strength design of reinforced walls. It suggests a minimum
wall thickness of 1/,5 of the unsupported height or width which ever is the least.
For walls of 10” thickness or more, two layers of steel are required, one placed
adjacent to each wall face where the minimum proportion of vertical and
horizontal reinforcement is 0.0015 and 0.0025 respectively.

The Australian concrete building code [7] only permits working stress
design and indicates a minimum proportion of vertical and horizontal steel
of 0.002. In walls of 8" or greater thickness two layers of steel, one layer
placed adjacent to each face is required. When the distance between adjacent
walls is less than the height then the length/thickness ratio becomes the
slenderness ratio. If the slenderness ratio exceeds 15 the strength reduction
factor for tied columns should be used.

Until such time as test results of hollow rectangular sections are available,
the following design restrictions should be adopted when proportioning bridge
pier walls. The minimum wall slenderness ratio to be maintained at 20. A
minimum steel proportion of 0.002 to be used for both the vertical and hori-
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zontal reinforcement. The steel to be placed in two layers, one adjacent to
each wall face. It should be noted, however, that this paper does not deal in
any way with the instability problem and the above comments are only
suggested for the guidance of designers.

The above restrictions apply to walls subjected to reasonably concentric
loads occurring in buildings hence the strain distribution is essentially uniform
across the walls. A bridge pier can of course be subjected to large bending
moments and small axial force consequently the thin-wall flanges can be
subjected to linearly varying strain distribution. RtscH [9] experimentally
examined the strain distribution across beams of various cross sections sub-
jected to pure bending and showed that the extreme fibre strain at failure was
about 0.0043 for a solid triangular section and 0.0022 for a thin top flange
tee section, when loads were applied for short duration to medium strength
concrete. The difference in the value of limiting strain at the extreme fibre
depends on the support given to it by adjacent fibres. In thin flanged tee beam
specimens the strain distribution across the flange in pure bending is essen-
tially uniform so all fibres tend to fail at the same lower value of limiting
strain of 0.0022. When failure occurs in a thin flange hollow rectangular
section such that maximum strain occurs along a face of the section, the
limiting value of strain ¢,, will be assumed in this study to equal 0.0022 as in
the case of a thin flanged tee beam. The limiting value of strain usually adopted
for solid rectangular sections is 0.0035 which increases to 0.0043 in solid
triangular sections when maximum strain occurs at a corner. Collapse can
also occur at the corner of a hollow rectangular section at a strain value some-
where between these two limits and the lower value was considered as the
appropriate conservative value.

Concrete stress-strain curves obtained from axially loaded cylinders vary
non-linearly from zero stress up to some maximum strength f, at a strain .
The stress then decreases with increasing strain. Final failure depends on the
proporties of the test machine and the duration of the test. Whereas the final
failure strain varies within wide limits, the value of €, remains reasonably
constant at about 0.002 [8] for a large range of f, values.

The actual stress-strain curve of a concrete specimen is shown in Fig. 1. In
an axially loaded specimen the strain e, at which f, first occurs is assumed to
be 0.002. For eccentric loading of a hollow rectangular section, the limiting
value of extreme fibre strain can vary from e,, =0.0022 for a thin-flange beam
to kye,,=0.0035 at the corner of a thin-web rectangular section where £, is a
dimensionless parameter related to the relative orientation of the rectangular
compression zone at failure. The value of k, is therefore taken as 1.6 in this
paper. The actual concrete stress strain curve can be idealised as shown in
Fig. 1 where the stress increases linearly from zero to a maximum value £, f,,
at a strain of e, where the dimensionless parameter k, is the ratio of the
concrete stress in a thin-wall rectangular compression member to its control
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cylinder strength f.. The strain can then increase to any value between ¢,
and k, e, while the stress remains constant at k, f,.

The author has previously compared the effect on the computed ultimate
strength of using three quite different stress-strain relations [12]. The ultimate
capacity of solid square sections having symmetrically placed reinforcement
were computed for rectangular, trapezoidal and curvilinear concrete stress-
strain curves and showed a maximum variation of only 109, in the theoretical
failure loads for the three cases. Since the trapezoidal or elasto-plastic shape
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gave results intermediate between the results of both the rectangular and the
curvilinear or polynomial curves, it was adopted in the present investigation.

It was convenient to use non-dimensionalised stress-strain relations in the
computational work, and the terms R, and S, were introduced where R,=
f/k.f. and S,=¢,/e,. The idealised elasto-plastic, non-dimensionalised, nor-
malised stress-strain relation adopted for concrete is shown in Fig. 1. Similarly
an idealised elasto-plastic stress-strain curve was adopted for steel with no
imposed limiting value of strain. Again the ordinates were non-dimensionalised
by introducing R, and S; where R =f/f,, and S;=e¢e,,. The non-dimen-
sionalised normalised stress-strain curve adopted for steel is also shown in
Fig. 1.
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Method of Solution by Partitioning Cross-Section

A section subjected to compression and biaxial bending fails at particular
combinations of axial force P, and bending moments about two axes. When
axes through the plastic centroid are used and e, and e, are the eccentricities
of the point of application of P, measured perpendicular to these axes as
shown in Fig. 3a, the moments at failure become P, e, and P, e,. Solution of
the problem requires the summation of stresses multiplied by the areas over
which they act in the direction of the column axis and summation of the first
moment of the resulting elemental forces about both axes.

Provided a member cross-section is either solid circular or hollow circular
and the steel assumed uniformly distributed as a thin annulus around the
section, algebraic equations can be formulated and exact solutions obtained
[10,11] even when the stress distribution is non-linear at failure. When a non-
linear stress distribution is imposed on an irregular concrete cross-section
having randomly placed steel, the formulation of algebraic equations becomes
difficult and their solution rather tedious.

To overcome the analytical difficulties a member can be partitioned or
subdivided into small discrete elemental areas. Assuming stress-strain relations
for both the concrete and steel the strains and hence stresses at the centroids
of the small elements can be found. The process of summing the forces acting
on the small elements is ideally suited for digital computer solution which
replaces the complicated integration of discontinuous functions over irregular
areas. Obviously no great difficulty is imposed on computer summation when
highly irregular sections are subjected to stress-strain curves of any conceivable
shape.

The cross-section of a hollow rectangular multi-cell concrete member can
be most simply subdivided by a rectangular grid. If the number of columns
in a grid is n, and the number of rows is n, then the total number of discrete
elements 7, in the hollow section shown in Fig. 3b becomes n, =2 (n4 + 2n,—4).

Provided the grid lines are regularly spaced in both directions, an elemental
Ae
area 44, = St 20— %)

of the grid by 4 4,; then the x and y co-ordinates of the centroid of the ele-

. Denoting the elemental area at the (¢, j)th position
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Fig. 3. Concrete and steel partitioned areas.
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ment 4 4,4, shown in Fig. 3b measured from the origin at the top left hand
corner of the section where the compressive strain is a maximum are, z,; =
11b/n, and y,; = 21 t/n, respectively.

Similarly another rectangular grid can be used to subdivide the steel area
into elemental areas 4 A, where the element at the (¢,)th location is denoted
by 4 Ag;. If the bars are distributed around a section as shown in Fig. 3a,
such that equal quantities of steel are placed on opposite faces, then ng can
represent either the number of bars or the number of steel elements assumed
to represent the steel placed adjacent the top and bottom faces of a section
and m, can represent the steel elements adjacent the side faces. The total
number of steel elements 7, in the section shown in Fig. 3¢ equals 2 (ng + ny— 2).
Provided the grid lines defining the positions of the centroids of the steel
elements are regularly spaced in both directions, the elemental steel area

As
A4 = St ni—)"
element 4 A, 5, shown in Fig. 3¢ measured from the origin at the top left corner

of the section are

The 2 and y co-ordinates to the centroids of the steel

b—-b' b
X S

=T tho 1

t—t 4

and y,; = R — respectively. The steel elemental areas 4.4, can be
expressed in terms of steel proportion p and concrete elemental areas as:
A n
44, == A,-C.
2 = o p4 “n

These simple relations can be used to generate the co-ordinates of the elements
and the computer DO statement used for their incrementation.

Although a highly irregular area and its properties can be approximated
by an extremely fine grid, it is preferable to use an irregularly spaced grid of
coarser dimensions to exactly define the cross-section properties. An array of
numbers with values equal to the relative areas of the elements can be more
easily read into the computer than by DO statement incrementation. An array
called C' whose (i,)th element is denoted by C,; is included in Fig. 4 for a
hollow multi-cell cross-section. In addition an array X, whose elements are
the x,; dimensions to the centroids of the C;; elemental areas together with an
array Y,, whose elements fix the y,, distances to the centroids of (;; measured
from the origin are also given in Fig. 4.

Similarly random distribution of elemental steel areas can be more easily
represented by an array S whose (¢,)th element is denoted by S;; and repre-
sents the relative area of the steel elements at that location. An array X; has
elements which indicate the z,; dimensions to the centroids of the steel ele-
ments 4 A;; and an array Y; gives values of y,; distances measured from the
same origin. Since steel bars tend to be uniformly distributed around the walls
in bridge pier designs, the co-ordinates of the elements are then simply incre-
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mented by the DO statement. A typical array S for the relative areas of a
regularly spaced steel grid is given in Fig. 5 together with an array C' for a
regularly spaced concrete grid.
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Fig. 4. Concrete section Fig. 5. Dimensions and Fig. 6. Graphical representa-
dimension arrays. arrays representing cross- tion of column failure

section area. surface.

To determine the effect of grid fineness on the ultimate capacity of solid
rectangular columns in a previous paper [12], the number of concrete elements
was varied from 100 to 900 with a resultant change of only 29, in the ultimate
strength. In the present study a 10x 10 grid size was therefore selected for
the hollow rectangular sections and a 10x 30 grid adopted for the triple box
sections, to simplify the computation of data for multi-cell pier design charts.

Although a steel proportion of 0.08 can be used in the design of solid rectan-
gular columns, the trend is to use fewer numbers of large diameter bars or
few bundles of bars; to minimise the quantity of ligatures required to ade-
quately support all bars in two perpendicular lateral directions. Several
authors [3,4] have published design charts for rectangular sections having
4 to 16 bars, indicating this to be an important variable affecting ultimate
strength. However in bridge pier design many bars in double layers are used
and a 10x 10 grid was adopted to dimension the equivalent steel elemental
areas in the generation of data for this paper.

It is apparent from Figs. 3 and 5 that three separate dimensions are required
to fix a pier section in the x direction and three dimensions in the y direction
i.e. b, b’ and b” denote the overall width, the distance between centres of steel
layers adjacent the wall side faces and the inner hole width dimension and
t, t' and t" the overall depth, the distance between centres of steel layers
adjacent the top and bottom faces and the total of the inner hole depth dimen-
sions. Assuming the mean position of the steel layers in the walls is located
at the mid-wall position and the wall thickness is neglegibly small compared
to the pier overall dimensions, then b’ can replace b and b” and ¢ can replace
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¢ and ¢”. This means that four variables become redundant and fewer charts
need be prepared for the ultimate strength design of piers. This approximation
shifts the origin shown in Figs. 2 and 3 to the mid-wall position and column
collapse occurs when the concrete strain reaches some upper limiting value
at the mid-wall position and not at the extreme fibre position as previously
assumed. Although wall thickness has a marked effect on the ultimate force
P, it is shown in a later section that the assumption of thin-walls has little
effect of the axial force ratio P,/F, consequently this approximation was
made in this paper. It should be noted this same approximation was made
in a previous paper [10] relating to hollow circular sections and when the
ratio of wall thickness to the mean wall diameter was varied from 0 to 0.2,
the ultimate strength capacity changed by only 79, .

Ultimate Strength Analysis

Strain distribution

Several simplifying assumptions relating to reinforced concrete structures
were adopted to assist in developing the analysis. The strain distributions
remains linear up to failure, perfect bond exists between concrete and steel
so that the concrete strain e, equals the steel strain ¢, at a particular fibre and
concrete cannot sustain tensile stress.

The location of the neutral axis and its direction are fixed by the loading
and section properties. Its position can be defined by some distance z,, measured
perpendicular from the neutral axis direction to the position of maximum
compressive strain shown as the origin in Fig. 2a and its inclination from the
0x axis, denoted by the angle . When = and y are the usual co-ordinates
measured from the same origin then the distance z to an element is,

z =zsinf+ycosh. (1)

Similarly when b is the overall width and ¢ the overall depth of a section,
the maximum value of z denoted by z,,, measured to the extreme fibre at the
lower right hand corner on the section shown in Fig. 2a is,

2, =bsinf+tcosd. (2)

If the neutral axis is within a hollow section and parallel to a side failure
is imminent in the thin rectangular compression flange when the extreme
fibre strain reaches ¢,,. When the neutral axis is inclined at 45° to either
wall face the resulting hollow triangular section is assumed equivalent to a
thin webbed rectangular member and the extreme fibre strain increases to
kye,, at failure. Since the value of extreme fibre strain is affected by the
orientation of the thin rectangular section at failure, it can be related to the
angle of inclination 6 of the neutral axis. Denoting the strain by e, and
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adopting the simple sinusoidal relation given in Fig. 2b, the value of ¢,y can
be obtained from the normalised equation as,

€

cwl _ Seu] 4 (ky—1)sin20]. (3)
€ €

The relative position of the neutral axis also effects the limiting value of
extreme fibre strain. When pure axial stress is applied, the neutral axis is at
infinity and the maximum value of strain at failure becomes ¢,. When the
neutral axis is inside a member section i.e. z,/z, =1, the extreme fibre strain
is €,,9. When the neutral axis lies between these two limits i.e. when z,,/z, <1,
then the final adopted value of extreme fibre strain denoted by e, is given
by the simple linear relation shown in Fig. 2¢, where,

fu 1+{f#[1+(k2—1)sin20]—1}zﬂ. (4)
¢ € Z

n

m

From the strain distribution at failure shown in Fig. 2a the concrete strain
¢, at any fibre z from the origin can be expressed in terms of the limiting
value e, as: ‘

z
€, = €u(1—%:). (5)
This value can be expressed in normalised form as,
©_ uli_b (Teing+Yeosh L
i [1 . (bsm0+tcose b)] (6)

Similarly the normalised value of steel strain becomes,

S 00 Yeosp.t
. 'Gsy[l n(bsm6+tcoseb)]. (7)

m

Expressing the strains in array notation, the concrete strain e,; at the centroid
of an element 4 4,;; can be found from,

€ij _ €uly_ b (T Yei t
o T [1 zn(b sin 0 + ; cos @ b)] (6a)
Similarly the steel strain €y ; at the centroid of an element 4 4,;; can be found
from,
fﬂ=€—“ié 1——b~(x—s"sin0+giicos0-£) : (7a)
€y  €c €5y a\b t b

Equilibrium Conditions

For equilibrium, the forces acting on elemental areas when summed over
the cross-section of a member and the moments about the 0x and Oy axes;
must equal P,, F,e, and P, e, respectively. In all relationships a term repre-
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senting the small force acting on the elemental area displaced by the steel
should be included. However in a previous paper [13] it has been shown that
for rectangular sections having a maximum steel ratio with ¢=1.0, the change
in the computed axial capacity caused by neglecting this small force was
about 19, consequently this refinement has been ignored in the following
equations.

For equilibrium, the sum of small forces acting on the steel and concrete
elemental areas can be equated to P, as,

Net Neb Nsg Ngh
F, = ; ;fcijd Acij+; ;fsij‘d Agy;-

For the cases where regularly spaced grids are used to partition the con-
crete and steel areas, the elemental areas 4 A,; and 4 4; are constant over
a member cross section. Then using the following expressions,

_ fcz’j __.fsij _ 7_7‘9 r;_@_pls_y
Rm’j = m’ Rsz‘j = fy’ AAsij = pAAcij n,’ q = n, & f.

one may write,

et Neh Nt Nsh
FBy=kyfed A A3 X Reyj+q' 20 2 Ryj} - (8)
i g v 7

For the particular case when the axial force F, is applied the strain and
stresses in the concrete and steel are uniform all over the section. Collapse
occurs when the strain first reaches ¢, irrespective of the steel stress and for
this condition the steel stress ratio R; attains a constant value R, where,

’
- fs € . '
RSO = f—‘ = —e‘-' pI‘OVlded €, §__ €
Sy Sy

When ¢;/e,, > 1 the steel yields and B ,=1.0.

The axial force F, can be found from the expression,

sy *

By = kyfin A A+fin, A A, =k [ 4 Ac{nc+3’_s_}_gs_0,fiy_pf”_c},

ky foms
ng: Ned st Nsh
P 22 Ryi+q X Y Ry
hence e LB (9)
})0 7?’c_*_%sﬁ’sog

For equilibrium, the sum of moments of the elemental forces about the Ox
axis can be written,

Net Ned

gt Nsh
Foey =2 ;fm'jd AoijYoi+ 2 2 feti A Ay Yss
1 2 i :

Net Neb Nst Nsd
= kl féA Ac{; ;Rcijyci'l'q,iz ;Rsijysi}'
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Dividing by P, ¢ one obtains

Net Ned

ycz Rt Ysi
e Z Z Rcz] ¢ +9q Z Z st e
= 7
Ty - Net Ned Tst Nsd : (10)

22 Bi+q ; ;Rsij
v

Similarly for equilibrium, the sum of moments of the elemental forces about
the 0y axis may be expressed as,

Net Neb
Pue.;c=ZchijAAczy cy+Z ZfswAAswx
=k chAc{Z Z ctj ca+q Z Zstxsg}

Dividing by P, b it follows that,

Net N,

c UL Ts
e.’z ZZRC?,) xbj+ ZZst'b_j (ll)

b Tvet Ned Mgt Ngd

; ;Rci;’*‘q,; ;Rsi]’

Egs. (9), (10) and (11) can now be solved by first assuming particular
values for the non-dimensional material parameters ¢, /¢;, €, /c,, and k, and
particular cross-section parameters, ¢/b, t'/t, t"[t, b'|b, b"|b and q.

For the cases where irregularly spaced grids are used to partition a cross-
section, the elemental areas 4 4 ,,; and 4 A;; are not constant over the member
area. In this case the arrays C, X;, ¥;, S, X;; and Y; can be used to repre-
sent the cross-section dimensions and Eqs. (9), (10) and (11) can be replaced

by Egs. (9a), (10a) and (11a) where,

” Ac
q = Fs q,
Net Ned " Ngt MNsd .
P Z Z cij w+q ;;st ‘Sij
:pf = Net Neb " Nst ng‘b (gal)
2205+q9" By X ZSij
i g 1
Mot Nep Ycz Tat 7sh Y
o 5SROy ;z Sy
Ty = 'nct T Mt 78 ’ (103/)
Z ZRciJ’ Z Z
T g 7
Net Ned Tigt Nsh X
e’ Z Z (%] w b ; Z w b
b_x = Net Ned - ‘ (1 1 a)

; ;Rcﬁ ; ;
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Tt should be noted that in the above Kqs. (9a), (10a) and (11a) the elements
C;; are the actual concrete elemental areas whereas the elements §;; are
represented by numbers. When the elements S;; are the actual steel elemental
areas divided by p then ¢” should be replaced by ¢ in the Eqgs. (9a), (10a)
and (11a).

The eccentricities of loading measured from the plastic centroid are,

e, =0.5b—e/
and e, =0.5t—e,,
and the resultant eccentricity is,

e, = VeZ+e?

or in non-dimensional form becomes,

& e\?  [t)\? e,\?
7= ‘/(0.5-3) +(g) (0.5—7) . (12)
The direction of load measured from the Ox axis is defined by the angle
iy where,

e
tany = ¥
l/l %
t 0.5_‘ﬁll
or J = tan—? {B— (-——-—et—)} (13)
0.5——bE

The equations derived in this section have been incorporated in a general
computer program, written in Fortran IV language. The three values P,/F,,
e,/b and e [t can be determined from any chosen position and inclination of
the neutral axis and a three dimensional failure surface plotted, using these
values as the co-ordinate axes. Alternatively the values of P,/F,, ¢ and e /b
can be evaluated, from which two dimensional graphs containing failure curves
can be drawn. The program has been used to study factors affecting the ulti-
mate strength of concrete members. Often large changes in variables have
little effect on the ultimate strength and approximations can be introduced,
which while not unduly affecting the collapse load, lead to a great reduction
in the number of charts required for a wide range of design problems.

Ultimate Strength Design

Design Charts

Owing to the large number of variables involved the theory has been pre-
sented in non-dimensional form to minimise the number of design charts
required. The material properties have been expressed as ratios e,/e,, €;,/e,
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and as non-dimensional parameters k, and k, and in this paper, the values
adopted for e,/¢;, €, /e, and k, are 1.1, 0.5 and 1.6 respectively. The value &,
can be selected at will by the designer.

The variables relating to cross-section dimensions are the overall width b,
hole width b”, overall depth ¢, total hole depth ¢” and distances between side
steel b’ and top and bottom steel distance #’. By assuming the steel is placed
along the mid-wall position and the wall thickness is small compared with
the overall dimensions, the variables b, b” and ¢, " can be replaced by b’ and ¢’
respectively, thus greatly reducing the number of variables. The design charts
included in this paper only relate to the t'/b" ratio.

Two typical bridge pier sections were considered, one of rectangular hollow
section and another of triple box section. The concrete cross-sections were
partitioned into elemental areas by means of regularly spaced grids having »,
columns and n, rows. The hollow rectangular section was partitioned by a
1010 grid hence ny,=mn,=10 and the triple box section partitioned by a
10 x 30 grid where n,4 =10 and n,;=30. These grids minimised computational
time while maintaining suitable accuracy and exactly subdivided the selected
areas. The steel reinforcement for both cross-sections was simply partitioned
by regularly spaced grids having ng, columns and ng rows where ng =n,=10.
Although the axial capacity of sections subdivided by irregularly spaced grids
were computed, they were only used for comparison of results obtained using
regularly spaced grids and the data has not been included in the paper.

When compression and biaxial bending are applied to a multi-cell rectan-
gular section the determination of the neutral axis position and direction is a
rather tedious process. This difficulty is overcome by the reverse procedure of
selecting the neutral axis position parameter z,/b and direction angle § and
calculating the force P, applied at eccentricities ¢, and e,, necessary to cause
this particular selected position and direction of the neutral axis. By incre-
menting § from 0° to 90° in 10° increments and at the same time varying z, /b
from 0.1 to 10.0 in 0.1 increments, the limiting value of extreme fibre strain
e, can be found and from it the strains and stresses at the centroids of each
concrete and steel element. The forces acting on elemental areas are then
summed over the cross-section of the member and the moments about the O«
and 0y axes evaluated to find P, /F,, i and e,/b. These calculations are required
for particular values of steel ratio, so ¢ was varied from 0 to 1.0 in 0.1 incre-
ments to provide sufficient data for the production of design charts.

Although these data are sufficient to produce three dimensional ¢ constant
surfaces, its accurate graphical representation is most difficult as seen from
Fig. 6. This plotting difficulty can be overcome by finding the intersection
lines between constant i vertical planes, which contain the P,/P, axis and
the constant g failure surfaces. These intersection lines can then be plotted on
two dimension graphs for particular values of 4. Obviously when a rectangular
section is subjected to uniaxial bending about the 0z axis §=0° and =90°
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and similarly for uniaxial bending about the 0y axis §=90° and =0°. For
all other cases of biaxial bending, although integer values of 6 are given, the
computed ) values are in general not whole numbers consequently a simple
graphical interpolating procedure was adopted to obtain points for plotting
the ¢ constant lines required for integer values of 4. In this paper two dimen-
sional graphs are included for several cross-sections with $=0°, 30°, 60° and
90° in Figs. 11a to 14c.

Effect of Variables on Strength

For simplicity of presentation, the effect of variables on the ultimate
strength of a hollow square section having equal quantities of steel uniformly
distributed around the mid-wall position will be examined. The dimension
ratios of this section are t/b=1.0, ' [/t=b"/b=0.9, t"/t=b"/b=0.8 and both
values of ¢=0 and 1.0 will be compared for values of 4=0°, 45° and 90°.

Effect of Grid Size

The graphs presented in this paper for hollow square sections are based on
a grid size where ng=ny,=ng4=ny=10. Another computer run was made
using 7., =n, =30 and the comparison of varying n, and n, by 2009, is shown
in Fig. 7 resulting in a maximum variation of about 5%, in the non-dimen-
sionalised column capacity P,/F,. Obviously increasing the fineness of the
concrete partitioning beyond a 10X 10 grid has little effect on PB,/F, conse-
quently this size was adopted for partitioning hollow rectangular sections.

In bridge piers it is usual to have equal quantities of steel adjacent to the
four wall faces in hollow rectangular sections hence ng =n,. Since many rein-
forcing bars are often used, these quantities of steel can be assumed uniformly
distributed along their respective faces and in this paper ny=mny =10 has
been adopted for computation of data for all pier sections examined. For
comparison purposes additional data was computed with ng=n,=30 and
plotted in Fig. 7. It can be seen that a 2009, increase in steel grid fineness
produced a maximum change of about 5%, in the column strength ratio P,/F,
and 10x 10 grids were considered sufficiently accurate for partitioning the
steel area.

Effect of Ratio ¢,,/e, and k,

Although the values adopted for ¢, and e, were 0.0022 and 0.002, only
the ratio €,,/e,=1.1 was used in the production of data for the charts presented
in this paper. The value of e, /e, was increased by 2009, to 3.3 and the case
of uniaxial bending, when k, has no effect on column strength, was examined.
The data plotted in Fig. 8a shows a maximum change in P, /F, of about 109,
indicating that the ratio ¢/, has little effect on the strength capacity.

The parameter k, has its greatest effect on column strength when iy =45°
therefore a symmetrically reinforced hollow square section subjected to
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bending about a diagonal was examined. The value of k, was increased by
2009, from its value of 1.6 adopted in this paper to 4.8 and the data plotted
in Fig. 8b for comparison purposes. This variation of k, changed P,/F, by
about 99, hencé a change of the parameter k, apparently has small effect on
column strength.

Effect of Ratio ¢,/¢,

The yield stress f,, of commercially available reinforcing steels varies from
about 30,000 to 75,000 psi and when the steel modulus of elasticity is 30 x 106
psi, the yield strain ¢,, changes from 0.001 to 0.0025 respectively. To deter-
mine the effect on column strength when ¢,, was varied from 0.001 to 0.0025
a symmetrical square column was examined. The effect on ultimate strength
of changing e, /e, by 1509, can be seen in Fig. 9 where the results of both
steels having steel ratios of ¢=0.2 and 1.0 are plotted for comparison purposes.
For the high steel ratio of ¢=1.0, the maximum variation of the strength
ratio P[Py was about 99, and for ¢=0.2, only 59, variation occurred in
P,|P,. Obviously ¢=0 indicates that no reinforcement is used and variation
of €, cannot effect the column strength ratio. Bridge piers often contain low
steel proportions where q is generally less than 0.2, and variation in the strain
ratio e, /e, has neglegible effect on P,/F, for most cases. This means that the
charts included in this paper for mild steel can be used without appreciable
error for the ultimate strength design of columns when any strength commer-
cially available reinforcing bars are contemplated. It should be noted that
although the strength ratio P,/F, is not greatly affected by change in the
strain ratio e,,/e;, the steel yield strain ¢, or its related stress f,, directly
effects the value of Fj since Fy=k, f, A, +f,, A, consequently the ultimate
strength P, is directly related to the steel yield stress f,,.

Effect of Wall Thickness

If the wall thickness is small compared with the cross-section dimensions
and if the steel is located along the mid-wall position then it was believed
possible to replace b and 6” with 6" and ¢ and ¢” with ¢’ without undue loss of
accuracy of the computed axial capacity. To examine the possibility of making
b, b", t and t" redundant and so greatly reducing the number of required design
graphs, both a hollow square and a thin-wall triple box section were examined
where the side wall thickness was either zero or 0.15 and the transverse wall
thickness was either zero or 0.1 ¢.

The data for a square section column are plotted on Fig. 10a for values of
¢=0 and 1.0, where it can be seen that for a steel ratio ¢=1, the maximum
variation of the ratio P,/F, is about 129,. When no steel is used or ¢=0 and
for an e,/b value 0.4 i.e. when tensile cracking is about to commence in the
column section, the variation of F,/F, is about 24%,. However non-reinforced
concrete columns subjected to possible tensile stress should be rare, conse-
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quently the assumption of zero wall thickness will in most cases give reasonable
estimation of the strength capacity ratio P,/F,.

The results for the thin-wall triple box section examined are included on
Fig. 10b where it can be seen that for ¢ =0 and 1.0 the maximum variation in
the ratio P,/F, was by about 15%, and 49, respectively as the wall thickness
changed from 0.1¢ and 0.1b to zero. The author believes the accuracy of
predicting the ultimate capacity ratio P,/P, of thin walled sections is there-
fore sufficient when the walls are assumed to have zero thickness.

It should be noted, however, that although the walls are assumed to have
zero thickness for the computation of the ratio P,/P,, the wall thickness
directly effects the value of F, which equals k, f, 4, + fsy As since the area of
concrete A4, is related to the wall thickness. Obviously the ultimate strength
of a column P, is directly related to the wall thickness.

Design Examples

Example 1

Design a hollow rectangular symmetrically reinforced bridge pier to support

a longitudinal force P,=12,000 kips at eccentricities of e, =10 V3in. and
e, =10in. when the effective concrete strength k,f,=3,000 psi and mild steel
with yield stress f,, =30,000 psi are used.
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Assuming an average concrete stress of 2,000 psi, a steel proportion of
about 0.002, a wall thickness of 10", a mid-wall position dimension ratio
t'/b’ =2, then a pier having approximate dimensions 10ft. X 20ft. may suffice.
When 6=110in., {=210in., 6'=100in., ¢'=200in., 6" =90in. and t"=1901n.
then 4,=6000in% and A,=12in% Using 2 layers of one gauge mesh at 6 in
centres having 0.283in2? of steel per foot length of wall, then the total 4,=
14.1in%2. When placing one steel layer adjacent to the inner and outer faces
of all walls so that the mean steel position is along the mid-wall line, then
t'/b’=2. Now e,=20in., y=30°, ¢,/b’=0.2 and ¢=0.02, then from the related
graph Fig. 12a, P,/F;=0.68.

Now Py = 3000x 6000+ 14.1x 30,000 = 18,420 kips,
. P,=0.68x18,420 kips = 12,500 ~ 12,000 kips.

Example 2

Design a multi-cell rectangular reinforced concrete bridge pier having two
internal diaphrams to support a longitudinal force P, =20,000 kips placed at

eccentricities of e, =50 in. and e, = 50 V3 in. when the effective concrete strength
k, f; and the steel yield stress f,, are 3,000 and 30,000 psi respectively.

Assuming an average concrete stress of 1000 psi a steel proportion of about
0.002, a wall thickness of 10in., a mid-wall dimension ratio ¢'/b’ =3, then try
a pier of 10ft. X 30 ft. mean dimensions. When b=130in., {=370in., b’ =
120in., ' =360in., b"=110in., " =330in. then 4,=11,700in? and 4,=23.4in?.
Now 2 layers of 2 gauge mesh at 6 in. centres has 0.2392in?2 of steel per foot
run of wall, then the total A ,=23.9in%. Provided the mean steel position is
placed along the mid wall line then #'/b’=3.0. As e,=100in., =60°, ¢,/b' =
0.833 and ¢=0.02, then from the related graph Fig. 13¢, P,/F,=0.26.

Now P, = 11700 % 3,000 + 23.9 < 30,000 = 35,815 kips,
. P, =0.26x35,815 = 9300 ~ 9,000 kips.

Hence the selected sections in both examples are satisfactory.

Conclusions

The method presented for the ultimate strength design of sections subjected
to compression and biaxial bending is arranged for computer solution. The
method is based on partitioning a member cross-section into many discrete
elemental areas to simplify the complications induced by various non-linear
stress distributions at failure acting over any non-symmetrical area. The
tedious integrations with many discontinuities and awkward limits are thus
eliminated by the partitioning process and the use of a computer to sum the
actions.
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Although any possible non-linear stress distribution can be accomodated,
the method is also useful for elastic stress design of the most complicated
cross-sections. Since ultimate strength methods are not generally permitted
by the design codes, the method presented has immediate use for working
stress design of multi-cell bridge piers subjected to tensile stresses over part
of the cross-section. A simpler program for the generation of data has been
run for the publication of working stress design curves at a later date.

The criterion for failure in this analysis is the limiting value of extreme
fibre strain and once concrete reaches this value failure is assumed imminent.
Other factors affecting material properties such as insufficient compaction of
concrete in the finished structure, poor workmanship, lateral buckling of the
longitudinal reinforcement, etc., have been ignored. Until such time as this
theory is supported by test results of reasonably sized hollow test specimens
it would be prudent to either increase the load factors or to reduce the com-
puted ultimate capacity by means of a suitable strength reduction factor [6].
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Summary

Theory is presented for the ultimate strength design of thin-wall, multi-
cell, rectangular reinforced concrete bridge piers when subjected to compres-
sion and biaxial bending. The analysis is based on sub-dividing a pier cross-
section into many discrete parts and summing the forces acting on these
elemental areas by means of a computer. Data were generated for the pre-
paration of charts for the ultimate strength design of both hollow rectangular
and triple box sections. Design charts for two different width to depth ratios
are included for the simplification of the design procedure.

Résumé

On présente ici une théorie pour le calcul a la résistance limite de piles de
ponts de section rectangulaire, multicellulaire, & parois minces en béton armé,
soumises a la compression et & la flexion biaxiale. Le calcul, fait & I’aide d’un
ordinateur, consiste en une sous-division de la section de la pile en nombreuses
parties distinctes et en une addition des forces agissant sur ces éléments de
surface. Des données ont été travaillées pour la préparation de graphiques
pour le calcul de la résistance limite de sections creuses et de sections tricellu-
laires. On a inclus pour une simplification du dimensionnement des graphiques
avec deux valeurs différentes du rapport largeur sur profandeur.

Zusammenfassung

Fiir den Fall « Druck mit zweiaxialer Biegung» wird das Traglastverfahren
fir diinnwandige, mehrzellige sowie rechteckige Eisenbeton-Briickenpfeiler
angegeben. Das Verfahren unterteilt den Briickenquerschnitt in viele endliche
Teile und summiert deren Krifte mittels des Elektronenrechners. Ergebnisse
wurden in Vorbereitung von Kurven fiir den hohlen und dreikastigen Quer-
schnitt entwickelt. Zur Vereinfachung der Bemessung sind Kurven fir zwei
verschiedene Breiten- und Tiefenverhéltnisse angegeben.
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