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Yield Line Analysis of Punching Failures in Slabs

Analyse des lignes de repartition des fissures decoupantes dans des plaques de beton

Bruchlinienberechnung für Durchstanzen von Decken

HANS GESUND Y. P. KAUSHIK
Dr. Eng., Professor of Structural Engineer- Structural Engineer, M. W. Kellogg Co.,

ing, University of Kentucky Dallas, Texas

Introduction

The subject of concentrated loads acting on reinforced concrete slabs has
interested many investigators in the past. This was partly due to the fact that
it is of interest in itself, but largely also because it can, in some ways, be
equated with the very common problems of the slab supported on columns or
with columns supported on spread footings. In this research, the major interest
was usually directed toward the so-called punching shear strength or toward
the diagonal tensile strength of the slab. Many experiments were conducted
and many empirical and semi-empirical formulas were devised in an attempt to
relate apparent shearing stresses in the slab, caused by concentrated loads,
to the strength of the concrete.

Other, and particularly more recent, investigators, have recognized that
the flexural strength of the slab may have a strong influence on the punching
resistance. For instance, as early as 1943, Johansen [1], in his original book
on yield line theory, analyzed some early slab tests by Bach and Graf [2] in
which several concentrated loads, arranged in a small circle, were applied to
slabs supported along their boundaries. Johansen mentioned that at the time
of test, failure was attributed to punching shear. However, he analyzed the
slabs and loading according to yield line theory and stated that the punching
shear was actually a secondary phenomenon, "... since the primary cause -
yielding of the reinforcement - had already largely taken effect at lower load
stages and produced wide cracks". His calculations correlated well with the
experimental results. Another attempt to link punching shear and flexural
strength was made by Hognestad [3] in 1953, when he re-analyzed Richart's
[4] footing tests. Hognestad did this by including a term in his empirical shear
equations, which he called Pflex and defined as "the ultimate flexural capacity
the slab would have had if it had not failed in shear". Pflex was taken as being
"governed by the füll static moment at the edge of the column", i.e. by the
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relation between the yield moment of the footing along a line crossing the
entire footing and lying along one face of the column, and the moment applied
along this line by the pressure acting on the bottom of the footing.

Similar empirical shear equations were later used by Elstner and Hogne-
stad [5] to analyze their slab tests and also some tests conducted by Graf [6].
However, in these calculations, Pflex was calculated by yield line theory using
simplified yield line patterns based on the crack patterns observed in the
specimens. Whitney [7] carried the relationship between punching shear and
the flexural strength of slabs a step further. Re-analyzing Richart's footing
tests, as well as the slab tests conducted by Elstner and Hognestad, he
devised a very simple empirical formula, in which the shear strength was
directly related to the "... ultimate resisting moment per inch width of slab
within the base of the pyramid of rupture".

Moe [8], in analyzing his own and others' tests, devised a new set of empirical
formulas in which the punching shear strength of slabs and footings was partially
related to a shear Vflex which was obtained from the Pflex ofElstner and Hognestad.

Moe's formulas, or variations thereof, were also used by Tasker and
Wyatt [9], Hognestad, Elstner and Hanson [10], Mowrer and Vander-
bilt [11], and Hanson and Hanson [12], in analyzing their own and others'
test results. Other investigators [13-16], while not using Moe's formulas, also

recognized that some relation exists between the bending strength of the slab

or the amount of reinforcement, and the punching shear resistance. Some

[14, 15, 17] equations have also been devised to relate the combination of bending

and shearing stresses in the concrete to the punching failure.
The results of some earlier tests [18] of small slab modeis, carried out under

the supervision of the senior author. indicated that yield line theory might
give good correlation with the punching resistance of uniformly loaded slabs

supported on columns. Also, examination of the crack patterns of a large
number of specimens pictured in the literature indicates that in many cases
the reinforcement must have yielded in tension either prior to, or simultaneously

with, the failure. Further, it is apparent from Moe's calculations, that in
the case of several of his and others' specimens VflexIVtest is close to unity,
which means that for those cases a considerably simplified yield line approach
predicted the failure strength of punching specimens. It is therefore the purpose
of this paper to examine some of the punching tests reported in the literature
from the standpoint of yield line theory in order to determine what patterns
and equations may be applicable, and the ränge of their validity.

Development of Equations

Yield line theory is an upper bound theory. It is therefore always necessary
to look for the lowest possible yield line load, consistent with geometrical and
physical constraints, which the structure can resist. If several different yield
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line patterns are admissible by these constraints, the one providing the lowest
load resistance will be the critical one. Yield line theory only predicts a stage of
slab behavior characterized by yielding of the reinforcement, formation of
extensive cracks, and appreciable deflections. It may or may not predict the
collapse load, depending on the membrane or other non-flexural action of the
slab. However, this method of analysis is useful even when it underestimates the
collapse load, since it then serves to predict the limit of ordinary structural
usefulness, and gives warning of impending structural distress.

Several different yield line patterns which model many of the punching test
specimens and results available in the literature will now be analyzed:

Case I: A square slab, with length of side a, is supported along its perimeter
in such a way that the corners cannot lift. The reinforcement is isotropic (a

square grid will essentially satisfy this requirement) and the positive yield
moment is mx while the negative yield moment is m2. A vertical load P,
distributed over a small circle of radius r, is applied at the center of the slab.
See fig. 1 a. It has been shown [1] that a fan shaped yield line pattern will form.
Fig. lb represents one of the pie shaped segments and shows the moments
acting on it.

h °- H

-loaded area

loaded area
(a)

-nTJ* E

(b

Fig. 1. Yield line pattern for case 1 - (Slab does not crack beneath load).

Applying the principle of Virtual work and equating the energy input ofa unit
downward displacement of the load to the energy simultaneously absorbed in
the yield line hinges, one obtains

Bd<f>2tt
Hmi+^ R-r P, (1)

where R is the radius of the fan, and remains to be determined. d (f> is defined in
fig. 1. Solving, one finds that

P -K + m2). (2)
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From this, it is obvious that P will be smallest for the largest physically
possible radius of the fan. Therefore one would expect the fan to spread to the
boundaries of the slab, so that R \a. This derivation was based on the
assumption that the slab would not crack beneath the load. If this assumption
is not correct, i.e. if the radial yield lines continue under the load (see fig. 2), it
can be shown that

P ^(% + mJ. (3)

1~jR

loaded area

W

loaded area

Fig. 2. Yield line pattern for case I —

(Slab does crack beneath load).
Fig. 3. Yield line pattern for case II.

Case IL: A circular slab of radius R is simply supported along its entire
perimeter. The reinforcement is isotropic and the positive yield moment is kmx
for the central portion of the slab with radius Rx, while for the rest of the slab

it is m1. There is no negative moment reinforcement. A load P, distributed
over a small circle of radius r, is applied at the center of the slab. It is assumed
that the slab will be able to crack beneath the load. See fig. 3. Applying the
principle of Virtual work as before,

2

I m1(R-R1 + kR1)dcl)
R

r^P r2dcf>
~ J Trr2 2

d(f> R — \r
R

This gives P 2irm1
YZ
3 R

1
i+>. i)

If, on the other hand, the slab does not crack beneath the load, then

2 7rmxP
1 r 1+>" i)

w

(5)

(6)

Case III: A square slab, with length of side a, is simply supported along the
perimeter with the corners free to lift. Reinforcement is basically isotropic, but
additional reinforcement is provided as shown in fig. 4 so that two bands, of
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i
loaded area

Fig. 4. Yield line pattern for case III.

approximately the width of the loaded area, are created which contain additional
reinforcement in the direction indicated. Loading is through a square column
stub of side length a' at the center, and it is assumed that the concrete under
the column does not crack. The magnitudes of the positive yield moments are

m1 in the major portions of the slab and km1 in the bands, perpendicular to the
direction of the steel. A simplified yield line pattern is employed for the
analysis, see figure 4, for which it can easily be determined that

Sm1l 1 + k-
a — a

Case IV: A square slab, with length of side a, is supported along the
perimeter, with the corners held down. Reinforcement is isotropic with positive

h» H
m

'Q 3
loaded area

MQ

Fig. 5. Yield line pattern for case IV.
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yield moment m± and negative yield moment m2. Loading is through an
elongated column stub of width 2 r and length a' + 2 r. See fig. 5 for the shape of
the loaded area and the assumed yield line pattern. The total load is P, and it is
assumed that the slab will crack beneath the loaded area. For simplicity, and
since it provides the lowest value of P, it will also be assumed in the derivation
of the load equation that the entire load deflects the same distance. The Virtual
work equation then becomes (note that R is different for each wedge shaped
segment):

P (m1 + m2)
r i 27r n

Solving, (277 + 4^)(mi + m2)-

(8)

(9)

Case V: A square slab is supprted on two opposite edges only. Reinforcement
is isotropic with positive and negative yield moments mx and m2 respectively.
Loading is through a square column stub at the center. See fig. 6. It can easily
be determined that

4(m1 + m2)P

a

(10)

supported edge

tu

supported edge

loaded area

Fig. 6. Yield line pattern for case V.

Case VI: A square or circular slab of area Aslab is supported on a circular
column, of radius r, located at its center. It is loaded with a uniformly distributed

load w per unit area. This loading produces an axial force P in the column.
The reinforcement is isotropic and the positive and negative yield moments
are mx Sind m2 respectively. It is assumed that the slab will not crack above the
column, but that a yield fan will form as shown in fig. 7, which will permit the
entire slab outside the fan to drop the same distance when failure occurs. Let
the average shear per unit length on the perimeter of the fan be q. Then from
statics,
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R2w
2ttR (11)

Dropping the rim of the fan and the entire slab outside it a unit distance, one
obtains the Virtual work equation by summing the effects on the individual
segments of the fan:

[qRd<j> + w[±rd<]>(R-r) + ±(R-r)(R-r)d<}>%] [^~-(mx + m2). (12)

supported area

(a)

&>z

rsr*

(b)

Fig. 7. Yield line pattern for case VI.

Substituting the value of q from equation (11) into equation (12), writing P
wAslab and solving for the sum of the moments,

or

w /, r\[A 77 R% I r r2\~]
mi+m2 _|i-_j^a6-T-^i+_+_jj

P L r\I\ ttR2 I r r2\\

(13a)

(13b)

To determine R, one must maximize the sum of the moments. Differentiating
both sides of either of equations (13) with respect to R and setting the resulting
partial derivative of the right side equal to zero, one obtains

(14)7? -rl/^777^ö_I
M-r\/ 2 nr* 2'

Substituting this value of R back into equations (13), one can then solve for
the sum of the moments, or, alternatively, if one is dealing with a slab of known
properties, one can then find P ov w.

Correlation Between Theory and Test Results

The equations derived above represent simplified mathematical modeis of
certain idealized physical modeis which, in turn, are supposed to represent the
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conditions found in actual buildings. This discussion will only concern itself
with the relationship between the mathematical and the experimental modeis
for the time being.

The mathematical modeis differ from most of the physical modeis reported
in the literature in several respects: First, for convenience in calculation, it was
assumed that the punching loads were distributed over circular areas, while in
most specimens square plates or column stubs were used. Pictures in references

[4, 8, 12, 18 and 19] show that the circular fan cracking patterns developed in
specimens with square column stubs were indistinguishable from those developed
by the circular column stubs of reference [14], except that the cracks on the
tension side, around the periphery of the loaded area, had a slightly different
shape. However, even in the case of square column stubs these cracks were
frequently roughly circular. Second, it will be desirable to apply the equations
derived in cases I and IV to specimens in which the corners were free to lift.
Photographs in reference [12] show that the assumed circular yield line patterns
will form under those conditions also. It is only necessary then to set the negative

yield moment of these slab equal to zero. Third, in pictures of specimens in
which case I might be expected to apply, one can observe that cracking usually
took place under the loaded area even when the column stub was east monolith -

ically with the slab, but that a crack seemed to form around the periphery of the
load at the same time. This indicates that the actual failure yield pattern was an
intermediate between fig. 1 and 2. As one can see by examining equations (2)
and (3) they may be expected to give values of P which differ very little. Since,
as mentioned earlier, yield line theory gives an upper bound on the load, it
seems more conservative to use equation (3) in on all cases except those in which
the column stub was so large that cracking beneath it was unlikely. Finally,
for the same reason, one should also choose the smallest feasible r for the
equivalent circular loaded area when dealing with square column stubs. This would
be the radius of the largest circle which could be inscribed in the loaded area.
The physical equivalent of this is to assume that the corners of the loading
device exert little or no pressure on the slab. By reference to equations (2),
(3), (13) and (14), it can be seen that possible inaecuracies in r of the magnitude
involved in this assumption can have relatively little effect on P. (For a rough
estimate, in most practical cases the change in P will be approximatelx 10% of
the change in r.) The slightly low value of Pyieiaune resulting from the foregoing
approximations compensates at least partly for the fact that some yielding of
reinforcement and consequent wide cracking will actually occur at loads less

than Pyieid une'
106 specimens of slabs supported along their boundaries and subjected to

punching loads, reported in the literature, were analyzed by the yield line
theory. The arithmetic mean of PyieuuneiPtesi was 1-015, where Ptest is the load at
which the speeimen was reported to have "failed". The Standard deviation was
0.248. In addition, 128 footings tested by Richart [4] were also analyzed, using
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equations (13). The analogy between these footing tests and the analysis of a
slab carrying a uniformly distributed load and supported on columns, seems

quite evident, particularly since Richart noted that "... the deflections of the
footing were small in comparison to the amount of closure of the car Springs
until the yield point of the reinforcement was reached, so that an essentially
uniform support was provided over the bottom of the footing". The arithmetic
mean of Py%eui%ne\^tesi f°r ^ne footing tests was 1.05, with a Standard deviation
of 0.32. Further details of the comparisons, including yield line patterns used,
values of Pyield lineiJPtest for all specimens examined and arithmetic means and
Standard deviations for individual test series are given in Table I.

Table 1. Summary of Test and Calculation Besults

Critical
Speeimen Yield Lme Py l

Source Designation Pattern Ptest Q Remarks

TMowrer and M-2-1-0 Fig. 2 0.789 1.36 Series M specimens contained
Vanderbilt [11] M-3-1-0 Fig. 2 0.835 1.07 both tension and compression

M-4-1-0 Fig 2 0.715 0 92 reinforcement and were made
from normal weight concrete.

M-5-1-0 Fig. 1 0.714 0.60 Very large column stub
M-6-1-0 Fig. 1 0.706 0 46 Very large column stub
M-7-1-0 Fig. 1 0.633 0 40 Very large column stub
M-8-1-0 Fig 1 0.643 0 36 Very large column stub
M-2-2-0 Fig. 2 1.080 5 90
M-3-2-0a Fig. 2 1.057 4.56
M-3-2-0b Fig. 2 0.796 2 68
M-4-2-0 Fig. 2 0.964 2 82
M-5-2-0 Fig. 1 0.905 2 44 Very large column stub
M-6-2-0 Fig. 1 0.948 1 89 Very large column stub
M-7-2-0 Fig. 1 0.837 1 67 Very large column stub
M-8-2-0 Fig. 1 0.903 1.43 Very large column stub
M-3-1-2 Fig. 2 1 026 0 93 2 edges fixed
M-3-l-4a Fig. 2 1.022 1.06 4 edges fixed
M-3-l-4b Fig. 2 0 904 1 09 4 edges fixed
JL-0-1.7a Fig. 2 1 016 3.54 Series J specimens contained
JL-3-1.7a Fig. 2 0.870 3.77 only tension reinforcement.
JL-0-1 7b Fig. 2 0 977 2.57 Series JL specimens were manu-
JL-3-1 7b Fig. 2 0.828 2 99 factured from lightweight ag-
JN-0-1.7 Fig. 2 0.700 3 97 gregate concrete, series JN

specimens from normal weight
concrete.

JN-3-1.7 Fig. 2 0 774 3.91 J series slabs with a -3- desig-
JL-0-2.2a Fig. 2 0 937 6.60 nation contained a \\" square
JL-3-2.2a Fig. 2 1.122 6.77 hole at the center of one edge
JL-0-2.2b Fig 2 1.374 5 30 of the column stub.
JL-3-2.2b Fig. 2 0 996 5 30
JN-0-2.2 Fig. 2 0.757 6 09
JN-3-2 2 Fig 2 0.794 6 77
JL-0-1.1 Fig. 2 0 642 0 92

Arithmetic Mean 0 880 Standard Deviation 0 143

Elstner and B-l Fig. 2 0.723 0 45 Series B contained only tension
Hognestad [5] B-2 Fig. 2 0.711 0 25 reinforcement.

B-3 Fig. 2 0.806 1.70 Contained. Shear reinforcement
B-4 Fig 2 0 781 0 91
B-5 Fig. 2 1 086 9 40 Shear reinforcement
B-6 Fig. 2 1 057 7 84 Shear reinforcement
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Critical
Speeimen Yield Line Pyl

Source Designation Pattern Ptest Q Remarks

Elstner and B 9 Fig. 2 1.101 4.38
Hognestad [5] B-10 Fig. 2 1.038 4.18 Shear reinforcement

B-17 Fig. 2 0.941 4.30 Shear reinforcement
B-ll Fig. 2 1.187 21.25
B-12 Fig. 2 0.991 9.33 Shear reinforcement
B-13 Fig. 2 1.000 9.06 Shear reinforcement
B-14 Fig. 2 1.346 8.73
B-15 Fig. 2 1.142 9.06 Shear reinforcement
B-16 Fig. 2 1.066 9.63 Shear reinforcement
A-la Fig. 2 1.015 2.63 Series A contained both tension
A-lb Fig. 2 0.912 1.95 and compression reinforcement.
A-lc Fig. 2 0.948 1.83
A-ld Fig. 2 0.973 1.62
A-le Fig. 2 0.908 2.19
A-4 Fig. 2 0.867 1.93
A-2a Fig. 2 1.475 11.23
A-2b Fig 2 1.430 9.40
A-2c Fig. 2 1.343 6.78
A-7b Fig. 2 1.160 7.87
A-5 Fig. 2 1.180 7.87
A-7 Fig. 6 1.000 7.77
A-8 Fig. 6 0.939 8.61
A-3b Fig. 2 1.75 19.60
A-3c Fig. 2 1.47 18.13
A-3d Fig. 2 1.54 15.88
A-6 Fig. 2 1.71 16.65
A-13 Fig. 2 0.620 0.41

Mean 1.098 Standard Deviation ;- 0.272

Moe [8] S5-60 Fig. 2 0.968 2 52 Steel plate shear reinforcement
S6-60 Fig. 2 1 027 2.56 Steel plate shear reinforcement
S7-60 Fig. 2 0.794 2 48 -\" diameter bar shear head
S8-60 Fig. 2 0.912 2.48
S5-70 Fig. 2 1.034 3.00
S6-70 Fig. 2 1.048 2.91 Steel plate shear reinforcement
Sl-60 Fig. 2 0.878 1.96
Sl-70 Fig. 2 1.026 2.32
Rl Fig. 2 0.934 2.09
R2 Fig. 2 1.128 4.28
S2-60 Fig. 4 1.122 4.23
S3-60 Fig. 4 0.900 9.33
S4-60 Fig. 4 0.706 0.12
S3-70 Fig. 4 1.011 11.78
S4-70 Fig. 4 0.829 0.12
S4-70A Fig. 4 0.748 0.16

Mean 0.942 Standard Deviation -0.127

Hognestad, Hl Fig. 2 0.833 2.54 All specimens in this series
Elstner and Hl L3 Fig. 2 1.013 2.38 were made of lightweight
conHanson [10] Hl L4 Fig. 2 1.006 2.50 crete

Rl Fig. 5 0.934 2.09
Rl L13 Fig. 5 1.261 2.19
Rl L4 Fig. 5 1.113 2.04

Mean : 1 027 Standard Deviation -0.148

Graf [6] 1355 Fig. 2 0.876 8.83 All of these specimens con¬
1356 Fig. 2 0.839 8.82 tained shear reinforcement,
1361 Fig. 2 0.861 11.01 except 1362 and 1375.
1363 Fig. 2 0.920 11.78
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Critical
Speeimen Yield Line Py l

Source Designation Pattern Ptest Q

Graf [6] 1376 Fig. 2 0.901 9.48
1377 Fig. 2 0.915 9 82
1362 Fig. 2 2.02 15.91
1375 Fig 2 2.47 15.87

Mean=- 1.225 Standard D<eviatio

Kinnunen and 5089 Fig. 2 0.831 0.71
NYLANDER [14] 5098 Fig. 2 0.830 0.67

5215 Fig. 2 1.228 3.72
5224 Fig. 2 1.152 3.68
5107 Fig. 2 0.989 2 99
5117 Fig. 2 1.048 3 25
5125 Fig. 3 0.981 2.88
5134 Fig 3 0.962 2 89
5269 Fig 3 1.239 12 60
5270 Fig. 3 1.288 12.83
5281 Fig. 3 1.232 13.75
5290 Fig. 3 1.122 14.05

Remarks

All of these specimens were
circular m shape, as was the
loaded area.

Mean =1.075 Standard Deviation 0.159

Arithmetic Mean of Py l /Ptest for 106 specimens of slabs supported along their boundaries and
subjected to punching loads 1.015, Standard Deviation 0.248.

Richart [4] 105a Fig. 7 0.87 1.84 Footing tests
105 b Fig. 7 1.14 2.20
106a Fig. 7 0.81 1.62
106b Fig. 7 0.89 1.66
107a Fig. 7 0.87 1.61
107b Fig. 7 0.97 1.67
108a Fig. 7 0.72 1.19
108b Fig. 7 0.76 1.34
109a Fig. 7 1.40 4.64
109b Fig. 7 1.63 4.56
110a Fig. 7 1.39 4.10
110b Fig. 7 1.34 4.47

lila Fig. 7 1.42 4.67
111b Fig. 7 1.19 4.40
112a Fig 7 2.00 7.33
112b Fig. 7 1 85 8.13
109Ra Fig. 7 1.13 3.41
109Rb Fig. 7 1 18 3.36
HORa Fig. 7 1.44 4 36
HORb Fig. 7 1.23 4.15
201a Fig. 7 1.85 6 43
201b Fig. 7 1.63 6 43
202a Fig. 7 1.32 4 72
202b Fig. 7 1.38 4 93
203 a Fig. 7 1 32 3 30
203 b Fig. 7 1.46 3 77
204a Fig. 7 2.05 10 02
204b Fig. 7 2 05 10.10
205 a Fig 7 1.77 7.67
205 b Fig. 7 1.77 7 43
206 a Fig. 7 1.58 5.29
206b Fig 7 1.35 5.53
207a Fig 7 1.23 5 07
207 b Fig. 7 1.30 5.23
208a Fig. 7 1 22 3.24
208b Fig. 7 1.15 3 31
209a Fig. 7 0.97 2.57
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Critical
Speeimen Yield Line Py l

Source Designation Pattern Ptest Q

Richart [4] 505 a Fig. 7 0.86 5.95
505 b Fig. 7 0 89 5 90
506 a Fig. 7 0 94 6 22
506 b Fig. 7 0.94 5.83
701a Fig. 7 0.94 3.22
701b Fig. 7 0.92 3 34
702 a Fig. 7 1.26 2.61
702 b Fig. 7 0.79 1.65
101a Fig. 7 0.71 0 55
101b Fig. 7 0.73 0.57
103a Fig. 7 0 67 0.50
103b Fig. 7 0.62 0.50
104a Fig. 7 0.84 0.91
104b Fig. 7 0.93 0.92
313a Fig. 7 0.67 1.25
313b Fig. 7 0.65 1.14
318a Fig. 7 0 67 1.13
318b Fig. 7 0.65 1.16
320a Fig. 7 0.72 1.17
320b Fig. 7 0.76 1.32
322 a Fig. 7 0.65 1.05
322b Fig. 7 0 63 1.00
325a Fig. 7 0 68 1.23
325b Fig. 7 0.72 1.27
327a Fig. 7 0 69 1.01

327b Fig. 7 0 76 1 02

329a Fig. 7 0.73 1.45
329b Fig. 7 0.71 1.44
404 a Fig 7 0.74 1 31

404 b Fig. 7 0 95 1.30

Remarks

The following specimens were
listed by Richart as failing by
tension of the reinforcement.

Arithmetic Mean of Py l /Ptt for 128 footing specimens subjected to punching loads 1.05,
Standard Deviation 0 32.

Differentiation Between Bending and Shear Failure

When the value of Pyieidiinelptesiis less than one> ^ is an indication that the

failure was preceded and perhaps initiated by yielding of the tension reinforcement

along the yield lines, i.e. that it was a primary bending rather than a shear

failure. (In fact, as indicated previously, yield line theory only predicts collapse
due to formation of a mechanism. It is therefore likely that the reinforcement

in the most highly stressed regions of the slab would have yielded at somewhat

lower loads than Pyieidhne.) However, in the case of approximately half of
the specimens, Py%euunelptest was larger than one, and the Standard deviations

reported above are rather large. It therefore appears that in many tests the

failure must have been primarily due to shear. Which of the two types of failure
will be critical in any given speeimen will naturally be determined by its relative
strengths in shear and bending and its relative loading in these two modes.

The relative strengths will be a function of ^k—, where b is to be taken as
\jcbd

the perimeter of the column stub and the other symbols have their usual mean-
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ings. If the slab contains two layers of reinforcement, one near the top and
one near the bottom surface, it would seem logical to make p equal to the sum
of the reinforcement ratios, since it is the sum of the yield moments in the
positive and negative directions which determines the yield line punching
strength. However, if the reinforcement is so arranged that the layer acting as

compression reinforcement extends into the column, it will provide an appreci-
able amount of additional shear resistance through dowel action [15] and
through strengthening of the shear-compression zone. In this case, therefore,
it will probably be more accurate to make p equal only to the ratio qf
reinforcement acting in tension along the column perimeter. The latter com-
ment will also apply, of course, when the support conditions are such that one
of the yield moments will not act.

It is more difficult to establish a criterion for the relationship between the

loadings, but, empirically, they seem to be related through ^~, where B is the

perimeter of the slab. Combining the two relationships, one can empirically
define a parameter Q such that

ircbd\B) iycbBy

Values of Q for all specimens are included in table I.
The values of Pyieuunelptest f°r ^ne 1^6 slab specimens supported along their

boundaries are plotted against Q in fig. 8, while fig. 9 displays similar data for

the 128 footing specimens. If one regards the -I'L'- 1.0 line as the dividingP test

line between primarily shear and primarily yield line bending failure, then it
is apparent that when Q is less than 2, the specimens failed first in yield line
bending. When Q is between 2 and 4, approximately half the specimens failed
first in bending and half probably failed primarily in shear, while for Q greater
than 4 most specimens without shear reinforcement failed in shear.

Application to design

The present design of flat slab or flat plate structures is largely based on the
need to prevent shear failures. When one is dealing with interior panels (and
these are the only ones to which the above analyses can be applied at this time),
it appears that normally the critical loading will be one in which a uniformly
distributed load is applied over the entire surface. Therefore equation (13a)
is the applicable one, and one should design against punching failure by
calculating the required moment sum and providing the appropriate reinforcement
and concrete depth. Then one can check for the value of Q and if that is less
than 2, the shear check becomes essentially irrelevant since, from the above
evidence, the structure will fail first in flexure.
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If one applies this criterion to current designs the results are rather startling.
For instance, if one looks at the Standard design of an interior panel of a slab,
supported on circular columns spaced 25 feet center to center and supporting a
service live load of 200 pounds per square foot, one finds that the CRSI Handbook

[20] requires both a drop panel and a large capital. Using their slab design
for this case, but omitting the capital and assuming the slab to be supported
directly on 12 inch diameter columns, one finds that Q 1.47. This is based on

p calculated from the CRSI design for the column strip by adding twice the
number of trussed bars, plus the number of top bars, plus, since the bottom
layer of reinforcement is not detailed to extend into the column, the straight
bars. If one then calculates vu according to equations 15-1 and 17-7 of ACI
318-63, one finds that it would be 345 psi, far above the permissible 208 psi.
However, according to the experimental evidence, the failure would clearly be

of a bending yield line nature, which requires further examination. The Handbook

or Code design is based on shear failure, and therefore requires the capital.
Analyzing the Handbook design, but without the capital, according to

equations (13 a) and (14), one finds that first, the radius of the yield fan, R, is

slightly larger than half the side length of the drop panel, and, second, that the
sum of the yield moments required for the ultimate load is slightly more than
11% greater than that available. To ensure that the füll yield moments can be

developed throughout the fan, it would therefore be desirable to enlarge the
drop panel by a foot or so in each direction, at the same time extending the
bottom reinforcement so that it ends about a foot nearer the column than
presently detailed. The sum of the yield moments must be increased by 11%
or more, which can be accomplished either by a 15% increase in depth within
the drop panel area without changing Q, or, perhaps more easily, by a 12%
increase in p (concentrated in the negative reinforcement), which will increase
Q to 1.84. This is still within the ränge in which shear failure apparently cannot
occur, which means that the capital is unnecessary. The savings to be obtained
by elimination of column capitals are obvious.

A similar analysis will show that column capitals are also unnecessary in a
slab supporting a service live load of 200 pounds per square foot with 16 inch
diameter columns spaced 40 feet center to center, provided the drop panels are
extended slightly, p is increased by 15% and the bottom reinforcement is
continued through the column. In lieu of the latter two requirements a 10%
increase in column diameter and a 15% increase in depth through the drop
panel would also provide an adequate design against yield line punching, or
shear failure. Even the most extreme case considered in the CRSI Handbook,
40 feet spacing of columns and 500 psf, service live load will, if one assumes the
columns to have diameters of 22 inches and removes the capitals, give a Q of
1.85, and a safe design against punching, provided the bottom reinforcement is
extended into the columns, the drop panel area is extended slightly, and the
total depth is increased by 16% in the drop panel area. It should be noted that
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the column sizes chosen for these illustrations are very small for the loads
involved. Since Q is inversely proportional to column diameter, any increase
in the column sizes would automatically improve the Situation. Effects of these

changes on design requirements for bending moments in the remainder of the
structure were not examined.

Since shear appears not be the primary cause of failure as long as Q is less

than 2, this index can also be used to determine the possible requirement for
shear reinforcement for a slab when capitals and/or drop panels are undesirable.
From test results [5, 6, 8] on specimens containing shear reinforcement, it is

apparent that such devices can be very effective in keeping Pyiaannel^test near
or below one even for very high values of Q.

Conclusions

1. Yield line patterns and equations can be devised which will model some
cases of a load concentrated over a small area of a reinforced concrete slab

supported on its perimeter, and also of uniformly loaded reinforced concrete
slabs supported on columns.

2. Test results from 234 punching specimens available in the literature were
compared with values of punching load predicted by yield line theory. The
overall arithmetic mean of Pyieia Kneiptest was 1-03, with a Standard deviation
of 0.29.

3. Closer examination of the test results revealed that one could define a
p2 f d2

parameter Q ^~— (IO4), which could be calculated for all specimens.

It appears that when Q is less than 2, Pyieuuneiptest^ consistently less than 1, i.e.
the punching strength predicted by yield theory is less than the actual punching

strength. Therefore it appears that bending strength rather than shear

strength is the Controlling factor for design whenever Q is less than 2.

4. When Q is between 2 and 4, either strength may control, while for Q

larger than 4 the shear strength definitely becomes the critical one.
5. Analysis of some Standard designs for flat slab structures shows that under

present shear provisions Q is very low and that in most cases column capitals
may be omitted without increasing Q above 2, even though this raises the
nominal ultimate shear stresses far above the permissible. Some revisions in
reinforcement detailing and small increases in either reinforcement percentage
or depth in the drop panel area may then become necessary to prevent the
possibility of punching yield line failure. Effects on design requirements for
bending moments in other parts of the structure were not investigated.

6. Since the Code shear provisions seem to be overconservative, it is likely
that shear reinforcement could safely be omitted from some flat plate structures
in which it would otherwise seem necessary.
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7. Since bending failures are much preferable to shear failures because they
are more gradual and give warning of distress, it would seem prudent to keep
Q less than two in all designs.

8. The preceding investigation has been solely concerned with symmetrically
loaded, symmetrical specimens. Further experimental data will be required to
analyze unsymmetrical cases in which appreciable bending moment will be
transferred from a column to the slab, or slabs in which the reinforcement is not
isotropic.

Notation

a side length of square slab
a' side length of square column, or other column dimension
Asidb area °f slaD supported by one column
b perimeter of column
B perimeter of slab supported on one column or supporting one column
d distance from compression face of reinforced concrete section to the

centroid of the tension reinforcement
fy yield stress of reinforcement
f'c compression strength of concrete
k an arbitrary constant
mx positive yield moment per unit length of slab - numerically equal to

Mu as defined by ACI 318-63, with the capacity reduction factor set

equal to one.

m2 negative yield moment per unit length of slab - calculated similarly to
mx

p ratio of reinforcement
P axial load in column, column stub or other loading device
Pflex defined in reference [3]
Ptest load at which an experimental speeimen was reported to have "failed"
Pyieu une load carrying capacity of a slab predicted by yield line theory
py.l. a,bbreviation for PyieUline

q shear in slab per unit length
Q parameter defined by equation (15)

r radius of circle over which load P is, or may be assumed to be,
distributed

R radius of yield line fan
vu ultimate shear stress as defined by equation 17-7 of ACI 318-63
Vflex defined in reference [8]
Vtest defined in reference [8]
w distributed load per unit area of slab
<j> angle measured in the plane of the slab, around central axis of column,

column stub or other loading device
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Summary

Yield line theory equations are derived for various cases of concentrated
loads or columns acting on slabs. These equations are then used in the analysis
of 234 punching failure specimens presented in the literature. The arithmetic
mean of Pyieuiunelptest was 1-03, with a Standard deviation of 0.29. A semi-

empirical formula, based on the test results, is presented which provides a
differentiation between yield line bending failures and shear failures and permits
one to predict with good accuracy whether the failure in any given case will be

due primarily to bending or to shear. Application to Standard designs reveals
that capitals and shear reinforcement can probably be eliminated in many
flat slab and flat plate structures.

Resume

Les equations de la theorie des lignes de repartition sont obtenues pour
differents cas de charges concentrees ou de colonnes agissant sur des plaques.
Ces equations sont alors utilisees dans l'analyse de 234 types de fissures decou-

pantes presentes dans differents ouvrages. La moyenne arithmetique du
rapport charge theorique / charge experimentale (Pyieidune Igtest > v°ir appen-
dice 11) etait egale ä 1,03 avec un ecart moyen de 0,29. On presente une
formule semi empirique, fondee sur des resultats experimentaux. Cette formule
permet de differencier les lignes de repartition des fissures de flexion de celles

de cisaillement. Elle permet egalement de prevoir avec une bonne precision
dans un cas donne si la fissure sera plutöt due ä la flexion qu'au cisaillement.
Son application ä des constructions courantes revele que des armatures
principales et des armatures de cisaillement peuvent etre generalement supprimees
dans les dalles et les plaques.

Zusammenfassung

Hergeleitet werden Bruchliniengleichungen für verschiedene Fälle von
Einzellasten oder Stützen auf Decken. Diese Gleichungen sind sodann für
234 in der Literatur angegebene Durchstanzproben angewendet worden. Der
Mittelwert ergab Pberechnetlpversuch 1>03 m^ einer Standardabweichung von
0,29. Eine auf Grund der Versuchsergebnisse gewonnene, halbempirische
Formel erlaubt die Unterscheidung zwischen Biege- und Schubbruchlinien
sowie mit guter Genauigkeit für irgend einen Fall die Voraussage, ob der
Bruch ursprünglich durch Biegung oder Schub verursacht wurde. Die Anwendung

bei Regelbauten offenbart, daß Stützenköpfe und Schubbewehrung
wahrscheinlich in vielen Flachdecken weggelassen werden können.
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