
The approximation of stability effects on
frames

Autor(en): Korn, Alfred

Objekttyp: Article

Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen

Band (Jahr): 28 (1968)

Persistenter Link: https://doi.org/10.5169/seals-22184

PDF erstellt am: 16.08.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-22184


The Approximation of Stability Effects on Frames

Une approximation des facteurs influant sur la stabilite de portiques

Näherungen für Stabilitätseinflüsse an Rahmen

ALFRED KORN
Assistant Professor of Civil Engineering, University of Kentucky, Lexington, Ky., U.S.A.

Introduction

The inelastic behavior of multi-story frameworks can be appreciably
influenced by stability effects. An approximate method for Computing the
maximum load carrying capacity of inelastic frames has been proposed by
Merchant [1]. In this method the maximum capacity as influenced by stability
effects, Pm, is related to the rigid-plastic collapse load, Pp, and the elastic
critical load, Pc.

111p- F + p. (1)
x m •*¦ p x c

Hörne has shown that the empirical relationship has some theoretical justi-
fication for frames bent into a double curvature configuration that is similar
to the mode shape for sidesway buckling [2]. Therefore, the prediction is
generally valid for frames subjected to appreciable horizontal loads. The
available experimental results indicate that the Merchant formula reasonably
describes the maximum load carrying capacity of one and two story frames [3].

For the usually encountered framework, the elastic critical load is very
much larger than the rigid-plastic collapse load. Consequently, Hörne has
noted that the accuracy of Eq. (1) can be maintained without the necessity
of having ''exact" elastic critical loads [4]. By using approximate buckling
loads, the computational work required to use the Merchant formula is
considerably reduced and the method becomes more practical to employ.

The object of this paper is to compare the results obtained from the
Merchant prediction with the collapse loads obtained by the more accurate method
of computerized elastic-plastic analysis. The elastic and collape load behavior
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of eight multi-story frames, with and without stability effects, has already
been described by this author [5]. The previously reported research is used to
compute crude estimates of the elastic critical loads. In addition, the exact
critical loads are computed and used to demonstrate that the Merchant
prediction remains virtually unaltered by the use of approximate buckling loads.

Computation of Critical Loads

The determination of "exact" elastic critical loads requires considerable
computational effort. Critical loads have been obtained by several methods:
moment distribution, stiffness matrix techniques and eigenvalue computations.
The latter two methods are suitable for the computerized investigations of
large frameworks, but require the Performance of repeated analyses. Stevens
and Schmidt have presented additional techniques based on the amplification
of artificially introduced components of the buckled shape [6]. Their methods
utilize the Southwell plot in order to obtain initial estimates of the critical
load. Improvements of the estimated critical load are obtained by iterative
techniques. The process can be terminated prematurely if approximate critical
loads are all that is needed.

A few researchers have reported methods for Computing approximate critical

loads to be specifically used in the Merchant formula. Hörne has used

rigid-plastic-rigid analysis to derive approximate elastic critical loads [4].
Stevens has used energy techniques for the same purpose [7]. The approach
used by Stevens results in the definition of the maximum allowable horizontal
structure sway as a function of the elastic critical load. In either case, the
approximation requires the Performance of some sort of analysis, although
the work is considerably reduced from that required for an exact computation
of critical load.

Approximate Critical Loads by Elastic Analyses

The results of elastic analyses can be used to approximate critical loads by
the following procedure.

Assume that the deformations obtained from the usual first order, linear -

elastic frame analysis are denoted by the vector y (see Fig. 1). Let the vector
be described in terms of all of the i mode shapes of the frame, yi, associated
with all of the i critical loads, Pi.

y a1y1 + a2y2 + a^yz+ atyi9 (2)

where, ai represents the partieipation of the ith mode in the description of the
deflected shape. Furthermore, assume that the deformations given by a second
order analysis (stability effects included) are y* Then the relationship between
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Fig. 1. Elastic frame deformations.

the amplified y% deformations and the first order deformations is given by

y* a^i + «2 2/2
+

1-Pl 1-,
+ a>iVi

1 P_
(3)

where, P represents the vertical load set imposed on the structure.
If the loads are such that the first order deformations an entirely those of

the first mode, then the ratio of the second and first order deflections would
be a constant value throughout the frame. Denoting the ratio of y* to axyr by
a, and using Ac to represent the proportional multiplier of the loads P needed
to cause the first critical load set, Px,

1

1-
(4a)

Solving for Ac, A, - (4b)

Although Eqs. (4) are true only for a very special case, the behavior of a frame
subjected to appreciable horizontal loads is such that the structure primarily
deforms into the double curvature configuration similar to that of the most
critical sidesway buckling mode. Since only approximate critical loads are
needed for use in the Merchant prediction, Formula (4b) can be utilized.
Furthermore, oc can be approximated by the ratio of second order to first
order horizontal sway at the top of the frame. With reference to Fig. 1, this
ratio is given by A2/A1. Therefore, the approximate critical load can be directly
obtained from first and second order elastic frame analyses. It is to be noted
that this method is essentially the starting point for the more accurate iterative
computation of critical loads presented by Stevens and Schmidt [6]. They
have also suggested that the ratio a be taken as the average of the deformation
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Fig. 2. Flow chart; unified elastic analysis.
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ratios at all of the stories of the frame. For the particular application considered
here, the refinement will be shown to be unnecessary.

Second order elastic analysis has been programmed by Harrison [8] and
has been used by several other researchers as an integral part of elastic-plastic
Computer programs. For the computation of approximate critical loads, it is

advantageous to unify first and second order analysis in a single program.
One convenient method can be based on the slope deflection equations with
stability funetions that have been presented by Bleich [9]. In this method,
the slope deflection equations have coefficients dependent on the axial loads

acting on the members. For a member subjected to axial load, T, and having
stiffness and length of EI and L respectively, the stability factor, 0, deter-
mines the slope deflection coefficients. The factor 0 is given by,

0 U] (5)

When 0 is set equal to zero, the coefficients for the usual linear analyses are
obtained. Thus, it is possible to obtain both first and second order analyses
by formulating a second order analysis by an iterative procedure starting
from the assumption that all 0 values are zero. The first computation describes
the linear-elastic behavior of the frame. As the values of 0 are continually
refined to account for more precise axial loads, the iteration quickly converges
to yield second order deformations. The process is described by the flow chart
shown in Fig. 2.

Frames and Loadings

The dimensions, properties and loadings for the eight frames that have
been analyzed are shown in Figs. 3 through 6. Modulus of elasticity, yield
stress, column length and girder length (E, fy, Lc and Lg respectively) are
shown for each frame. The wide flange sections that have been used are also

2-*
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i 1
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10 20 10

other
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All members are tictitious

/ 144 in.4

Mv 160ft.k.
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fy 36 ksi
Lc 25 ft.

Fig. 3. Frame 4—1.
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girder spans marked [1].
Fig. 4. Six story frames.

indicated on the figures. Where fictitious or approximate members have been

used, the fully plastic moment, Mp, the moment of inertia, I, and the area,

A, are also indicated. Frame designation is given by a numeral indicating the

number of stories, followed by an identification number after a dash. Thus

8 — 2 indicates the second of the eight story frames to be considered.

The working loads are indicated on the figures. Horizontal forces are

applied at each story and a three point concentrated load system has been

applied on each girder. The three point system (1/4 of the total load at each

girder end and 1/2 at the center of the girder) is used to simulate uniform
loads. In several cases, the loadings are given in ton units (1 ton 2.24 kips)

for frames obtained from the British literature.
Frame 4-1 has been chosen to illustrate a frame particularly susceptible

to stability effects. The six-story, two-bay frames are identical with respect

to members, configuration and horizontal loadings. Frame 6—1 is subjected
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Fig. 5. Eight story frames.

to füll vertical loads, wheras the companion, 6 — 2, has vertical loads applied
in a "cheekerboard pattern" of füll and half loading. All of the eight story
frames are identical in dimensions and vertical loading. Frames 8 — 1, 8 — 2,

and 8 — 3 also have identical horizontal loadings, their only difference being
in the proportions of the members. Frame 8 — 4 is identical to 8 — 3, except
that only half of the horizontal forces are applied. Frame 15 — 1 is the most
slender of the structures considered, having a height-to-width ratio of 10.5
to 1. For a more complete description of the source of the frames, the reader
is referred to Reference [5].

Results of the Analyses

The results of all the exact and approximate calculations are summarized
in Table 1. Previously performed elastic-plastic analyses have been used to
furnish values of the amplification factors at working loads and the first and
second order collapse load factors (a, Xp and A2 respectively). The elastic-
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Fig. 6. Frame 15—1.

plastic analyses include the effects of bending deformations only, since axial
deformations had negligible effects on the maximum frame capacity [5], In
all cases, monotonically increasing proportional loads were applied up to the
maximum frame capacity. The plastic moment capacity of each member was
continually for existing axial load in accprdance with the bi-linear formula
of the A.I.S.C. [10].
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Table 1. Critical loads and collapse loads

109

From Elastic-Plastic Elastic Critical Merchant Loads, Xm,
Analysis, Reference 5 Loads, Af Formula 1 5) Exact

Frame Am

a1) Ap2) V) Exact Approx.
4)

Approx.
-r Exact Exact Approx. Approx.

~ Exact
"äT

4—1 1.2961 2.067 1.286 4.00 4.38 1.10 1.36 1.40 1.03 1.06
6—1 1.1021 1.571 1.367 9.89 10.8 1.09 1.36 1.37 1.01 0.99
6—2 1.0750 1.719 1.524 13.2 14.3 1.08 1.52 1.53 1.01 1.00
8—1 1.0267 1.649 1.414 33.5 38.5 1.15 1.57 1.58 1.01 1.10
8—2 1.0273 1.511 1.424 30.6 37.6 1.23 1.44 1.45 1.01 1.01
8—3 1.0244 1.814 1.646 37.1 42.0 1.13 1.73 1.74 1.01 1.05
8—4 1.0243 2.905 2.836 37.1 42.2 1.14 2.69 2.76 1.03 0.95

15—1 1.0779 1.632 1.403 12.2 13.8 1.13 1.44 1.46 1.01 1.03

x) öl A2IA± Amplification of top sway at working loads.
2) Xp — Load factor for rigid-plastic collapse.
3) A2 Load factor at collapse, second-order elastic-plastic analysis.
4) Approximate critical loads computed from Formula 4b.
5) Exact and approximate Xm values are based on exact and approximate critical loads

respectively.

Mpc Mp (PIPy^O.15),
Mpc 1.18Mp[l-P/Py] (P/Pv> 0.15).

(6)

Here, the reduced and fully plastic moments are given by Mpc and Mp
respectively. The existing axial load in the member is P, and the fully yielded
capacity of the section is denoted by Py. It is to be noted that Information
for calculating oc was automatically obtained by the Performance of first and
second order elastic-plastic analysis.

The critical loads, Ac, were computed by two methods. Exact values were
calculated by formulating the slope deflection equations with stability funetions

and equating the determinant of the resulting stiffness matrix to zero [9].
For this purpose, each in-span girder load was replaced by two equal loads

acting over the adjacent columns. Trial values of load factor were chosen and
the determinant of the stiffness matrix was calculated. By means of inter-
polation, aecurate values of the critical loads were obtained. Approximate
critical loads were obtained by substituting the previously determined values
of a into Eq. (4b). Exact and approximate Merchant loads were obtained by
using the values of Ap in conjunetion with the exact and approximate critical
loads.

The approximately calculated critical loads were anywhere from 8 to 23

percent higher than the true critical loads. Thus, the approximations are
considered to be crude. Improved estimates of Ac could have been obtained
by averaging the values of oc obtained at each story level of the frame. In the
case of Frame 4 — 1, the values of oc from the top to the bottom story were
1.2961, 1.3161, 1.3398 and 1.3375 respectively. By using any one of the stories
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to describe oc, the greatest Variation in Ac would have been from 3.94 to 4.38.
The value of Ac would have been 4.10 if averaging were employed. However,
the crude value of Ac is seen to be entirely adequate when employed in the
already empirical Merchant formula. The approximate Merchant load is at
worst 3% higher than the exact Merchant load.

For the frames in question, the Merchant formula gave reasonable estimates
of the maximum frame capacity. At worst, the empirical prediction was 5%
low or 10% high. The predictions for Frames 6 — 1, 6 — 2 and 8 — 2 were almost
identical to the values obtained by second order elastic-plastic analysis.
However, the virtue of the Merchant formula is seen to be its ability to describe
the correct trends of frame behavior. Frame 4 — 1 lost 38 percent of its potential

load carrying capacity due to stability effects — Formula 1 predicted a
37 percent loss. All of the other frames were relatively insensitive to stability
effects, losing at most 14 percent of their rigid-plastic capacity. Here, the
Merchant prediction tended to considerably underestimate stability effects.
Yet, when Eq. (1) denoted insignificant frame stability effects, the effects were
indeed insignificant. In no case did the Merchant prediction describe an incor-
rect trend of frame behavior. It is to be noted that the Merchant formula has
been used here in conjunction with reduced plastic moments. The validity of
using reduced plastic moments is justified solely by the correctness of the
empirical results.

Acknowledgements

The elastic-plastic analyses utilized in this paper were performed in the
Department of Civil and Environmental Engineering, Washington University,
St. Louis, Missouri. The research was supported by funds granted by the
American Iron and Steel Institute. Computing Services were made available
by the National Science Foundation.

The remainder of the research has been performed in the Department of
Civil Engineering of the University of Kentucky.

References

1. Merchant, W.: "The Failure Load of Rigid Jointed Frameworks as Influenced by
Stability". The Structural Engineer, Vol. 32, July, 1954, p. 185—190.

2. Hohne, M. R.: "Instability and the Plastic Theory of Structures". Transactions of
the Engineering Institute of Canada, Vol. 4, No. 2, 1960, p. 31—43.

3. Hohne, M. R. and Merchant, W.: "The Stability of Frames". Pergamon Press,
1965, p. 146—151.

4. Hörne, M. R.: "Generalised Approximate Method of Assessing the Effect of
Deformation on Failure Loads". Publication, International Association of Bridge and
Structural Engineers, Zürich, Vol. 23, 1963, p. 205—218.



THE APPROXIMATION OF STABILITY EFFECTS ON FRAMES 111

5. Korn, A. and Galambos, T. V.: "The Behavior of Elastic-Plastic Frames". Accepted
for Publication, Journal of the Structural Division, ASCE.

6. Stevens, L. K. and Schmidt, L. C.: "Determination of Elastic Critical Loads".
Journal of the Structural Division, ASCE, Vol. 89, No. ST 6, Proc. Paper 3723,
December, 1963, p. 137—158.

7. Stevens, L. K.: "Elastic Stability of Practical Multi-Story Frames". Proceedings,
Institution of Civil Engineers, London, Vol. 36, Paper 6955, January, 1967, p. 99—117.

8. Harrison, H. B.: "The Second-Order Elastic Analysis of Plane Rigid Frames".
Fritz Engineering Laboratory Report No. 297.17, Lehigh University, November, 1965.

9. Bleich, F.: "Buckling Strength of Metal Structures". McGraw-Hill Book Company,
Inc., 1952, Chapters 6 and 7.

10. "Specification for the Design, Fabrication and Erection of Structural Steel for
Buildings". American Institute of Steel Construction, April, 1963, Section 2.3,
Formula 21.

Summary

A method for Computing crude estimates of elastic critical loads has been
utilized in the empirical predictions of maximum frame capacity. The crude
estimates have been shown to be more than adequate when used solely for
the Merchant prediction. Furthermore, the empirical Merchant prediction
described the correct general trends of carrying capacity that were obtained
by second order elastic-plastic analysis.

Resume

Pour obtenir une prevision empirique des capacites de charges maximales
de huit portiques plans, a plusieurs etages, rectangulaires et non entretoises,
on s'est servi d'une methode permettant une estimation grossiere des charges
elastiques critiques. Or pour la «prevision Merchant», cette estimation grossiere

se montre plus que süffisante. Un des avantages de la methode proposee
est qu'elle permet de controler le comportement elastique des portiques.

Les capacites maximales des portiques, trouvees avec la «prevision
Merchant» ont ete comparees aux resultats obtenus par un calcul elasto-plastique
du second ordre. Dans tous les cas, la relation empirique donne l'allure generale

correcte de la capacite de charge. Ainsi, on a tout interet a se servir de la
formule de Merchant, avec des charges critiques approximees et des charges
de rupture rigide-plastique estimees, pour detecter d'eventuels portiques
particulierement sensibles ä des instabilites.
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Zusammenfassung

Ein Verfahren zur groben, schätzenden Berechnung elastischer, kritischer
Lasten ist für die empirische Voraussage maximaler Tragfähigkeit von acht
mehrstöckigen, unversteiften, rechteckigen und ebenen Stockwerkrahmen
angewandt worden. Die grobe Schätzung ist durch die Merchant-Voraussage
(Merchant prediction) mehr als genügend. Ein Vorteil der vorgeschlagenen
Methode besteht darin, daß das elastische Rahmenverhalten für Prüfungen
verwendbar ist. Die maximale Tragfähigkeit der Merchant-Voraussage ist mit
den Ergebnissen der elasto-plastischen Analyse zweiter Ordnung verglichen
worden. In allen Fällen beschreibt die empirische Beziehung die genaue Richtung

der Tragfähigkeit. Demgemäß möge der Gebrauch der genäherten,
kritischen Lasten und die geschätzten Traglasten in den Merchant-Formeln für
Rahmen verwendet werden, die möglicherweise empfindlich auf große
Stabilitätseinflüsse sind.
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