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Inelastic Stability of Tapered Wide-Flange Columns

Stabilite de colonnes emincees ä larges ailes dans le domaine plastique

Stabilität von zugespitzten Breitflanschstützen im plastischen Bereich

K. H. LIN
Ph. D., Associate Senior Research Engineer, General Motors Research Laboratories,

Warren, Michigan, U.S.A.
E. C. ROSSOW S. L. LEE

Ph. D., Associate Professor of Civil Ph. D., Professor of Civil Engineering
Engineering

Northwestern University, Evanston, Illinois, U.S.A.

1. Introduction

The behavior of symmetrically and linearly tapered wide-flange columns
made of elastic-plastic materials and subjected to arbitrary end loading which
causes bending in addition to axial compression is investigated. The
interaction curves for tapered cantilever columns are obtained numerically
neglecting any torsional-flexural behavior. Approximate equations for these
curves are presented to facilitate the determination of the load carrying
capacity of simply supported columns.

Numerous analytical studies have been made of the elastic buckling of
axially loaded tapered columns [1-6]. The elastic stability of tapered columns
subjected to combined bending and thrust has been treated by several investigators

[7-11]. While the inelastic buckling of axially loaded tapered columns
has been studied [12-14], little work has been done on the inelastic stability
of tapered columns subjected to eccentric loading although columns of uniform
cross section under such loading have been analyzed [15-18].

2. Assumptions

The present analysis is based on the following assumptions; the material is

elastic-perfectly plastic as shown in Fig. 1; the material is homogeneous and
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isotropic in both the elastic and plastic states; plane sections remain plane
during bending; deflections, slopes, and curvatures are small and are confined
to the plane of the web; the effect of the shear stresses on yielding and
curvature is neglected; residual stresses and strain reversal are not considered;

instability of snap through type occurs in the plane of web which coincides
with the plane of loading; and the idealized section is characterized by an
jff-shape, where the flange thickness is very small but finite.

c
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Fig. 1. Idealized stress-
strain relationship.

3. Tapered Columns

The column considered herein is symmetrically and linearly tapered along
its length by varying the depth of the web but keeping the flange width and
thickness constant. The taper slope, denoted by a and defined as the change
of the half-depth per unit length of the column, may assume positive or
negative values depending on whether the larger or the smaller section is

chosen as the reference section. To facilitate the analysis that follows, a

reetangular coordinate system is introduced as shown in Fig. 2.

For the reference section where the origin is located, designate the radius
of gyration about the strong axis by rQ, the half-depth by b0, the web area

by Aw0, and the flange-web area ratio, Af/Aw0 by R0. The nondimensional
distance from the origin and the deflection of the centroidal axis are defined

respectively, as

±\M«x :f :
Jy ^X

'M

Fig. 2. Tapered wide-flange cantilever column under arbitrary end loads.
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By introducing a parameter

The following expressions are readily derived for any section.

b =b(x) =b0(l-Xx),
Aw — Aw (x) Aw0 (1 — Ax),
A =A(x) Aw0(R0+l-Xx),

E R (x)

I I(x)
s 8(x)
z Z(x)

1 — Xx'

Aw0bl(l-\x)*[R{j + ii(l-\x)-\,
Aw0b0(l -\x)[B0 + ± (1 -Xx)],
Av,0b0(l-\x)[B0 + l(l-\x)],

r(x) =6.(1-A*))^|— Xx)
-Xx

(i)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

where b, Aw, A, R, I, S, Z and r are respectively, the half-depth, the web

area, the total area, the flange-web area ratio, the moment of inertia, the
elastic section modulus, the plastic section modulus, and the radius of gyration.
Setting £ 0 in Eq. 11 and substituting into Eq. 3 leads to

-im- (12)

4. Stress Zones

When a wide-flange section shown in Fig. 3 (a) is subjected to a compressive
axial force P and a bending moment M, one of the three stress distributions,
referred to as elastic, primary plastic, and secondary plastic, as shown in
Figs. 3(b), (c), and (d) will result.

Fig. 3. Cross section and
stress distribution due to
bendmg and compression.

nnn
Af/2
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Af/2 iz-J
uuu

(a) (b) Elastic (c) Primary
Plastic

(d) Secondary
Plastic
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The nondimensional axial force and moment are defined, respectively, as

P

and

in which
and

p p(x)

m m(x)

P0(x)

M(x)
M0(x)'

P0(x) =a0A(x)
M0(x) v0Z(x),

(13)

(14)

(15)

(16)

where a0 denotes the yield stress of the material.
Referring to Fig. 3 (d), the condition l/</> 0, where cf> denotes the non-

dimensional curvature, defines the limit of statical admissibility. The plastic
moment is given by

R0+l-Xx l-Xx

mpi(x) 1-

B0 + i{l-\x)
[(R0+l-Xx)p(x)]2

R0+l—Xx~

for 0£p(x)£ p 1~A^ (17b)(2R0+l-Xx) (l-Xx) ~^v '~R0+1-Xx'
Referring to Fig. 3 (b), the condition of initial yield, which defines the boundary
between the elastic and the primary plastic zones, gives

R0 + ±(l-Xx)ri
m^x)=R0 + l(l-Xx)[l-^x)]' (18)

The boundary between the primary and the secondary plastic zones is given
by the condition /? 2/</> in Fig. 3 (c) and is expressed by

/yyi* R0 + $(1-Ax)
B0 + $(l-\x) B0+1-Xx1+ 1-Äx ~V{X)

— Ax(Bo+l-Xx y]\-2[ l-Xx P{x))\j-

3ress

by Eqs. 17, 18, and 19 in a p-m plane shown in Fig. 4.

(19)

-Xx

The admissible domain and the boundaries for each stress zone are described

• Constant
a
x

-Eq. f7a

-Primary Plastic Zone

p(x) Eq. 18

Elastic Zone \ \p
Eq.l9-V

m(x) LO

Secondary Plastic
Zone

Eq.l7b Fig. 4. Stress zones.
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5. Curvature Functions

The nondimensional curvature at any section is defined as

*=£, (20)

where 0 is the actual curvature, 0O e0/6 is the curvature at initial yield due
to pure bending, and e0 is the strain at yield point. The function <f> (m, p) for
each stress zone can be readily expressed as follows.

In the elastic zone,
Rq + \ (l-Xx)

*=Rl + \(l-Ax)m(x)> (21)

in the primary plastic zone,

t-l (Ü,+ 1-Ax)[l-„W1
9 MH^t[^f*ÄI

i-i tt B0 + i{l—\x) m(x)
m which U l jt~^—^—i ~T^>R0+l-Xx l-p(x)
while in the secondary plastic zone,

(22b)

6 (23)

Mis7y^-^-{s7y^T
Eqs. (21), (22), and (23) are derived for positive moment, hence the absolute

value of m must be used and </> replaced by (—</>) in cases where the moment
is negative.

6. Equilibrium Equations

When the tapered cantilever column is subjected to an axial force P, a
shear force Q, and a bending moment M at the free end as shown in Fig. 2,

the conditions of equilibrium require that

TO(X)
[i?o + |(l-Ax)3(l-Ax)[^ + ^^-}/(J?»+1)(i?» + ^^y + g^)]'(24)

in which pf P/P0{0)9 qf QIP0(0), mf MfIM0(0), and Mf the fixed end
moment. The relation between p (x) and pf is given by

p{x)=lL+lX-\zP'- (25)
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7. Differential Equation

From the small deflection theory and Eqs. 2 and 20, it follows that

s-y=T+' <*>

in which prime denotes differentiation with respect to x. Introducing Eqs. (3),
(4) and (12) in Eq. (26) leads to

Substitution of Eqs. (24) and (25) into the appropriate curvature function,
i.e., Eq. (21), (22), or (23), and the results into Eq. (27) yields the differential
equation for each stress zone.

The boundary conditions

y(0) y'(0) 0 (28)

being both specified at one end of the column make this an initial-value
problem.

8. Numerical Integration

The numerical Solution of the initial value problem defined by Eqs. (27) and
(28) is obtained by a step-by-step integration procedure. Let the subscript i
denote the discrete stations evenly spaced along the #-axis such that xi (i-l) A x,
i= l, 2, 3. Approximating the second derivative in Eq. (27) by a three-term
central difference formula, upon application of the boundary conditions,
Eq. (28), leads to

2/2 le0(J^]/^±i^ (29)

and in general

«^'T^fm*' + 2!"->"-' for*' 2' (30)

For given values of pf, qf, and mf, the values of mt and pi can be obtained
from Eqs. (24) and (25), respectively. Having determined the stress zone from
Eqs. (17), (18), and (19), the appropriate curvature function <f>i, Eqs. (21), (22)
or (23), is chosen. The value ofyi+1 can then be computed by means of Eq. (30).

9. Equilibrium Curves

By means of the marching procedure described above, the values of m can
be plotted against x for various values of mf as shown in Fig. 5 (a), provided
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the values of e0, R0, a, pf, and qf are specified. The m-x curves are referred to
as equilibrium curves of the tapered cantilever column.

If \m\ nowhere exceeds me, the column is entirely elastic. In some of the
equilibrium curves, me < \m\ <mpl in a portion of the column. For some values
of mf, the equilibrium curves intersect the curves m ± mpl at some point x.
Beyond this point, the equilibrium curve is statically inadmissible and need
not be considered.

elopeuppe

x*.m1

pu

constant

..m

dm 0
dm

¦¦ -m

lower envelope
(a) (b)

Fig. 5. Moment equilibrium curves and envelopes.

It is of interest to observe that all the elastic equilibrium curves pass
through a common point (x*,m*). For the inelastic equilibrium curves, the
value of x corresponding tom* are always smaller than x*. The existence of
the common point (#*,m*), of the elastic equilibrium curves implies that x*
and m* are both independent of mf. If qf vanishes, all the elastic equilibrium
curves meet at (#*,0). Thus, x* is the nondimensional elastic buckling length
or Euler length.

10. Elastic Tapered Columns

Elasting Buckling Length x*. Consider an elastic cantilever column
subjected to an axial force P at the free end. The differential equation for the
centroidal axis of the slightly bent column is

(C1x* + C2x2 + Czx + Ci)y" + Cby C5§, (31)
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in which C± X^, C2= -3X2(R0 + l), 03 3X(2R0+l), C4=-(3JR0+1), C5

— (3 R0 + 1), e0pf and 8 is the arbitrary deflection at the free end. The boundary
conditions are

y(0) =0, (32a)

V'(0) =0, (32b)

y(x*)=8. (32c)

Examining the coefficient function of Eq. (31) indicates that x 0 is an ordinary
point and x (3 R0+l)/X and x=l/X are both regulär singulär points. The
complementary function takes the form of an infinite power series which
converges uniformly for 0 ^ x < |1/A|.

Taking the Solution of the boundary value problem defined by Eqs. (31)
00

and (32) in the form t/= S + ]T aÄa;fc and demanding the nontrivial Solution

lead to the elastic buckling criterion

Z «*(**)* 0> (33)
k=0

in which

a0 -8, (34a)

«i 0, (34b)

a2 -jcr> (34c)

+ ak_3 (Jc-3) (k-4) CJ, h 3, 4, 5,
(34d)

For a given value of pf, the smallest positive real root x* of Eq. (33) is the
elastic buckling length of the cantilever column.

The Euler length x* can also be obtained with excellent accuracy by inter-
secting any elastic equilibrium curve for qf 0 with the #-axis by means of
the numerical integration procedure. It must be pointed out that if a < 0, the
Euler length is obtainable from Eq. (33) for #* < |1/A|, whereas the numerical
Solution is always valid. The x* — pf curves for various taper slopes are
presented in solid lines in Fig. 6.

Determination of m*. Consider the cantilever column subjected to general
loading at the free end as shown in Fig. 2. Assuming that the column is entirely
elastic, the differential equation may be obtained by combining Eqs. (21),
(24), and (27) as

(C1x* + Czx2 + Czx + C,)y" + C,y Ch \ ,2R» + \ N - l&)x] (35)
V2i(Rö+ l)Cß0 + i) XPtl W J
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Fig. 6. Euler lengths of tapered
cantilever columns.
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The boundary conditions are
y(0) =0,
y'(o) o.

(36a)

(36b)

The homogeneous equation corresponding to Eq. (35) is identical to that
corresponding to Eq. (31).

Solving the initial value problem defined by Eqs. (35) and (36) and
substituting the Solution into Eq. (24) leads to the equation of the elastic
equilibrium curve

m(x)
[R0 + ±(l-Xx)] (l-Xx) {(R» + \)mf-i(R,+ l)(R, + \)pfZckx*}, (37)

k=l
in which

2i(R{
2R0+1 IniA

0+l)(i?0 + i) Ur
c, = Îf

Vt

(2E0+l)eo
4/(i?0+l)(i?0 + i)fvm"

(38a)

(38b)

(38c)
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k -k{1c_l)Ci{ck-.i(k-l)(k-2)C3 + ck_2l(k-2)(lc-3)C2 + C5]

(38d)
+ ck_t(k-3)(k-4)C1}, k 3,4,5,.

Since the common point (x*,m*) of elastic equilibrium curves is independent

of mf, it is appropriate to set mf 0 in Eqs. (37) and (38) to obtain the
expression for m* in the form

l/(R0+l)(R0 + l)m* — m(x*) — [iWU-A**)](i-A**r'*=iPf 2 ck(x*)k. (39)

It is important to observe that the coefficients, ck,k= 1, 2, 3,. hence m*
are linear funetions of qf.

The expression for m* given by Eq. (39) is valid only when #*<|1/A|.
However, the value of m* can always be obtained numerically as the value
of m for any elastic curves at x x*. The m*—pf curves for various taper
slopes are presented in solid lines for a particular value of qf as shown in Fig. 7.

The values of m* for other values of qf can be obtained by linear proportioning.
Insensitivity of x* and m* to R0. It is observed that the values of x* and m*

are insensitive to the Variation of the parameter R0. The following approximate
expressions for x* and m* are derived on the basis of iü0 3.25.

-Exact
Approx. Eq.47

€0=0.00I2
R0S3.25

0.5 0.10

App rox
0.080.4

001
25
00 0010.060.3

005
025 0040.2

01502
015

005 0.02
Z70.02

0.025

0.2 0.4 0.6 0.8 1.00.2 0.4 0.6 0.8 1.0

(b)a

Fig. 7. Variation of m* with pf and a.

11. Approximate Expressions for x* and m*

The values of x* and m* for i?0 3.25 and e0 0.0012, corresponding to
A 36 steel, for taper slopes in the ränge — 0.025 ^ a ^ 0.025 may be approximated
by the following expressions.
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For O^aS0.025,

x- =- * - - 48Lla°>9647
(40)

/0.0048 p, ^0.9953/(101-14«)]'

m* -qf{10[^totßm)-*] + AmH(pfc-pf)}, (41)

in which
am 7.480 + 9.20« 1

0<a<00125 (*2a)
/3M 0.02816+1.495 a

*°r °^a^00125 (42b)

am 7.414+14.50« J 00125<a<0025
<43a>

/3m 0.03229+1.165a }
tOT °-0125^a^0-025

(43b)

(a/0.015)7-85

Tp//0.30)

2^=-0.2625 + 32.5« (45)

and -ff denotes the Heaviside unit function, i.e., H(r)) 0 for ij<0 and

H(r)) l for t? > 0.

For -0.025^«^0

* » +
«88-1 (-«)"¦" (46)

y'0.004823/ pri.ooT/ao0-5"«)!
'

s* -y/Xl 0[a»,<P/^m>-61, (47)

am 7.469 + 9.20« 1

_0025<«<-0 0125 (48a)

^ 0.02695 + 0.867« j
tOT 0-025*S« 00125

(48b)

«m 7.480+10.10« |
for _0.0125^0 (49a)

in which

ßm 0.02816 + 0.964a J
' (49b)

The approximate Euler lengths obtained from Eqs. (40) and (46) are plotted
as dashed lines in Fig. 6. The approximate values of m* obtained from Eqs. (41)
and (47) are plotted as dashed lines in Fig. 7. It is seen that, in both cases,
the approximation is satisfactory for practical purposes.

12. Interaction Curves

For a given set of e0, R0, a, pf, and qf, a family of equilibrium curves, as
shown in Fig. 5 (a), can be constructed. From this family of curves, an m — mf
curve can be plotted for a given value of x such as shown in Fig. 5 (b). At
point a or b where the slope of the m — mf curve vanishes, i.e.,

3m=0 (50)
dmf
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the column is in the state of neutral equilibrium. Thus, Eq. (50) defines the
limit of stability and is used as the inelastic stability criterion. The loci of all
maximum points such as a and minimum points such as 6 corresponding to
different values of x represent, respectively, the upper and lower envelopes

i

0.6 ^^0=2.5
«0=0.0012
o 0.01

0.4 .^=4.0**"^ Pf 0.5

qf= 0.002

0.2

0 20 40 \ 60

-0.2 "

-0.4 /Ro=4.0^
-0.6 r^^R0=2.5

*0=0.00I2
a -0.0l
pf 0.5

qf 0.002

06
Ro=2 5

04 Ro=4

0.2

20 40 60 80

-0.2 h

-0.4- /Ros4.0

R„=2.50.6-

Fig. 8. Influence of i?o on interaction curves.

Exact
Approx

«0 0 00I2
R0 3 25
a =0.015
qf 0 002

Exact
i.o- Approx

Pf 0 2 €o=O.OOI2 p =020.80.8 Ro=3.250 3 0.3 sa =0015 0.60.6 0 4 qf=0 ^0 4
!T>

0.40.4 06

0.20.2
\

x rn 0
i6040 100 100

-0.2-0.2

0.40.4

0.6 06

0.8 -0.8a)
b)

—Exocr
Approx

«0=000l2
R0 3 25
o -0 0015
q,= 0 002

Exacl
Approx. Pf 0 2P. =0 2^ R 3 25

0015 04^

0 2*

Fig. 9. Interaction curves.
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of the family of equilibrium curves as shown in Fig. 5 (a). The envelopes are
referred to as interaction curves and define the ultimate strength of the tapered
cantilever column under various end loading conditions.

It is found that the interaction curve is insensitive to the parameter R0 as
shown in Fig. 8. Typical interaction curves are presented in Fig. 9.

Let qf and qf * be the values of qf which satisfy, respectively,

m*

m*

-m;

-m'pi>

where mf and m*t are, respectively, the values of me and mpl at x x*
qf—Pf and qf*~Pf curves for various taper slopes are shown in Fig. 10.

(51)

(52)

The

0 02-

"f

001

025

002

005

005
00100

02
0202

02 0 4 0 6 08 0 2 04 06 0 8 10

o) (b)

Fig. 10. g* and g**—p/ curves.

The intersection of the upper and lower envelopes is the same as the common
point (x*9m*) of the elastic equilibrium curves as long as qj^qf- When qf
exceeds q*, neither the elastic equilibrium curve nor the common point exists.
However, the numerical value of m* can still be computed as if the column
were infinitely elastic. For qf <qf^qf*, it can be shown that the point
(x*,m*) still defines the intersection of the envelopes.

For qf^qf, the —mpl(x) curve, which is independent of qf, completely
governs the lower envelope and the intersection, denoted by (#**,m**), shifts
along the lower envelope toward the negative ;r-direction as qf increases.
Therefore, the maximum admissible length #** is smaller than the Euler
length x*. The computed (x*,m*), which lies outside of the admissible domain,
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will be used in the next section as a fictitious end point of the upper envelope
for obtaining approximate interaction equations. The point (x**,m**) can
be located numerically by intersecting the upper and lower envelopes.

13. Approximate Interaction Equation

The actual interaction curves constructed for R0 3.25 and e0 0.0012 for
taper slopes in the ranges 0.005 *g \a\ ^0.025 may be approximated by the
following expressions.

The upper envelope is approximated by

m m + (m* - m) £ + p [10 - 10 (a - 0.0l)H (a - 0.01)] (53)

and the lower envelope by

m -m + (m*+m)| + /z[10-10(a-0.01)#(a-0.01)] for 0^qf^qf*, (54a)

m —m + (m^l+m) for qf^qf*, (54b)

in which m mpl(0), m*T=mpl(x*), % x\x*, x* is obtained from Eq. (40) or
Eq. (46), ra* from Eq. (41) or Eq. (47) and

n
2f2

C ^-

^ =c(i-t)(2£-er

for |^0.5,

2(1-?)2

C
(l-f)(2|-f:2\n

for ^0.5.

(55 a)

(55b)

(55 c)

(56a)

(56b)

(56 c)

The new variables £ and p, in Eqs. (55) and (56) are funetions of a, pf, and qf
and defined as follows:

For 0.005 ^a^ 0.025,

f 0.5254 X 10t8-31«+^/-°-4)^ - (23 pf + l)qf, (57)

ß 3.743 a°'6057-(pf -0.4) 02+ 1641000 a2-685 (2 pf)~^qf (58)

for the upper envelope, and

| 0.5254 x W*Ma+(Pf-»Mü + [22 -38.44 x lO~B5^a+ (pf-0A)if;3]qf, (59)

ß - 3.743 a0-6057- (pf-0A)ifj2 + 8.464 x 1048-74a (2.5 pfyl>* qf (60)
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for the lower envelope, in which

0X 0.4354a-°-1401-l for pf^0A, (61a)

0X -4.242 a0-9247 for p/= 0.4, (61b)

02 -21.47 a0-6888 for Pf^OA and a^0.02, (62a)

02 -1.45 for pj^OA and a^0.02, (62b)

02 -17.48 a0-785 for p^0.4, (62c)

03 -35 for p^OA, (63a)

03 -15 for pf^0A, (63b)

04== -0.931 XlO15-49« for Pf^OA, (64a)

04 - 0.2644 X1027-67« for ^^0.4. (64b)

For -0.025^a^ -0.005

l 0.1012(-a)-0-3544Xl0^-°-4>^ + (i.4-15j9/)g/, (65)

/Z 06 - 6.705 ^°-4949 qf (66)

for the upper envelope, and

l 0.1012 (-a)-°-3544XlO^-°-4)^ + [0.0153 (-a)"1-750^-337-l]g/? (67)

ß 06-6.705 p/-°-4949g/ (68)

for the lower envelope, in which

05 0.2 - 5 a for pf S 0.4, (69)

05 0.1875 for pf^ 0.4, (70)

06 11.52(-a)°-7619Xl0-0-3745(-a)-°-331p/ for pf^0.ß, (71a)

06 11.52(-a)0-7619Xl0-t0-2247(-«)~0-331 + 2^-1.2] for pf^0.ß. (71b)

The curves defined by Eqs. (53) and (54) are plotted in dashed lines along-
side the actual interaction curves in Fig. 9 and show reasonably close approximation.

Being insensitive to the parameter R0, the interaction curves in Fig. 9

or the approximate expressions given by Eqs. (53) and (54) may be applied
for practical purposes to tapered wide-flange cantilever columns made of
A 36 steel for 2.5 ^ R0 ^ 4.0.

In the case where qf exceeds qf*, the intersection of the upper and lower
envelopes, i.e., (x**,m**), is readily located by solving Eqs. (53) and (54b)
simultaneously.

It should be pointed out that the interaction equations presented above
do not apply for the ränge — 0.005<a<0.005. In practice, tapered columns
in this ränge are hardly used.



128 K. H. LIN - E. C. ROSSOW - S. L. LEE

14. Simply Supported Columns

The approximate interaction equations, Eqs. (53) and (54), derived for
cantilever columns can be extended to the treatment of the simply supported
tapered column shown in Fig. 11 (a). The column is subjected to axial force P

® ® ®
Mi M2=KM
-*- -*=

(a)

37 ==Pv Ke,

(b)

Mi ^o<0
H 3

Q>0 M2

}r- i-Fp

(c)
X2 —\Q

Fig. 11. Simply supported
tapered columns.

and unequal end moments M1 and M2 where M2 KM1, for -l^K^l. The
simply supported column of length L may be considered as two cantilever
columns of lengths Xx and X2 with the fixed end located at section 0 as shown
in Fig. 11 (c). The taper slopes of the two cantilever columns are of the same
magnitude but of opposite sign and the fixed end is taken as the reference
section.

Referring to Fig. 11 (c), the right segment X2 is subjected to the same
type of loading as the cantilever column of Fig. 2. However, the shear force Q

acting on the left segment X1 is opposite in sense to that shown in Fig. 2.

Therefore, the corresponding interaction curves for the left segment must be
turned upside down as shown in Fig. 12 where the x1-axis is directed toward
the left for convenience in the combined m — x1 and m — x2 planes.

IX,.!«,) (X2,m2)

(x,,-mr 3L/r0

x2%m$ Fig. 12. Interaction curves for a
simply supported tapered column.

The values of xx and x2 at the point where the column becomes unstable
are not known a priori. However, the relation

X-i "T~ Xn (72)
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must hold true and the points (x±, mx) and (x2, m2) must both lie on the
interaction curves. In other words, the Solution of the stability problem is reduced
to solving three simultaneous algebraic equations by a trial-and-error procedure
outlined in the following.

Suppose px and K are specified for a given column, and the critical value
of m1 is to be determined. Referring to Fig. 11, let R1 and rx be the flange-Web
area ratio and the radius of gyration, respectively, of section 1 and Ax

ai(R1+lj3)j(R1+l) in which a assumes a positive value. A trial reference
section 0 is located by assuming a value of X^r^. The relation

777m[l-"u
is readily established in view of Eq. (11), and xx and x2 are then obtained,
respectively, from / r \ / \*-(W- (74a)

£-m-
The nondimensional axial force with reference to section 0 is given by

Vi ~ jxz Vi ¦ (75)

*i+i-M-l)
Knowing pf, the corresponding x* for the right and left segments are computed,
respectively, from Eqs. (40) and (46). The value of m*x for each segment are
obtained from Eq. (41) or (47).

Next assume a trial value of mx, corresponding to which

m2 Kmx (76a)

where k 7 (B)t®r Tt^K, (76b){^ymvyzti
the nondimensional shear force is given by

_ mx (R1 + ^)(l-K)

®imi«^-m
The value of m*, which is a function of qf, for the right segment is obtained
from Eq. (41). In the case where m* < — m*z, the intersection of the upper
and lower envelopes, (x**,m**), must be computed by the method described
in Section 13. For the left segment, m* corresponding to Q acting in the direction

opposite to that shown in Fig. 11 (c) is obtained from Eq. (47).
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Table 1. Classification of Interaction Equations

Case Left Segment, a<0, x xx Right Segment, a>0, x=x2

la
lb
lc
ld
2a
2b
2c
2d

Q^qf^qf*
i. e.,
0 ^ m* ^ -m%i

0^qf^qf*
i.e.,
0 ^ m* ^.-m*i

mx ^ —m*

m1 ^ —m*

m1 ^ —m*

Eqs. 54a, 67, 68

Eqs. 53, 65, 66

Eqs. 54a, 67, 68

Eqs. 53, 65, 66

0^qf^q}*
i. e.,
0^m*^-mj*

i. e.,
m* ^-nipi

m2^ra* Eqs. 53, 57, 58

m2^m* Eqs. 54a, 59, 60
m2>m* Eqs. 53, 57, 58

m2^m* Eqs. 54a, 59, 60

m2;>m**Eqs. 53, 57, 58
m2<m** Eqs. 54b
m2^m**Eqs. 53,57, 58

m2^m** Eqs. 54b

Note: m is replaced by -m when Eqs. 53 and 54 are applied to the left segment.
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The value of qf determines which set of the approximate interaction curves
is to be used for the Solution of a given problem. Two cases, each contains
four subcases, thus arise and are listed in Table 1.

Once the appropriate set of interaction equations is chosen for the particular

case listed in Table 1, the values of the interaction curves at xx and x2
can be computed and compared with the trial values of mx and m2, respec-
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tively. The trial value of mx is varied until the interaction equation for each

segment is satisfied. However, the two interaction equations may not be

satisfied for the same trial value of mx. It is necessary to vary the trial value
of X1jr1 and to repeat the above-mentioned process until both interaction
equations are satisfied simultaneously. The corresponding value of m1 gives
the critical end moment.
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The trial-and-error procedure described above, taking into account all the
cases shown in Table 1, is built into a Computer program.

15. Column Curves

Column curves, i.e., mx — L\rx curves, are prepared for A36 steel in Fig. 12

for various combinations of the parameters a, px, and K. These curves can be
used to solve for ultimate loads of A 36 steel wide-flange columns subjected
to various end loading conditions.

It is of interest to observe that for the case where K=l, i. e., Figs. 13 (a),
(e), and (i), the carrying capacity of the columns is governed entirely by
instability. For 0^iT<l, the ultimate load carrying capacity is governed
either by yielding of the large end section for short columns or by instability
for longer columns, and the demarcation line between these two regions is
shown by the dashed line in Figs. 13 (b), (c), (f), (g), (j) and (k). When K<0,
there are three different regions, separated by the dashed lines shown in Fig.
13 (d), (h), and (1), representing, from left to right, yielding of the large end
section, yielding of the small end section, and instability.

16. Illustrative Examples

A few examples illustrating the use of the approximate interaction equations

as well as the column curves are given in the following.

Example 1. A tapered wide-flange cantilever column made of A 36 steel is
loaded as shown in Fig. 2. Find the critical values of the applied end moment
mit Llr0 35, R0 3.25, a 0.015, pf 0.5, and ^ 0.002.

Eqs. (40) and (41) give, respectively, x* 47.88 and m*= —0.1586. Setting
x 0 in Eq. (17a) yields m 0.5667 and, referring to Fig. 10, it is found that
0<qf<qf* in this case.

Upper limit: Substituting a, pf, and qf into Eqs. (57) and (58) give £ 0.6491
and ß 0.2710 for which w 0.6866 is obtained from Eq. (55b) and (7 0.6079
from Eq. (55c). Substituting £=35/47.88 into Eq. (55a) gives p 0.2629.

Finally Eq. (53) yields m 0.2863 which is the upper limit of m.
Lower limit: Substituting a, pf, and qf into Eqs. (59) and (60) give £ 0.7045

and ß= —0.1513, respectively, for which n 0.5073 is obtained from Eq. (55b)
and G= -0.3041 from Eq. (55c). Substituting £ 35/47.88 into Eq. (55a)
yields /x= —0.1508. Finally, Eq. (54a) yields m= -0.4117, which is the lower
limit of m.

As long as — 0.4117 <m<0.2863, the column is stable. The values obtained
from the actual interaction curves, Fig. 9(b), are -0.422 <m< 0.304.

Example 2. A tapered wide-flange column made of A36 steel is simply
supported and eccentrically loaded as shown in Fig. 11 (b). Find the critical
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value of px at which the column passes from stable to unstable equilibrium
if i/r1 40, R1 2.5, a 0.015, e2jex 0.5. and e[ e1A1IZ1 m1/p1 0.8.

From Fig. 13 (f), an m1 — p1 curve for i>/rx 40 is constructed as shown in
Fig. 14. The Solution is obtained by intersecting this curve with the straight
line m1 0.Sp1. This gives ^ 0.442 as the critical value for which mt
p1e[ 0.353ß.

Using £>i 0.442 in solving the approximate interaction equations for m1,
by means of the trial-and-error procedure described in Section 14, yields
m± 0.3547 which verifies the graphical Solution.

L/r, =50
K«0
p,=0.45

08 0.80 0.015
L/r, «40
K=0.5

0.6

0.6-0.6-
(m,)cr =0.465015

0.4

(m,)cr 0.3536 0.4 0.4

0.2 y] je;=o.8; 0.2 0.2

L_ (p.)cr =0.442 0 0.0125

0.2 0.4 0.6

Fig. 14. Graphical Solution of
example 2.

0.2 0.4 0.6
(a) m,-p, Curves

0.01 * 0.02

(b) m. - a Curve

Fig. 15. Graphical Solution of example 3.

Example 3. A simply supported tapered wide-flange column made of A 36

steel, as shown in Fig. 11 (a), is subjected to the end moment at the left end
in addition to the axial force, i.e., K 0. Find the maximum value of the end
moment for which the column remains stable if L/r1 50, Rx 2.5, a 0.0125,
and ^ 0.45.

From Figs. 13 (c), (g), and (k), the m1 — p1 curves for Ljr1 50 are plotted
for three different values of a as shown in Fig. 15 (a). From these curves, read
off the values of m1 at px 0.45 and plot them against a as shown in Fig. 15 (b)
from which m1 0.465 is obtained for a 0.0125. The value obtained from the
approximate interaction equations is mx 0.472.

17. Conclusions

The method presented above leads to a more realistic evaluation of the
strength of tapered columns than is possible either from a consideration of
elastic behavior only, or from the elementary treatment of columns concentrically

loaded into the plastic ränge.
The curvature funetions, expressed in closed form, are also valid for box

sections provided the stress-strain relationship and cross sections are idealized
the same way.
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The excellent agreement between the exact Solution and the numerical
Solution for x* and m* assures the applicability of the latter which is straight-
forward and less time-consuming. It is observed that the interaction curves
are insensitive to the parameter R0. For practical purposes, R0 3.25 is used
to derive the approximate interaction equations. It schould be pointed out
that for materials other than A36 steel, the approximate expressions must
be rederived.

The carrying capacity of simply supported columns is governed by inelastic
instability, yielding at the large end, or yielding at the small end depending
on the combination of the parameters a, K and px.

With appropriate modifications in the formulations, the present method
can be extended to investigate the inelastic stability of columns of nonlinear
taper, or elastic-strain hardening materials.
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Summary

The stability of symmetrically and linearly tapered wide-flange columns
made of elastic-plastic materials and subjected to combined bending and
axial loads is investigated. Torsional-flexural behavior is not considered.

Approximate interaction equations are derived for cantilever columns. These
interaction equations are used to determine the load carrying capacity of
simply supported columns subjected to arbitrary end loading conditions.
Column curves for A 36 steel are prepared. Numerical examples are given to
illustrate the use of the approximate interaction equations as well as the
column curves.

Resume

Des etudes de stabihte sous sollicitation combinee flexion-compression ont
ete faites sur des colonnes emincees symetriquement et lineairement, ä larges
ailes et en un materiau elastoplastique. Les effets de torsion de flexion ont ete

negliges. Pour les colonnes encastrees, on a developpe des equations d'interaction

approximees, qui servent ä determiner la charge de rupture de colonnes

simples, soumises ä des conditions de charge arbitraires. Des courbes pour
colonnes en acier A36 sont en preparation. Des valeurs numeriques sont
donnees pour illustrer l'emploi des equations et des courbes.

Zusammenfassung

Symmetrisch und linear verjüngte Breitflanschstützen aus elastoplasti-
schem Material wurden unter einer gleichzeitigen Biege- und Druckbeanspruchung

auf ihre Stabilität untersucht. Das Biegedrillverhalten wurde dabei
nicht berücksichtigt. Für eingespannte Stützen wurden Näherungsgleichungen
entwickelt, mit deren Hilfe man die Bruchlast von einfachen Stützen für
beliebige Lastfälle bestimmen kann. Diagramme für Stützen aus Stahl A36
sind in Vorbereitung. Es wurden numerische Werte gegeben, um den Gebrauch
der Gleichungen und der Diagramme zu veranschaulichen.
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