Effective column length in unsymmetrical frames

Autor(en): Chu, Kuang-Han / Chow, Hsueh-Lien
Objekttyp: Article

Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen

Band (Jahr): 29 (1969)

PDF erstellt am:
17.07.2024

Persistenter Link: https://doi.org/10.5169/seals-22906

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Effective Column Length in Unsymmetrical Frames

Longueur de flambement des cadres asymétriques
Knicklänge in unsymmetrischem Rahmen

KUANG-HAN CHU

Ph. D., Professor of Civil Engineering, Illinois Institute of Technology, Chicago, Illinois

HSUEH-LIEN CHOW
Structural Engineer, Westenhoff and
Novick, Inc., Chicago, Illinois

Introduction

In the design of bulding frames, the slenderness ratio of any column is determined by its effective column length rather than its actual unbraced length. The ratio K of the effective column length to the actual unbraced length is of great concern to designers working with unbraced frames. This is because K is always less than 1.0 in braced frames but it is usually greater than 1.0 for unbraced frames subject to lateral sway. The value of K for unbraced frames is usually determined by the alignment chart given in the AISC Manual of Steel Construction [1]. This chart is based on an equation (given in the Guide to Design Criteria for Metal Compression Members [2]) which is the buckling equation for columns in a symmetrical rectangular frame subjected to symmetrical vertical loads at the tops of the columns [3]. As shown in Fig. 1, the frame is assumed to be braced in the direction perpendicular to its plane with moments of inertia of the colums (which resist bending in its plane) $I_{c}^{\prime}=I_{c}$ and subjected to loads $P^{\prime}=P$. Note that the moments of inertia of the beams are not equal ($I_{b}^{\prime} \neq I_{b}$) and the column bases become fixed if $I_{b}^{\prime}=\infty$ hinged if $I_{b}^{\prime}=0$.

Since the AISC alignment chart is based on symmetrical frames symmetrically loaded, the question arises as to what will be the value of K if $P^{\prime} \neq P$ and $I_{c}^{\prime} \neq I_{c}$. In this paper, the basic buckling equation will be derived and a chart which gives a coefficient for modifying the K values given by the AISC chart will be presented. Since coefficients given by the chart are average values, some errors can be expected in the modified K values obtained. How-
ever, the maximum error of the modified K will be at most about 20 per cent and for most pratical cases less than 10 per cent.

Fig. 1. Symmetrical frame symmetrically loaded.

Fig. 2. Notations for the slope deflection equation.

Buckling Equation

The slope deflection method will be used in the derivation of the buckling equation. The slope deflection equation for a member $i j$ subject to an axial load P (Fig. 2) as given in standard textbooks [4,5] may be written in the following form [6, 7].

$$
\begin{equation*}
M_{i j}=\frac{2 E I}{L}\left(2 a \theta_{i}+b \theta_{j}-c R\right), \tag{1}
\end{equation*}
$$

in which $M_{i j}=$ moment at end $i\left(M_{j i}\right.$ at end j), positive clockwise,
$E \quad=$ modulus of elasticity,
$I=$ moment of inertia about an axis perpendicular to the plane of the frame,
$L=$ length of the member,
$\theta_{i}, \theta_{j}=$ slope at ends i and j respectively, positive clockwise,
$R \quad=$ slope of the chord, positive clockwise,
$=\Delta / L=$ end deflection/length of member,
$a=\frac{\phi}{4}\left(\frac{\phi}{1-\phi \cot \phi}+\cot \phi\right)$,
$b=\frac{\phi}{2}\left(\frac{\phi}{1-\phi \cot \phi}-\cot \phi\right)$,
$c \quad=2 a+b=\frac{\phi^{2}}{1-\phi \cot \phi}$
and $\quad \phi \quad=\frac{L}{2} \sqrt{\frac{P}{E I}}$.

For small values of ϕ

$$
\begin{align*}
& a=1-\frac{(2 \phi)^{2}}{30}-\frac{11(2 \phi)^{4}}{25000} \cdots \tag{4a}\\
& b=1+\frac{(2 \phi)^{2}}{60}-\frac{13(2 \phi)^{4}}{25000} \cdots, \tag{4b}
\end{align*}
$$

for $\phi=0$

$$
\begin{equation*}
a=b=1 \tag{4c}
\end{equation*}
$$

Letting K be the ratio of the effective column length to the actual unbraced length, then P at buckling becomes the critical load $P_{c r}$ given by
and

$$
\begin{align*}
P_{c r} & =\frac{\pi^{2} E I}{(K L)^{2}} \tag{5}\\
\phi & =\frac{L}{2} \sqrt{\frac{P_{c r}}{E I}}=\frac{\pi}{2 K} . \tag{6}
\end{align*}
$$

Referring to Fig. 3, let

$$
\begin{array}{ll}
P^{\prime}=\lambda P(0 \leqq \lambda \leqq 1), & I_{c}^{\prime}=\alpha I_{c}(0 \leqq \alpha \leqq 1) \\
G_{A}=\frac{I_{c} / L_{c}}{I_{b} / L_{b}}, & G_{A}^{\prime}=\frac{I_{c}^{\prime} / L_{c}}{I_{b} / L_{b}}=\alpha G_{A} \\
G_{B}=\frac{I_{c} / L_{c}}{I_{b}^{\prime} / L_{b}}, & G_{B}^{\prime}=\frac{I_{c}^{\prime} / L_{c}}{I_{b}^{\prime} \mid L_{b}}=\alpha G_{B} \tag{8c,~d}
\end{array}
$$

in which I_{c} and I_{c}^{\prime} are moments of inertia for the columns, I_{b} and I_{b}^{\prime} are the same for the beams, L_{c} and L_{b} are the lengths of the columns and beams respectively as shown in Fig. 3. With the coefficients $a_{1}, b_{1} \ldots$ etc. for the

Fig. 3. Unsymmetrical frame unsymmetrically loaded.

members as indicated in Fig. 3, the slope deflection equations for members $A A^{\prime}$ and $A B$ are

$$
\begin{align*}
& M_{A A^{\prime}}=\frac{2 E I_{b}}{L_{b}}\left(2 a_{1} \theta_{A}+b_{1} \theta_{A^{\prime}}\right), \tag{9a}\\
& M_{A B}=\frac{2 E I_{c}}{L_{c}}\left(2 a_{2} \theta_{A}+b_{2} \theta_{B}-c_{2} R\right) . \tag{9b}
\end{align*}
$$

For equilibrium at joint $A, \sum M_{A}=M_{A A^{\prime}}+M_{A B}=0$, yields

$$
\begin{equation*}
2\left(a_{1}+G_{A} a_{2}\right) \theta_{A}+G_{A} b_{2} \theta_{B}+b_{1} \theta_{A^{\prime}}-G_{A} c_{2} R=0 . \tag{10a}
\end{equation*}
$$

Similarly with $\sum M_{B}=0, \sum M_{A^{\prime}}=0$ and $\sum M_{B^{\prime}}=0$, one obtains

$$
\begin{align*}
G_{B} b_{2} \theta_{A}+2\left(a_{1}^{\prime}+G_{B} a_{2}\right) \theta_{B}+b_{1}^{\prime} \theta_{B}^{\prime}-G_{B} c_{2} R & =0, \tag{10b}\\
b_{1} \theta_{A}+2\left(a_{1}+\alpha G_{A} a_{2}^{\prime}\right) \theta_{A}^{\prime}+\alpha G_{A} b_{2}^{\prime} \theta_{B}^{\prime}-\alpha G_{A} c_{2}^{\prime} R & =0, \tag{10c}\\
b_{1}^{\prime} \theta_{B}+\alpha G_{B} b_{2}^{\prime} \theta_{A}^{\prime}+2\left(a_{1}^{\prime}+\alpha G_{B} a_{2}^{\prime}\right) \theta_{B}^{\prime}-\alpha G_{B} c_{2}^{\prime} R & =0 . \tag{10~d}
\end{align*}
$$

The shear equilibrium equation

$$
\begin{equation*}
M_{A B}+M_{B A}+M_{A^{\prime} B^{\prime}}+M_{B^{\prime} A^{\prime}}+P L_{c} R+P^{\prime} L_{c} R=0 \tag{11a}
\end{equation*}
$$

gives $\quad c_{2} \theta_{A}+c_{2} \theta_{B}+\alpha c_{2}^{\prime} \theta_{A}^{\prime}+\alpha c_{2}^{\prime} \theta_{B}^{\prime}-2\left[c_{2}+\alpha c_{2}^{\prime}-(1+\lambda) \phi^{2}\right] R=0$,
in which

$$
\begin{equation*}
\phi^{2}=\frac{L_{c}^{2} P}{4 E I_{c}} \tag{llb}
\end{equation*}
$$

Let

$$
\begin{equation*}
2\left[c_{2}+\alpha c_{2}^{\prime}-(1+\lambda) \phi^{2}\right]=d \tag{12}
\end{equation*}
$$

From Eq. (11)

$$
\begin{equation*}
R=\frac{c_{2}}{d}\left(\theta_{A}+\theta_{B}\right)+\frac{\alpha c_{2}^{\prime}}{d}\left(\theta_{A}^{\prime}+\theta_{B}^{\prime}\right) \tag{13}
\end{equation*}
$$

Since there is no axial force in the beams $A A^{\prime}$ and $B B^{\prime}$,

$$
\begin{equation*}
a_{1}=b_{1}=a_{1}^{\prime}=b_{1}^{\prime}=1 \tag{15}
\end{equation*}
$$

Substituting Eqs. (14) and (15) into Eqs. (10a-d), yields

$$
\begin{array}{rlrl}
\left(2+G_{A} W_{1}\right) \theta_{A}+ & G_{A} W_{2} \theta_{B}+\left(1-G_{A} W_{5}\right) \theta_{A}^{\prime}- & G_{A} W_{5} \theta_{B}^{\prime} & =0 \\
G_{B} W_{2} \theta_{A}+\left(2+G_{B} W_{1}\right) \theta_{B}- & G_{B} W_{5} \theta_{A}^{\prime}+\left(1-G_{B} W_{5}\right) \theta_{B}^{\prime} & =0 \\
\left(1-G_{A} W_{5}\right) \theta_{A}- & G_{A} W_{5} \theta_{B}+\left(2+G_{A} W_{3}\right) \theta_{A}^{\prime}+ & G_{A} W_{4} \theta_{B}^{\prime} & =0 \\
-G_{B} W_{5} \theta_{A}+\left(1-G_{B} W_{5}\right) \theta_{B}+ & G_{B} W_{4} \theta_{A}^{\prime}+\left(2+G_{B} W_{3}\right) \theta_{B}^{\prime} & =0 \tag{16d}
\end{array}
$$

in which $\quad W_{1}=2 a_{2}-\frac{c_{2}^{2}}{d}, \quad W_{2}=b_{2}-\frac{c_{2}^{2}}{d}$,

$$
\begin{equation*}
W_{1}=2 a_{2}-\frac{c_{2}^{2}}{d}, \quad W_{2}=b_{2}-\frac{c_{2}^{2}}{d} \tag{17a,b}
\end{equation*}
$$

$$
\begin{equation*}
W_{3}=2 \alpha a_{2}^{\prime}-\frac{\left(\alpha c_{2}^{\prime}\right)^{2}}{d}, \quad W_{4}=\alpha b_{2}^{\prime}-\frac{\left(\alpha c_{2}^{\prime}\right)^{2}}{d}, \quad W_{5}=\frac{\alpha c_{2} c_{2}^{\prime}}{d} \tag{17c-e}
\end{equation*}
$$

The buckling equation is obtained by setting the determinant of the coefficients of the unknown θ 's in Eqs. (16) equal to zero, or

$$
\left|\begin{array}{rrrr}
2+G_{A} W_{1} & G_{A} W_{2} & 1-G_{A} W_{5} & -G_{A} W_{5} \tag{18}\\
G_{B} W_{2} & 2+G_{B} W_{1} & -G_{B} W_{5} & 1-G_{B} W_{5} \\
1-G_{A} W_{5} & -G_{A} W_{5} & 2+G_{A} W_{3} & G_{A} W_{4} \\
-G_{B} W_{5} & 1-G_{B} W_{5} & G_{B} W_{4} & 2+G_{B} W_{3}
\end{array}\right|=0 .
$$

Expanding and rearranging Eq. (18), one obtains

$$
\begin{align*}
3 V_{1} & +\left(2 U_{1} V_{1}-U_{3} V_{2}-U_{5} V_{3}-U_{7} V_{4}-U_{9} V_{5}\right) G_{A} \tag{19}\\
& +\left(U_{2} V_{1}-U_{4} V_{2}-U_{6} V_{3}-U_{8} V_{4}-U_{10} V_{5}+V_{6}\right) G_{A}^{2}=0
\end{align*}
$$

in which

$$
\begin{array}{cl}
U_{1}=W_{1}+W_{3}+W_{5}, & U_{2}=W_{1} W_{3}-W_{5}^{2}, \\
U_{3}=W_{2}+2 W_{5}, & U_{4}=W_{1} W_{5}-W_{2} W_{5}, \\
U_{5}=W_{4}+2 W_{5}, & U_{6}=W_{3} W_{5}-W_{4} W_{5}, \\
U_{7}=2 W_{4}+W_{5}, & U_{8}=W_{1} W_{4}-W_{5}^{2}, \\
U_{9}=2 W_{2}+W_{5}, & U_{10}=W_{2} W_{3}-W_{5}^{2}, \\
U_{11}=W_{2} W_{4}-W_{5}^{2} . & \\
V_{1}=3+2 G_{B} U_{1}+G_{B}^{2} U_{2}, & V_{2}=G_{B} U_{5}+G_{B}^{2} U_{6}, \\
V_{3}=G_{B} U_{3}+G_{B}^{2} U_{4}, & V_{4}=G_{B} U_{7}+G_{B}^{2} U_{8}, \tag{21a-f}\\
V_{5}=G_{B} U_{9}+G_{B}^{2} U_{10}, & V_{6}=G_{B}^{2} U_{11}^{2} .
\end{array}
$$

In Eqs. (20), the W 's are obtained from Eqs. (17a-e) with a_{2}, b_{2}, etc. obtained from Eqs. (2a-c) and (4a, b), using

$$
\begin{equation*}
\phi=\frac{L_{c}}{2} \sqrt{\frac{P}{E I}}=\frac{\pi}{2 K} \tag{22a}
\end{equation*}
$$

for a_{2}, b_{2} and c_{2}, and

$$
\begin{equation*}
\phi=\phi^{\prime}=\frac{L_{c}}{2} \sqrt{\frac{P^{\prime}}{E I_{c}^{\prime}}}=\frac{\pi}{2 K} \sqrt{\frac{\lambda}{\alpha}} \tag{22~b}
\end{equation*}
$$

for $a_{2}^{\prime}, b_{2}^{\prime}$ and c_{2}^{\prime}.

Special Cases

The following special cases may be obtained from the general buckling Eq. (18) or (19)
a) If $G_{A}=0,\left(I_{b}=\infty\right)$, then in Eq. (19), $V_{1}=0$ or

$$
\begin{equation*}
3+2 G_{B} U_{1}+G_{B}^{2} U_{2}=0 \tag{23}
\end{equation*}
$$

b) If $G_{A}=\infty,\left(I_{b}=0\right)$, then in Eq. (19), the coefficient of $G_{A}^{2}=0$, hence

$$
\begin{align*}
& \quad U_{2} V_{1}-U_{4} V_{2}-U_{6} V_{3}-U_{8} V_{4}-U_{10} V_{5}+V_{6}=0 \tag{24a}\\
& G_{B}^{2}\left(U_{2}^{2}-2 U_{4} U_{6}-U_{8}^{2}-U_{10}^{2}-U_{11}^{2}\right) \\
& +G_{B}\left(2 U_{1} U_{2}-U_{4} U_{5}-U_{3} U_{6}-U_{7} U_{8}-U_{9} U_{10}\right)+3 U_{2}=0 . \tag{24b}
\end{align*}
$$

c) If $P=P^{\prime}$ and $I_{c}=I_{c}^{\prime}$ then $\lambda=1, \alpha=1, W_{1}=W_{3}$ and $W_{2}=W_{4}$. Consider the case $\theta_{A}=\theta_{A}^{\prime}$ and $\theta_{B}=\theta_{B}^{\prime}$.
Let

$$
\begin{equation*}
W_{1}=W_{1}^{\prime}, \quad W_{2}=W_{2}^{\prime}, \quad W_{5}=W_{5}^{\prime} \tag{25a-c}
\end{equation*}
$$

for this particular case. Eq. (18) becomes

$$
\begin{gather*}
\left|\begin{array}{rr}
3+G_{A}\left(W_{1}^{\prime}-W_{5}^{\prime}\right) & G_{A}\left(W_{2}^{\prime}-W_{5}^{\prime}\right) \\
G_{B}\left(W_{2}^{\prime}-W_{5}^{\prime}\right) & 3+G_{B}\left(W_{1}^{\prime}-W_{5}^{\prime}\right)
\end{array}\right|=0 \tag{26a}\\
9+3\left(G_{A}+G_{B}\right)\left(W_{1}^{\prime}-W_{5}^{\prime}\right)+G_{A} G_{B}\left[\left(W_{1}^{\prime}-W_{5}^{\prime}\right)^{2}-\left(W_{2}^{\prime}-W_{5}^{\prime}\right)^{2}\right]=0 . \tag{26~b}
\end{gather*}
$$

or

Note that $\quad W_{1}^{\prime}-W_{5}^{\prime}=2\left(a_{2}-\frac{c_{2}^{2}}{d}\right)=\frac{\phi}{2}(\cot \phi-\tan \phi)=\phi \cot 2 \phi$,

$$
\begin{equation*}
W_{2}^{\prime}-W_{5}^{\prime}=b_{2}-2 \frac{c_{2}^{2}}{d}=-\frac{\phi}{2}(\cot \phi+\tan \phi), \tag{27a}
\end{equation*}
$$

in which

$$
\begin{equation*}
d=4\left(c_{2}-\phi^{2}\right)=\frac{4 \phi^{3} \cot \phi}{1-\phi \cot \phi} \tag{27b}
\end{equation*}
$$

With $\phi=\frac{\pi}{2 K}$, Eq. (28) is identical to the equation given in Guide to Design Criteria for Metal Compression Members [2].
d) If $I_{c}^{\prime}=0 \quad(\alpha=0)$ and $P^{\prime} \neq 0 \quad(\lambda \neq 0)$, then $\phi^{\prime}=\infty$ and W_{3}, W_{4} and W_{5} become indefinite. There will be no solution for Eq. (18). The structure will buckle since there is a load on a column of zero flexural rigidity.

However, if $I_{c}^{\prime}=0$ and $P^{\prime}=0$, then $\alpha=0$ and $W_{3}=W_{4}=W_{5}=0$.
Let

$$
\begin{equation*}
W_{1}=W_{1}^{\prime \prime}, \quad W_{2}=W_{2}^{\prime \prime} \tag{29a,b}
\end{equation*}
$$

for this particular case. Eq. (18) becomes

$$
\left|\begin{array}{rrrr}
2+G_{A} W_{1}^{\prime \prime} & G_{A} W_{2}^{\prime \prime} & 1 & 0 \tag{30a}\\
G_{B} W_{2}^{\prime \prime} & 2+G_{B} W_{1}^{\prime \prime} & 0 & 1 \\
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2
\end{array}\right|=0
$$

or

$$
\begin{equation*}
9+6\left(G_{A}+G_{B}\right) W_{1}^{\prime \prime}+4 G_{A} G_{B}\left[\left(W_{1}^{\prime \prime}\right)^{2}-\left(W_{2}^{\prime \prime}\right)^{2}\right]=0 \tag{30~b}
\end{equation*}
$$

with

$$
\begin{equation*}
W_{1}^{\prime \prime}=2 a_{2}-\frac{c_{2}^{2}}{d}=W_{1}^{\prime}-W_{5}^{\prime}, \tag{31a}
\end{equation*}
$$

$$
\begin{equation*}
W_{2}^{\prime \prime}=b_{2}-\frac{c_{2}^{2}}{d}=W_{2}^{\prime}-W_{5}^{\prime} \tag{31b}
\end{equation*}
$$

and

$$
\begin{equation*}
d=2\left(c_{2}-\phi^{2}\right)=\frac{2 \phi^{3} \cot \phi}{1-\phi \cot \phi} . \tag{31c}
\end{equation*}
$$

The case of $I_{c}^{\prime}=0$ and $P^{\prime}=0$ is equivalent to the case with the member $A^{\prime} B^{\prime}$ omitted and the ends A^{\prime} of $A A^{\prime}$ and B^{\prime} of $B B^{\prime}$ supported on rollers (see Fig. 4a). It can be seen that Eq. (30b) is the same as Eq. (26b) for the symmetrical frame symmetrically loaded if $2 G_{A}$ and $2 G_{B}$ are used instead of G_{A} and G_{B}. The same result is obtained if $2 L_{b}$ is used instead of L_{b}. This is because in the present case the points of inflection of the beams are at the ends A^{\prime} and B^{\prime}, whereas in the symmetrical case, the inflection points are located at the midspan of the beams (see Fig. 4b).

Fig. 4. Comparison of the deflection pattern of the case $P^{\prime}=0$ and $I_{c}^{\prime}=0$ with the symmetrical case.
e) For the case of $P=P^{\prime}$ and $I=I_{c}^{\prime} \quad\left(\lambda=1, \alpha=1, W_{1}=W_{3}\right.$ and $\left.W_{2}=W_{5}\right)$ without the restriction of $\theta_{A}=\theta_{A}$ and $\theta_{B}=\theta_{B}$, it can be shown that Eq. (18) may be reduced to

$$
\begin{align*}
& \left\{1-\left(G_{A}+G_{B}\right)\left(W_{1}+W_{5}\right)+G_{A} G_{B}\left[\left(W_{1}+W_{5}\right)^{2}-\left(W_{2}-W_{5}\right)^{2}\right]\right\} \\
& \cdot\left\{9+3\left(G_{A}+G_{B}\right)\left(W_{1}-W_{5}\right)+G_{A} G_{B}\left[\left(W_{1}-W_{5}\right)^{2}-\left(W_{2}-W_{5}\right)^{2}\right]\right\}=0 . \tag{32}
\end{align*}
$$

Setting the terms in the second pair of braces equal to zero results an equation which is identical to Eq. (26 b) for antisymmetrical buckling. Setting the terms in the first pair of braces equal to zero would result an equation for symmetrical buckling. Since K values for symmetrical buckling is always less than 1 while that of the antisymmetrical buckling always greater than 1 (equal to 1 if $I_{b}=I_{b}^{\prime}=\infty$). The buckling load will be governed by the antisymmetrical case instead of symmetrical case.

Solution of the Buckling Equation and Presentation of Results

Eq. (19) may be solved very simply in the following manner. If the values of α, λ, and G_{B} are given, values of G_{A} may be determined for any assumed values of K. Since the equation for G_{A} is quadratic, negative and complex solutions must be discarded. Also some false or physically meaningless roots must be rejected.

It is noted that Eq. (18) is symmetrical with respect to G_{A} and G_{B}. Hence G_{A} and G_{B} are interchangeable. Thus Eq. (23) may be regarded as an equation for G_{A} when $G_{B}=0$ and Eq. (24) as an equation for G_{A} when $G_{B}=\infty$.

Various methods of presenting the results were tried. It was found that for a given pair of α and λ values, the β values defined by the following equation remain approximately constant for various values of G_{A} and G_{B}.

$$
\begin{equation*}
\beta=\frac{K}{K_{0}}, \tag{33}
\end{equation*}
$$

in which K is the ratio of effective length to actual unbraced length for a given pair of α and λ values corresponding to a pair of specifies G_{A} and G_{B} values
(referring to the stronger column) and K_{0} is the value of K for $\lambda=\alpha=1$ (symmetrical case) with the same values of G_{A} and G_{B}.

The ratio β is determined in the following manner. For given values of α, λ and G_{B}, using Eq. (19), G_{A} is obtained for some assumed value of K. Using the same G_{A} and G_{B}, K_{0} is determined from Eq. (28) by Newton's method for solving transcendental equations. Then β is determined from Eq. (33). All computations were carried out on an IBM 360 computer.

For a given pair of α and λ values, an average value of β is determined for various values of G_{A} and G_{B}. A set of curves of the average β versus α for various values of λ is plotted in Fig. 5. This figure is to be used in conjunction with Fig. 6 which is reproduced from the AISC Manual [1]. With known values

Fig. 5. Curves of average β versus α for various values of λ.

Fig. 6. Chart for the determination of \boldsymbol{K}_{0}. (After AISC Manual of Steel Construction.)
of λ, α, G_{A} and G_{B}, the value of K will be given by βK_{0} with β determined from Fig. 5 for a given α and λ and K_{0} from Fig. 6 for given values of G_{A} and G_{B}.

Since average values of β are used in the plotting, some errors can be expected. It was found that the error increases as α of λ decreases (i.e., as the frame or loading becomes more unsymmetrical). For very small value of α, the error may reach 20 per cent. However, the maximum error is 11.3% for $\alpha=0.3,8.9 \%$ for $\alpha=0.5,4.5 \%$ for $\alpha=0.75$ and 1.1% for $\alpha=1.0$. For most practical cases, the error will be less than 10 per cent since α is seldom less than 0.5.

It should be noted that the estimated errors are maximum values. For the
ordinary ranges of G_{A} and G_{B}, β will be near the average and the error will be much smaller. In case precise K values are needed, Eq. (19) may be solved by the method of linear interpolation (false position) using as first approximate values of $(1 \pm e) K$ in which e is a small fraction representing an estimated error and K is determined from Figs. 5 and 6.

Numerical Examples

Various problems may be solved by using the charts presented herein intelligently. For readers not familiar with the use of the AISC Chart, examples will be shown for both the case of $\beta=1$ (for $\lambda=1$ and $\alpha=1$) and the case of $\beta \neq 1$.

Example 1. A ten story frame is shown in Fig. 7 (a). The moments of inertia of the columns and beams are as shown in the figure. It may be noted that the ratio of G_{A} and G_{B} at all joints are equal.

$$
\begin{aligned}
& \left(G_{A}\right) \text { at } A=\frac{\left(I_{c} / 2\right) / L_{c}}{\left(I_{b} / 2\right) / L_{b}}=\frac{I_{c} / L_{c}}{I_{b} / L_{b}} \\
& \left(G_{B}\right) \text { at } B=\frac{\left[\left(I_{c} / 2\right)+\left(I_{c} / 2\right)\right] / L_{c}}{I_{b} / L_{b}}=\frac{I_{c} / L_{c}}{I_{b} / L_{b}}, \\
& \left(G_{A}\right) \text { at } C=\frac{I_{c} / L_{c}}{\left[\left(I_{b} / 2\right)+\left(I_{b} / 2\right)\right] / L_{b}}=\frac{I_{c} / L_{c}}{I_{b} / L_{b}}, \\
& \left(G_{B}\right) \text { at } D=\frac{\left(I_{c}+I_{c}\right) / L_{c}}{\left(I_{b}+I_{b}\right) / L_{b}}=\frac{I_{c} L_{c}}{I_{b} / L_{b}}
\end{aligned}
$$

Fig. 7. (a) Frame solved in example 1. (b) A unit of the frame shown in (a). (c) Frame solved in Bleich's book.

The problem may be treated as a superposition of the basic frame as shown in Fig. 7 (b). Noting that $\beta=1$ and $K=K_{0}$, from Fig. 6, connecting a straight line between the given values on the G_{A} and G_{B} scale and finding the intercepts on the K_{0} scale, one can easily determine the values as shown in Table 1.

Table 1. K values for the ten story frame shown in Fig. 7

$G_{A}=G_{B}=$	1	2	3	4
$K=K_{0}$	1.31	1.59	1.83	2.05

The values in Table 1 check very well with the curve given in Bleich's book [4] for the solution of the frame as shown in Fig. 7(c). The frames shown in Fig. 7 (a) and Fig. 7 (c) differ only in the degree of fixity of the bases of the bottom story columns. However for tall buildings the effect of base fixity of the columns in the bottom story will be negligible.

Example 2. The problem as shown in Fig. 8 (a) was solved by Johnson [8].

$$
\begin{aligned}
& \left(G_{A}\right)_{A D, C F}=\frac{I / L}{2 I /\left(\frac{2}{3} L\right)}=\left(G_{A}\right)_{B E}=\frac{2 I / L}{2 \cdot 2 I /\left(\frac{2}{3} L\right)}=\frac{1}{3}=0.33 \\
& \left(G_{B}\right)_{A D, C F}=\frac{(I+2 I) / L}{2 I /\left(\frac{2}{3} L\right)}=\left(G_{B}\right)_{B E}=\frac{(2 I+4 I) / L}{2 \cdot 2 I /\left(\frac{2}{3} L\right)}=\frac{3}{3}=1, \\
& \left(G_{A}\right)_{D G, E H \cdot F I}=\left(G_{B}\right)_{A D, C F, B E}=1, \\
& \left(G_{B}\right)_{D G, E H, F I}=0 .
\end{aligned}
$$

From Fig. 6, $K=K_{0}=1.21$ for columns $A D, C F$ and $B E$ and $K=K_{0}=1.15$ for columns $D G, E H, F I$. The given solution is $P=7.10 \frac{E I}{L^{2}}=\frac{\pi^{2} E I}{(K L)^{2}}$ with $K=1.18$ which is exactly equal to the average of 1.21 and 1.15 . The frame may be treated as a superposition of two frames shown in Fig. 8 (b). It may be pointed out that the results are good primary because the column stiffness is proportional to the loading.

Fig. 8. Frame solved in example 2.

Fig. 9. Frame solved in example 3.

Example 3. The previous example shows that very good results can be obtained by using the AISC Chart for well proportioned rectangular frames.

This example will show the amount of error involved in applying to some other cases. Fig. 9 shows a frame which has been solved in reference 9. The given values of $E I / L^{2}$ is 100^{T} and the solutions are $P_{1}=400^{T}$ and $\left(P_{1}+P_{2}\right)=$ 807^{T} corresponding to $K=K_{0}=\pi / \sqrt{4.0}=1.56$ and $\pi / \sqrt{8.07}=1.10$ respectively. From Fig. 6, the K value for the top column is 1.24 for $G_{A}=\frac{1}{2}$ and $G_{B}=1$ and that for the bottom column is 1.15 for $G_{A}=1$ and $G_{B}=0$. Consider the fact that column stiffness is not proportional to loading, the errors involved are reasonable.

Example 4. The four cases shown in Fig. 10 were solved by Zweig [10]. A comparison of the results will be of interest. For cases I and III, $G_{A}=G_{B}=0$

Fig. 10. Frames solved in example 4.
and $K_{0}=1$. For cases II and IV, $G_{A}=0, G_{B}=\infty$ and $K_{0}=2$. The values of β for various values of λ and α from Fig. 5 are listed in Tables 2 and 3.

Table 2. β values for cases I and II

$\lambda=\bar{r}^{2}$	0.16	0.49	0.81	1.0
β	0.76	0.86	0.95	1.0
β (Zweig)	0.765	0.864	0.951	1.0

Table 3. β values for cases III and IV

$\alpha=r^{2}$	0.16	0.49	0.81	1.0
β	1.27	1.08	1.02	1.0
$\beta^{\prime}=r \beta$	0.508	0.756	0.918	1.0
β^{\prime} (Zweig)	0.532	0.812	0.946	1.0
Error	7%	7%	3%	0%

It should be noted that the notations λ and α are respectively corresponding to \bar{r}^{2} and r^{2} given in reference [10] and the β values can easily be derived from the K values given therein. Also for cases III and IV, the critical load in reference [10] is related to the weaker column, thus

$$
P=\frac{\alpha \pi^{2} E I}{\left(\beta^{\prime} K_{0} L\right)^{2}}=\frac{r^{2} \pi^{2} E I}{\left(\beta^{\prime} K_{0} L\right)^{2}}=\frac{\pi^{2} E I}{\left(\beta K_{0} L\right)^{2}} . \quad \text { Hence } \beta^{\prime}=r \beta .
$$

It can be seen that for cases I and II, the β values checks very well and for cases III and IV, the errors are within the maximum values stated previously.

Example 5. This example shown in Fig. 11 (a) was also solved by Zweig [10]. It would put a severe test of the versatility of the proposed method. This frame may be treated as a superposition of the frames shown in Fig. 11 (b) and the equivalent frame is as shown in Fig. 11 (c). The conditions of the column bases, however, are dissimilar and can not be replaced by a single

Fig. 11. (a) Frame solved in example 5. (b) Superposition of frames. (c) An equivalent frame. (d) Final equivalent frame.
beam. Nevertheless since column $C^{\prime} D^{\prime}$ has $G_{A}=0, G_{B}=\infty$ and $K_{0}=2$ (from Fig. 6), it may be replaced by a column of $C^{\prime \prime} D^{\prime \prime}$ with $G_{A}=G_{B}=0$ and $K_{0}=1$ if $I_{C^{\prime \prime} D^{\prime \prime}}=\frac{I_{C^{\prime \prime} D^{\prime}}}{K_{C^{\prime} D^{\prime}}^{2}}=\frac{350}{4}=87.5 \mathrm{in}^{4}$ as shown in Fig. $11(\mathrm{~d})$. Noting that $\lambda=$ $400 / 650=0.615, \alpha=87.5 / 1079=0.081$, and $G_{A}=G_{B}=0$, one obtains $\beta=1.24$ and $K_{0}=1$ from Figs. 5 and 6 and $K=\beta K_{0}=1.24$. The answer given in reference [10] is $3.14 / 2.46=1.28$. The error is only 3% although the α value is very small in this case.

Discussion of Results and Conclusions

The following conclusions may be reached particularly with reference to Fig. 5.

1. Note that for $\lambda=1$, on the average, $\beta=1.08$ for $\alpha=0.5$ and $\beta=1.15$ for $\alpha=0.3$. This means that for equal loads, if the stiffness of the column on one side is only 50 per cent of the stiffness of the column on the other side, the K value is only slightly higher than the K_{0} value for the symmetrical case.
2. For equal loads $(\lambda=1), K$ will be significantly higher than K_{0} only when α is small (say $\alpha<0.3$).
3. With the exception of $\lambda=0$, if the loads and stiffness are in the same proportion $(\lambda=\alpha)$, the average β will lie between 0.9 and 1.0.
4. With the exception of $\lambda=0, \beta$ will be greater than 1.0 only when $\lambda>\alpha$.
5. When there is no load on the weaker column $(\lambda=0), \beta$ will have values lying between 0.8 and 0.7 for $0.3 \leqq \alpha \leqq 1.0$ with a smaller β corresponding to a larger α.
6. As bointed out previously, there will be no solution for the case $\alpha=0$ and $\lambda \neq 0$. However, for $\alpha=0$ and $\lambda=0$ roller supports are assumed for the beams, with the weaker column omitted. The K value may be obtained from the AISC alignment chart using $2 L_{b}$ instead of L_{b} in computing the values of G_{A} and G_{B}.
7. As pointed out previously, the maximum error in using Fig. 5 would be less than 9 per cent for $\alpha=0.5$. It may reach 20 per cent for small values of α.
8. By intelligently using the concept of considering G_{A} (similarly G_{B}) as the ratio of $\sum I_{c} / L_{c}$ and $\sum I_{b} / L_{b}$ instead of the ratio of I_{c} / L_{c} and I_{b} / L_{b}, the rectangular frame studied may be considered to represent any story of a multistory, multibay frame as shown in the numerical examples.

Notation

a	see Eq. (2a)
$a_{1}, a_{1}^{\prime}, a_{2}, a_{2}^{\prime}$	values of a for members as shown in Fig. 3
b	see Eq. (2b)
$b_{1}, b_{1}^{\prime}, b_{2}, b_{2}^{\prime}$	values of b for members as shown in Fig. 3
c	see Eq. (2c)
$c_{1}, c_{1}^{\prime}, c_{2}, c_{2}^{\prime}$	values of c for members as shown in Fig. 3
d	see Eq. (13)
e	a small fraction representing an estimated error
E	modulus of elasticity
$G_{A}, G_{A}^{\prime}, G_{B}, G_{B}^{\prime}$ see Eq. (8a-d)	
I	moment of inertia about an axis perpendicular to the plane of the frame
I_{b}, I_{b}^{\prime}	moment of inertia of top and bottom beams respectively
I_{c}, I_{c}^{\prime}	moments of inertia of columns as shown in Fig. 3
K	ratio of effective column length to actual unbraced length
K_{0}	K for the symmetrical case $\lambda=\alpha=1$
L	length of a member
L_{b}, L_{c}	lengths of beam and column respectively
$M_{i j}$	moment at end i of the member $i j$
P, P^{\prime}	column axial loads ($P^{\prime} \leqq P$)
$R=\Delta / L$	chord slope of a member
U_{1} to U_{11}	see Eqs. ${ }^{\text {(20a-k) }}$
V_{1} to V_{6}	see Eqs. (21a-f)
W_{1} to W_{5}	see Eqs. (17a-e)

$W_{1}^{\prime}, W_{2}^{\prime}, W_{5}^{\prime} \quad W^{\prime} s$ for the symmetrical case $\lambda=\alpha=1$
$W_{1}^{\prime \prime}, W_{2}^{\prime \prime} \quad W^{\prime \prime} s$ for the case $\lambda=\alpha=0$
$\alpha=\quad I_{c}^{\prime} / I_{c}(0 \leqq \alpha \leqq 1)$
$\beta=\quad K / K_{0}$ using the same G_{A} and G_{B} for K and K_{0}
$\Delta=\quad$ deflection of one end of a member with respect to the other end
$\theta_{i}=\quad$ slope of a member at end $i=$ rotation at joint i
$\lambda=\quad P^{\prime} \mid P(0 \leqq \lambda \leqq 1)$
$\phi=\quad \frac{L_{c}}{2} \sqrt{\frac{P}{E I_{c}}}$
$\phi^{\prime}=\quad \frac{L_{c}}{2} \sqrt{\frac{P^{\prime}}{E I_{c}^{\prime}}}$

References

1. Commentary on the AISC Specification, Manual of Steel Construction, Sixth Edition, American Institute of Steel Construction.
2. Guide to Design Criteria for Metal Compression Members, Column Research Council. 2nd Ed. 1966, John Wiley \& Sons., N. Y.
3. Galambos, T. V.: Influence of Partial Base Fixity on Frame Stability. Journal of the Structural Division, Am. Soc. of Civil Engrs. May, 1960, p. 85-108.
4. Bleich, F.: Buckling Strength of Metal Structures. Mc Graw Hill Book Co., N. Y. 1952.
5. Timoshenko, S. and Gere, J. M. : Theory of Elastic Stability. Mc Graw Hill Book Co., N. Y. 1961.
6. Winter, G., Hsu, P. T., Koo, B. and Loh, M. H.: Buckling of Trusses and Rigid Frames. Cornell University Eng. Exp. Sta. Bulletin No. 36, 1948.
7. Chu, K. H.: Secondary Moments, End Rotations, Inflection Points and Elastic Buckling Loads of Truss Members. Publications, International Association for Bridge and Structural Engineering V. 19, 1959, p. 17-46.
8. Johnson, D. E.: Lateral Stability of Frames by Energy Method. Trans. Am. Soc. of Civil Engrs. 1961 VI, p. 176.
9. Blaszkowiak, S. and Kaczkowski, Z.: Iterative Methods in Structural Analysis. Pergamon Press, London 1966.
10. Zweig, A. : Buckling Analysis of One-Story Frames. Journal of the Structural Division, Am. Soc. of Civil Engrs., Sept. 1968, p. 2107.

Summary

In this paper, the basic buckling equation is derived for an unsymmetrically loaded unsymmetrical rectangular frame which may be considered as representing a portion of a multistory multibay frame. The ratio, K, of the effective column length to the actual unbraced length may be considered as equal to value of $K_{\mathbf{0}}$ obtained by the alignment chart given in the AISC Manual of Steel Construction multiplied by a coefficient β. A chart which gives average values of β is presented. For most practical cases, the maximum error of the
K values obtained from this chart in conjunction with the AISC chart will be less than 10 per cent. Numerical examples are given for illustrating the use of the charts presented.

Résumé

Dans cet article, les auteurs étendent l'equation générale du flambement au cas d'un cadre rectangulaire asymétrique et changé asymétriquement que l'on peut considérer comme une portion d'un cadre à plusieurs étages et à plusieurs ouvertures. Le rapport K (longueur de flambement sur longueur théorique) peut être considéré comme égal à la valeur de K_{0}, obtenue par les diagrammes du manuel de l'AISC pour la construction métallique, multipliée par un coefficient β. On donne un diagramme indiquant des valeurs moyennes de β. Dans la plupart des cas, l'erreur maximum des valeurs K obtenues à l'aide de ce diagramme et de celui de l'AISC est en dessous de 10%. Pour montrer l'utilisation des diagrammes, on a apporté des exemples numériques.

Zusammenfassung

In diesem Beitrag wird die Grundknickgleichung für einen unsymmetrisch belasteten, unsymmetrisch gebauten und rechteckigen Rahmen hergeleitet, der als Ausschnitt eines vielstöckigen und mit vielen Öffnungen versehenen Rahmens aufgefaßt werden kann. Das Verhältnis K der Knicklänge zur geometrischen Länge kann gleich dem Wert K_{0}, den man aus dem Schaubild des AISC-Handbuchs für Stahlkonstruktionen herausliest, multipliziert mit einem Beiwert β gesetzt werden. Ein Diagramm für durchschnittliche Werte von β ist abgebildet. Für die meisten praktischen Fälle liegt der maximale Fehler des Wertes K, den man aus dem Schaubild für β und K^{0} der AISC erhält, unterhalb zehn Prozent. Numerische Beispiele sind beigefügt worden, um die Anwendung der Schaubilder zu zeigen.

Leere Seite Blank page Page vide

