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1. Introduction

In the previous paper [1], the authors have summarised Solutions which have
been given by a number of workers [2, 3,4, 5, 6, 7] to the problem of shear
deformation of corrugated panels. The panel (Fig. 1) is assumed to be surrounded
by rigid members which can themselves deform without resistance into a
parallelogram, but restrain the panel against deformation out of its plane
along all four edges. When a panel with trapezoidal corrugations is subjected
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Fig. 1.
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to a shear force F as shown in Fig. 1, the corrugations twist and deform as
shown for a typical cross-section in Fig. 2. The bending stresses acting in the
plane of Fig. 2 are an important feature of the stress pattern induced, and
this bending may be referred to as "portal frame bending". The contribution
to the stiffness of the panel of other bending stresses (bending stresses perpendicular

to the plane of Fig. 2 and torsional bending stresses) are negligible
because of the relatively low curvatures involved (low values of -^-^ and

g
d*w dy2

compared with -^—^ where the y axis is parallel to the corrugations).
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The other stresses that have to be considered are the membrane stress

components ax, ay and rxy. The normal stresses <jx (acting perpendicular to
the bent ^dges of the corrugations) are small because of the flexibility of the
corrugations in this direction due to "portal frame bending", and the strains
caused by stresses ax may be neglected.

The deflection pattern of the corrugated panel may be described by referring
to the shape of the longitudinal centre line of each top, bottom and side plate
(e.g. lines AA, HH and KK in Fig. 1). When the panel length 2a is very short,
these remain straight when viewed perpendicular to the plane of the panel,
the centre lines of the top plates undergoing a twist while those of the bottom
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panels remain undeflected. In long panels all the centre lines become curved.
The authors [1], by assuming simple sinusoidal shapes for the centre lines,
have obtained expressions for the strain energy of the system, and by mini-
mising the strain energy for a given shear displacement, have obtained a
Solution for the stiffness of the panel.

The limitation of this method of Solution lies in the difficulty of describing
the deflected shape of the centre lines when the real shape departs significantly
from simple sinusoidal. In very long panels, the curvatures are small except
near the ends, and an adequate description of the shape necessitates taking
a number of terms in the Fourier series. Because of the complexity of the
expressions this becomes an impracticable method of Solution.

Instead of adopting assumed deflected forms, an equilibrium Solution may
be achieved by treating the top, bottom and side plates as prismatic beams
bending in the planes of the respective plates. The equilibrium conditions are
then solved by considering the bending, normal and shear forces acting within
and between these prismatic beams, as shown in Fig. 4. Together with these

i-c-^h-c -4 2bB

KjHKUTH
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~e<
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Fig. 3. Portal Frame Deformations at End of Panel.

forces are associated those due to the "portal frame bending" of the corrugations

(Fig. 2), and the resulting equilibrium equations, when combined with
the necessary compatibility conditions lead to a set of three simultaneous,
linear fourth order differential equations which may be solved by finite
difference methods.

2. The Force System in the Top, Bottom and Side Plates

The forces existing on elements of length dy along the length of a corrugation
for top and side plates are shown in Fig. 4.

On an element of the top plate, the forces are

a) a normal edge force pTdy arising as a result of the portal frame bending;
b) shear forces FT and FT + dFT in direction Ol and QTdy in direction 0 Y,

and
c) beam type bending moments MT and MT + dMT.
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Fig. 4. Internal Forces.

Similarly on an element of the bottom plate, the forces are

a) a normal edge force pBdy;
b) shear forces FB and FB + dFB in direction OX and QBdy in direction 0 Y,

and
c) beam type bending moments MB and MB + dMB.

On an element of the side plate, the forces are

a) normal edge forces PsT^y and p8Bdy, giving a net force (PsT~PsB)dy\
b) shear forces F8 and F8-\-dF8 in direction OX and QTdy and QBdy in direc¬

tion 0 Y. Due to the difference in value between the shear forces on the two
edges, mean normal forces P and P-\-dP must also exist to maintain
equilibrium, and finally;

c) beam type bending moments M8 and M8 + dM8.

The equilibrium conditions between the external and internal forces require
that

2^ + J^ + 2J^sinfl R

and SQTdy=SQBdy=$(QT-QB)dy + dP F,

where F is the total applied shear force acting on the panel and R is the force
at the end of each corrugation as shown by Fig. 1.
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3. Assumptions

These are similar to those made in the energy Solution [1], and are as
follows:

1. The material is infinitely elastic.
2. The marginal frame is a hinged parallelogram of rigid members.
3. The plate is held to the frame at one point in the mid-width of each bottom

plate in such a way that at its ends, the bottom plate is allowed to rotate
in plan but is prevented from twisting about its longitudinal axis. Hence
the deformed shape of the corrugation at its ends is as shown in Fig. 3.

4. No slip takes place due to bearing between the plate and the fasteners.
5. No local or overall buckling takes place.
6. The panel is very wide, that is, it consists of a large number of corrugations.

This means that the behaviour of successive corrugations is identical.
7. The effect of large deformations is ignored.
8. The top plate is assumed to deflect freely, at its ends, so that (FT)y=a

9. The bottom and the side plates are hinged at their ends so that (M8)y=a
(MB)y=a 0.

Moreover, using the notation for deflections given in Fig. 2, (u8)y=a

4. The Analysis of Portal Frame Bending

The deformed shape of a shear corrugated plate at any point along its
length is demonstrated in Fig. 2, uT, uB, u8 being the in-plane deflections
in the direction of the top, bottom and side plates respectively.

Expressions for bending moments MB —ME and Mc —MD may be
derived [1,8] in terms of the in-plane deflections and the dimensions of the
corrugation. These are:

MB WF ^ ^t ~ub) + Gus~ gi (ut + ub)] l1)

M° =ü^[K(ut-ub)-Hus + Hiut + ub)1Ii (2)

TP /3
where D ]2(1_ 2

is the flexural rigidity of the plate, t is the thickness,

E the elastic modulus and /x Poisson's ratio and

T -h\*,bT, c /26g + 6y bs\\J - d[3+rs + 2V8[-^-+vJ\'
(3)
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The dimensions bT, bB and b8 represent half the width of the top, bottom and
side plate respectively, d is the depth of the corrugation and c is the projection
of the side plate width on the horizontal (see Fig. 2).

Referring to Fig. 5 a, the forces acting on the corners of the corrugation
are readily determined in terms of MB and Mc and hence in terms of uT, uB
and u8 as follows:

M
(4)

(5)

(6)

Resolving forces at point B

or after substituting from Eqs. (5) and (6)

p*=-i[m<>-(£+1)MbI (7)

9t bT

<1b

fe

MB

K'
Mc-M

2bs
B

Pb -
2 6« C

dqB

Similarly
2bs c

^ -^[(^ + i)^-iH- (8)

Resolving forces at point C,

*r " 3 [(1+ä *<>-**] (9)

and ^=l[[tt+2^)MG-iMs\- m
Eqs. (8) and (10) together give

_2bB\Mc MB1

Substituting from Eqs. (1) and (2) into (7), (9) and (11), one may obtain

2PB=Jtffrj?\.K21uT + KMuB + K2ZUs\> (!3)

Pst-Psb j^y[K31ut + K32ub + K3Sus], (14)
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where Ku -2 Uk + HJ (l + £-\ +J-öJ

Klt 2[{K-H1)\l+£j+J-Q^,

K»-2[H(1+£)-G]'

K21 2[(J-G1)(l+ß+K + H1],

K„ 2^-(J + 01)(l+^+K + H^, (15)

Ku-2[G(l+±)-H],

\bT bB\'^33 2 b8 I

5. The Equilibrium of the Top, Bottom and Side Plates

Top Plate

Referring to Fig. 5b, an element of the top plate of length dy and width
2bT is acted upon by forces:

a) 2pTdy along 0X\
b) shearing forces FT and FT + dFT on either end of the element and two

equal and opposite longitudinal forces QTdy,
c) beam type moments MT and MT-\-dMT about axis 0 Z.

The following equilibrium conditions may be derived.

£--»_.. (10)

^-2bTQT + FT=0. (17)

With the in-plane deflection denoted by uT, the moment-curvature rotation
for the top plate is

Et(2bT)3 d2uT
12 dy MT, (18)
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where — is the flexural rigidity of the top plate about axis 0 Z.

Differentiating Eq. (17) and substituting from (16) and (18),

»„t^-M.«--.,--.. (1.)

Bottom Plate

With the forces applied on an element of the bottom plate as shown by
Fig. 5 b and proceeding as for the top plate, the equilibrium equation of the
bottom plate may be written as:

!"».£. -«.tH*-o. (»)

Side Plate

Forces acting on an element of the side plate are as shown in Fig. 5 b,
giving the following equilibrium conditions.

dF8 _~~1T7 — PST~PSB>

dMs- + Fs-bs(QT + QB) 0,
dy

dP
dyfrnr + QT- Qb 0 (21)

and the moment-curvature relation

2
Eth* _______ _ M

Proceeding as before, the equilibrium equation for the side plate becomes

6. Compatibility of Deformations

Consider three points B, S, T on the mid-width of the bottom, side and
top plate respectively as shown in Fig. 5b. If the three points had the same
Y-coordinate before deformation, then after deformation let the »relative shear

displacement between B and T be

A 2(AB+AT),
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where A is the shear deformation per corrugation in the 0 Y direction, AB is
the relative displacement between points S and B and AT the relative
displacement between points T and S.

The shear displacement across an element in the bottom plate, Fig. 5 b,

may be expressed as:

«---»-_?+«»*4k-*(-»'Tr+«'_4 ¦

TP

where N -zr-p- is the shear modulus of the plate.

Similarly for an element in the side plate,

and for an element in the top plate

«___(_*,**+<,,£).
Since, therefore,

A =2(AB + AT) SB + 2S8 + ST

it follows that

J"~ 2ÖB
dy s~dy~ ÖT

dy
+ tN Wb + ös)+ tN lr + M- W)

Considering now longitudinal strain within the side plate, the strain at any
point in direction 08Y8 due to normal force P, Fig. 5b, should equal the mean
of the strains at either side of the width, 2b8, of the plate.

The strain at the top of the side plate is

MTbT d2uT
— —UnEI T dyT M,2

Similarly eB bß-^i
P 1/ dzuT d2Ur,\

*—*•"(* .jpF-'-T^)- <24>

7. The Simultaneous Differential Equations

The shear deflection per corrugation A is constant and independent of y,
whence by differentiating Eq. (23),

dQB
dy

,i ix dQr zu * ^ ,*tIi d2uT __. d2u8 d2Un\ .^.
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Differentiating (24) and substituting into (21),

QT-QB -bstE{bT^f-bB^f). (26)

Differentiating Eq. (26) and solving with Eq. (25) for —^ and —p^,

^ - {bljyyy^7^+bM] <»»

- ^ + ^-yr^ttl.+^-H- (29)

a Urp - ö. l^o a Uj>where 9. bT-T-+- + 2bs—j-y~ + bB- B
'T dy* T s dy« T B dy» '

j a Urp ö- t^K
(30)

Substituting from (27), (28), (29) and (30) and from Eqs. (12), (13) and (14)
into Eqs. (19), (20) and (22), Eq. (19) becomes:

diuT d2uT d*Uj, d2uK d2us
"l-^f + a*7üy- + a3% + «4^r+«51^-+«6%+ß7^r + «8«S 0,

(31)
Eq. (20) becomes

d*uT d2uT d^Un d2uB d2^Ä

and Eq. (21) becomes:

d*uT d2uT d*uB d2uB

(32)

Jxyyy^^ dy* ^^-4 dyi —6 dy!
(33)

+ C7-3-r- + C8-7^2- + C. *% 0»
d* «s d2 «s

^7^- + C8"d^

where ax Ab% + 2Bb%bs(l+lx)(bB + bs),

a2 — Bb?r,

a3 — An,
a4 -256Ä6T6Ä(l+/_t)(62l + 6Ä),

a5 -BbTbB, (34)

ö.6 — A12,

a7 —2Bb8bT,
a8 —K13,

b1 -2Bb8bBbT(l-rfjL)(bT + b8),
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b2 -BbBbT,
b3 — K219

b,=Ab3B + 2Bb8b2B(l+n)(bT + b8),

h -Bb2B,
b% ~K22,
67 =-2BbBbs,
^8 ~"~^-23>

Bb%bT(l+IJL)(bT-bB),

(34)

c2 -BbsbT,
C3 —-"-31'

c4 =Bb%bB(l+fx)(bT-bB),
-B
-K.

c5 -BbsbB,
L32>

C7 — .4 Ög.,

c,=-2Bb%,
C9 ~~ ^33?

-(*) ^(l-JU,2),

^_ 12(^tf(l^)
(bT + 2b8 + bB)

Eqs. (31), (32) and (33) are the equilibrium equations of a corrugated plate
shear panel. The equations are simultaneous differential equations of the
fourth order, thus twelve boundary conditions are needed for the Solution.
An exact Solution for the equations not being available, a numerical method
using finite differences [8, 9] has been used.

8. The Boundary Conditions

The boundary conditions follow from the anti-symmetry of deformation of
the panel about the mid-length and from the assumptions made under 3.,
and are as follows.

a) At the Mid-length of the Panel:

(Ut)v=o =0, (35)

(UB)y-0 =0, (36)

(%),=o =0, (37)

(MT)y=0 (MB)y=0 (MT)y==0 0
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b) At the End of the Panel:

{UB)y=a =0, (41)

(%W 0, (42)

(MT)y=a (MB)y=a (Ms)y=a 0

(9L=°' <43>or

\ */2 / _=«
(45)

andlastly (Jr)M =° (a)

or (FB + 2 Fs sin 6)v=a R. (b)

From 5., by the integration of Eqs. (20) and (22),

2 d3ii
FB 2bBQB--Etb%^f (c)

and ^=MG_.+ _._,)-3^6|^r. (<*)

Substituting from (a) into (17),

2bT(QT)v^^Etb»T(^-)j^a. (e)

Eqs. (21) and (24) give:

QT-QB-bBtx(bT^-bB^2-). (f)

By substituting from (e) into (f) and then for (QT)y=a and (QB)y=a in^° (c)
and (d) and hence into Eq. (b) we finally obtain
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di ^bBl^-b8bJ+cLb\-b8bT\9

d2 2b8b2B--b3B + b8bBc, (47)

ds -^b2c.

The Solution of Eqs. (31), (32) and (33), subjected to the boundary
conditions of Eqs. (35) through (47), by the central difference method, follows
Standard procedures. It is described in detail in reference [8].

9. Solved Examples

Figs. 6 to 10 show the results obtained by the above analysis for the given
corrugation configurations of various lengths.

As shown by the energy Solution [1], the length of a panel has major effects

on its shear behaviour. It is thus convenient to discuss the behaviour of the
panel under consideration according to three different groups depending on
its length: a) short panels, b) medium length panels and c) long panels.

a) Short Panels

Fig. 6 shows that, for a short length panel (a < 50 ins. in the example), the

top plate deflection uT is almost a straight line. The bottom plate deflection

UT(INCH)

,UT

r—~ '4^3 |R
^..

i-—-—
y

t 0.02
E 13.400 T/IN2

^t= 0.3
R 100 LBF

^ 13 IT 0=50

==-N

20p;/"

0-
0.2 0.3 0.4 0.5 0.6 0.7 0.8

Flg. 6.

ENERGY SOLUTION

FINITE DIFFERENCE
SOLUTION

0.9 1.0
y/o



A FINITE DIFFERENCE APPROACH TO CORRUGATED SHEAR PANELS 87

t 0.02"
E 13.400 T/IN2

H- 0.3
R 100 LBF

FINITE DIFFERENCE
SOLUTION

ENERGY SOLUTION

r j ^UB___

=30=*
I -JU

-i
0=400

0=500a 200 0=3000.08

UB (INCH)

0.06

100

/0.04

0.02

<S

O.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
y/o

Fig. 7.

f ii."*.?;:nAr-Hir-1.0"

A

3.0 02
2PT

400

50
2.0 100 LBF

(LBF/IN)
30Ö

100

200 500

0 O.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

03
mb

-Mc

0.2
LBF) 50

300
100

400"
200

0.8 0.9 1.00 O.I 0.2 0.3 0.4 0.5 0.
y/o

Fig. 8.



88 M. R. HÖRNE - R. A. S. RASLAN

^F o

^~1,p ITT*"

^3"U
._**&

100
FT(LBF)

80

60

40

20

100
FB (LBF)

80

60

40

20

100
F(LBF)

80

60

t 0 02"
'L R x 100 LBF

a* 50"

E 13 400

/i ¦ 0 3

T/IN2

0=200"

i i i

-.0 100" ¦
0=400"

i t i

^0=300

0 Ol 02 03 04 05 06

0*100'-

07 08
y/o

0=50*1^

i i

09

i

10

^Oj?200"

-0 400"

¦—-

i i i1 i > i

0 05 y/o 10

i
i
i

FT + FB»R

FS

1 1 1 1 1 1 1 L 1 1

05 y/o 10

Fig. 9.

uB, Fig. 7, and the side plate deflection u8 are very small compared with uT
and consequently have small effects on the panel behaviour. Therefore, for
panels in this "short" category, the top, bottom and side plates may be

treated as infinitely rigid, with deflections

Ur, ky,
Ub us °>

where k is a constant. Hence from Eqs. (1) and (2), the portal frame moments
MB and Mc vary linearly along 0 Y (Fig. 8). Similarly, from Eqs. (12), (13)
and (14), pT, pB and p8T—p8B also vary linearly with y. From Eq. (16), since

(FT)y=a °> we have

FT=^(y*-a2),

where k± is a constant. The shear forces in the bottom plate (FB) are also
distributed parabolically, but with the maximum value at the ends. The
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distribution of FT and F8 is shown in Fig. 9a and b. The sum of the shear
forces FT + FB (sin 0 0 in the example) is constant at any point and equal
to the external applied force (R— 100lbf) as shown by Fig. 9c.

Since the shear forces FT and FB are related to the shear forces per unit
length QT and QB, the later will also have parabolic distributions along the
panel length as shown in Fig. 10.

b) Medium Length Panels

As the length of the panel increases, significant "beam" bending stresses
develop in the top, bottom and side plates. The top plate deflection uT becomes
curved (Fig. 6) and the bottom and side plate deflections uB and u8 increase
(Fig. 7).

The shear forces FT and FB (Fig. 9) and QT and QB (Fig. 10) become more
uniform in value over the middle length of the panel and only change signin-
cantly near the ends.
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c) Long Panels

When the panel becomes longer (more than 200 ins. in the example), "beam"
bending in the plates becomes concentrated at the ends (Fig. 11). It is seen from
Figs. 8, 9 and 10 that all the internal forces become almost uniform over the
central length of the panel. These uniform values are given closely by

200
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p 03
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T (bT + bB + 2b8sind)'
übB

B " (bT + bB + 2b8sind)'

F Rb*
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The deflections of the top and bottom side plates (Figs. 6 and 7) vary almost
linearly except near the ends of the panel, where the deflection of the top plate
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increases more rapidly, while that of the bottom plate suddenly decreases to
zero. It is seen that this behaviour is not revealed by the energy method also

presented by the authors [1].
A comparison between theoretical and experimental results is given in

Table 1. It is seen that there is good agreement between test results and the
method presented in the paper. The energy method gives less consistently
good results, but is still likely to be sufficiently accurate for practical purposes.

Table 1

Reference Details of Panel

Shear Flexibility, m tonf

Test
Result

Theoretical
Energy Method

Theoret. Finite
Differ Method

2

(Type 1

sheeting -
3 purlms)

2bT 4125 m
2bB 1 375 in
d 1 375 in
c 0 625 m
2a 144 in
Et* 2 95 tonf-m

0.056 0.044 0 055

2

(Type 2

sheeting —

3 purlms)

2bT 4 625 in
2bB 1-75 in
d 2 53 m
c =0 8125 in
2a 144 in
Et* 2 95 tonf m

0 134 0 146 0 133

4

26T 4 73 in
2bB 2 76 m
d 3 54 in
c 0 59 in
2a 78 8 m
Et* 142 tonf m

0.40x10 3 0.42 x IO-3 0 44x10 3
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Summary

The shear behaviour of a panel with trapezoidal corrugations is investigated
by setting up the differential equations for the bending in their own planes
of the top, bottom and side plates of the corrugations, treating them as
prismatic beams. A numerical Solution is then achieved, using finite difference.
The behaviour is found to depend on the length of the panel, measured parallel
to the corrugations. The predicted shear flexibilities of some panels for which
test results are available are found to agree well with the experimental values.

Resume

Le comportement d'un champ ä raidisseurs trapezoidale est etudie ä l'aide
des equations differentielles de la flexion dans leurs propres plans, c.-ä-d. des

töles superieures, inferieures et laterales des raidisseurs, en considerant celles-ci
comme des poutres prismatiques. Une Solution numerique est finalement
atteinte par Futilisation des differences finies. On trouve que le comportement
depend de la longueur du champ mesuree parallelement aux raidisseurs. Les
deformations dues au cisaillement prevues pour certains champs, pour lesquels
des essais ont ete entrepris, correspondent tres bien avec les valeurs
experimentales.

Zusammenfassung

Das Schubverhalten eines Feldes mit trapezförmigen Rippen wird durch
Aufstellen der Differentialgleichungen für das Biegen in ihrer eigenen Ebene
der oberen, unteren und seitlichen Bleche der Rippen untersucht, indem diese
als prismatische Träger behandelt werden. Eine numerische Lösung ergibt
sich dann unter Benützung endlicher Differenzen. Man findet, dass das
Verhalten von der Länge des Feldes, gemessen parallel zu den Rippen abhängt.
Die vorausgesagten Schubbiegsamkeiten einiger Felder, für die Versuchsresultate

greifbar waren, ergaben sich als gut übereinstimmend mit den
experimentellen Werten.
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