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Introduction

This study is concerned with the inelastic analysis of reinforced concrete
planar elements which are subjected to in-plane forces. Planar elements, such
as walls or deep beams, often form parts of complex structural systems, for
example, shear walls in multistory buildings, shells, folded plate roofs, or
box girders.

A large number of special analytical methods developed for this type of
structure can be divided into two groups. In the first group are the methods
in which the walls or deep beams are treated as ordinary beams. This greatly
simplifies analysis and allows the use of various well-developed beam-type
analyses. Many methods for shear wall-frame systems are using this approach.
Most of these analyses are elastic solutions, assuming homogeneous isotropic
material [1], [2], [3]. Recently, limit analysis methods based on plastic hinge
theory were applied to shear wall-frame structures in order to investigate the
ultimate behavior and collapse patterns [4], [5].

The required reinforcement is usually designed for the internal forces
resulting from the elastic analysis. In the case of shear walls either working
stress or ultimate strength methods are used for reinforcement design. However,
these design methods were developed for ordinary beams and there is neither
much experimental nor theoretical evidence to support its extension to thin

1) This material is presented in two parts. This is the first paper which describes the
theoretical aspects. A second paper will present experimental verification and applications.
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deep walls. Since shear walls are responsible for lateral stability of multistory
buildings, it seems useful to study their behavior in the inelastic stages, and
to investigate the effect of cracks and the nature of the failure mechanisms.

The second analytical approach considers the planar elements in general
plane stress state. This analysis involves a solution of a two-dimensional
continuum problem (shells, folded-plate roofs, walls). The usual assumption
in these analyses is that of an elastic, homogeneous, and isotropic material.
The elastic solution can be obtained either in closed form, or by means of
numerical computer methods. However, the cracking of the concrete at design
loads causes stress redistribution, so that reinforcement design for elastic
stresses may be questioned. Furthermore, yielding of the steel and cracking
or crushing of the concrete should be considered for a realistic assessment of
the ultimate strength of such structures. Thus, a two-dimensional theory
capable of including these inelastic effects appears useful.

Modern analytical methods and available data about the behavior of basic
materials make such a task possible. In particular, the recent development of
the finite element method permits solutions to be obtained for any rationally
conceived constitutive laws of the materials. An insight into the inelastic
behavior of planar elements would give confidence to structural engineers in
their use of various approximate methods.

The aim of this work is to help clarify the above mentioned questions by
providing a tool for more detailed analysis. The purpose of the proposed
analysis is to predict the response of reinforced concrete panels at all load
stages throughout their load history including failure for both monotonic and
cyclic loadings.

The considered reinforced concrete panel is a planar element with variable
thickness, reinforced in its midplane. The panel is in plane stress state; only
in-plane external forces are considered. The effect of bending moments is not
included in this work.

The Characteristics of Reinforced Concrete Behavior

The characteristic stages of reinforced concrete behavior can be illustrated
by means of a typical load-displacement relationship as shown in Fig. 1. This
relationship can be, for example, result of a beam test. Similar diagrams can
be obtained for the load-deformation relations of any other reinforced con-
crete structure. This highly nonlinear relationship may be roughly divided
into three intervals; the uncracked elastic stage, crack propagation, and the
plastic stage. The non-linear response is caused by two major material effects,
cracking of the concrete, and plasticity of the reinforcement and of the com-
pression concrete. Only these two material non-linearities will be considered
in the proposed analysis. Obviously, cracking and plasticity can occur simul-
taneously which must be accommodated in the proposed theoretical model.
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Fig. 1. Typical Load-Displacement Diagram ;
for a Reinforced Concrete Element. 1 elastic

Deflection

There are other nonlinear effects that are not included in this model. Among
these, the bond slip between reinforcement and concrete, the effects of dowel
action, aggregate interlocking of crack faces, and the deterioration of crack
surfaces which prevent complete closing of cracks under load reversals may
be mentioned.

Analytical Model of the Reinforced Concrete

The analytical model of the structure is capable of describing the inter-
action of uncracked or cracked concrete, and reinforcing in any number of
arbitrary directions. The assumed action is as follows:

The uncracked concrete itself is assumed as isotropic homogeneous material
in the plane stress state. The cracked concrete is considered anisotropic and
capable of resisting only normal stresses parallel to the crack direction. This
implies that the crack spacing is infinitesimal. The crack direction is perpen-
dicular to the principal tension in the concrete just prior to crack formation.

Similarly, the reinforcement is considered as continuous medium; no indi-
vidual bars are considered; instead, continuous distribution of reinforcement
area within any one concrete element is assumed. Both cracked concrete and
reinforcement are in uniaxial stress state.

It follows from the above assumptions that the reinforced concrete in the
cracked state can be visualized as a planar lattice structure with infinitesimal
mesh size. One set of lattice links is formed by the concrete columns and one
is formed for each reinforcement direction. These links form a truss structure
through which all internal normal and shear forces are transmitted. Perfect
compatibility of deformation between concrete and reinforcement is assumed.

Any rational constitutive relation can be applied to the components of the
above defined material. In this study the simplest bi-linear laws were adopted.

The uniaxial stress-strain relationship for concrete is assumed elastic-
perfectly plastic in compression, and elastic and brittle in tension as shown
in Fig. 2. The concrete plasticity is limited by maximum concrete strain e, .
The yield criterion for two-dimensional plasticity of concrete is assumed of
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the Von Mises form. The maximum normal stress theory is applied to tensile
failure. The complete assumed strength criterion is shown in Fig. 3. The dashed
line indicates the experimental criterion obtained in Ref. [6].

The stress-strain relationship for reinforcement is assumed elastic-perfectly
plastic, as shown in Fig. 4.

The validity of these assumptions must be determined by tests such as will
be described later. In many cases they lead to acceptable results.
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Fig. 4. Uniaxial Stress-Strain Relation for Steel Fig. 5. Total Stresses {s} in the ele-
Reinforcement. ment of Reinforced Concrete Panel.

Material Stiffness Formulation

The term ‘“‘material stiffness’’ is used for stress-strain relations of an
infinitesimal element in analogy with the designations ‘“‘element stiffness’’ and
“structure stiffness’’ which determine force-displacements relation of elements
and structures. The material stiffness is derived on the basis of the above
defined theoretical model of the reinforced concrete.

The material stiffness of the composite element is obtained by superposition
of material stiffnesses of the individual material components, concrete and
reinforcement. For the purpose of this derivation, let us consider an element
of a reinforced concrete panel subjected to plane stress, as shown in Fig. 5.
The side dimensions and the thickness of the element are equal to unity.
A stress-strain relation for the element can be written in the form
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{s} = [D1{e}, (1)

where {s} = [s,s,s,,]7 is the total stress vector, [D] is the composite material
stiffness matrix, and {e} = [e,¢,€,,]7 is the strain vector. The strains are
common for all component materials, while the total stress vector is the sum
of the component stress vectors

) = 1+ 20 2)

{s°} is the concrete stress vector and {s’} is the reinforcement stress vector for
the reinforcement in the ¢-th direction. Stresses {s}, {s°}, {s}, act on a unit
area of the composite cross section of the panel; it should be noted that the
total stresses {s} do not represent real stresses, but internal forces acting on
a composite element.

These stresses can be found from the strains by

{5} = [D°l{e}, (3)
{8} = [D*}{e}. (4)

in which [D°] and [D?] are the concrete and reinforcement material stiffness
matrices respectively. Substituting Eq. (3) and (4) in Eq. (2) and comparing
Eq. (1) and (2), the composite material stiffness matrix can be formed by
superposition of component material stiffness matrices as follows:

[D] = [D9] +§; [D1], (5)

where n is the number of reinforcing directions.

The component material stiffness matrices must reflect all stages of assumed
material behavior, namely, elastic and plastic stages of the concrete and of
the reinforcement and the uncracked and cracked stages of concrete. Matrices
for all these cases are listed in the next section. A detailed derivation of com-
ponent stiffness matrices is given in Ref. [7].

Component Material Stiffness Matrices

Elastic Uncracked Concrete

This matrix is immediately available because it represents Hooke’s Law
for plane stress in an isotropic material

1 v 0

E, |v 1 0 (6)
2 1—v |
0 o0

[D°] =

1—v

Lt
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Plastic Uncracked Concrete

In this case the approach of the Theory of Plasticity is adopted which takes
into account the Von Mises yield condition and associated flow rule. The
material stiffness matrix including these plasticity conditions was derived in
detail in Ref. [8] and [9] for incremental stresses 8{s°} and incremental strains

5{e} |

8{s} = [Dl.p 8{e}, (7)
where the elasto-plastic matrix [D],, is |
[Dl, = [PI(LI]—{g}{g}" [D1({g}" [DP1{gh) ). (8)

In this, [D] is the elastic matrix given in Eq. (6), and
(07 = e (65— 355) (55— 1 ) (32, ©

The concrete material stiffness matrix for the plastic stage of the uncracked
concrete, [D°]=[D],,. It depends on the current concrete stresses, {s°} but is
constant for a sufficiently small load increment.

Elastic Cracked Concrete

The cracked concrete is subjected to normal stress {s,’} parallel to the
cracks. The uniaxial stress-strain relation in the U-direction, as indicated in
Fig. 6, is

8¢ =FE,e,. (10)

Transformation of Eq. (10) from U, V- to the X, Y-coordinates using appro-
priate stress and strain transformation gives

{5z = [DH{e}s (11)
where the material stiffness matrix of the cracked concrete is
cos! cos?fBsin?B  cos3Bsinf

[D°] = E,| cos?Bsin?B  sin%f cosBsin3B |. (12)

_cos’Bsinf cosBsin®B  cos?Bsin?f

The angle B indicates the direction of the cracks as shown in Fig. 6.

Plastic Cracked Concrete

In the plastic range the increment of strain does not produce any additional
stresses. The instantaneous modulus £, can be considered zero. Consequently,
it follows from Eq. (12) that the component material stiffness matrix is a zero
matrix

[D°] = [0]. (13)
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Elastic Reinforcement

The reinforcement is subjected to uniaxial stress. The material stiffness
derivation for the i-th reinforcement inclined by an angle « with the X-axis
is very similar to the case of cracked concrete. The uniaxial stress-strain
relation in the U-direction (Fig. 7) is

st =p'H.e,, (14)

where p’ is the steel ratio.

Fig. 6. Concrete Stresses {s¢} in the Fig. 7. Reinforcement Stresses {st}.
Cracked Concrete.

The transformation of Eq. (14) to the X, Y-coordinate system gives
{'}e = [D'|{e}s (15)

where the material stiffness matrix of ¢-th reinforcement is

costa cos?asin?a  cosdasina
[D] = p* B, | cos?asin?a sinta cosasinda |. (16)
cos3 o sin o cos a sind o cos?xsin?«

Plastic Revnforcement

Similar to the case of cracked concrete, the instantaneous modulus £, is
zero and the component material stiffness matrix is a zero matrix

[D] = [0]. (17)

All listed component material stiffness matrices, except the one for two-
dimensional plasticity of concrete, are valid over finite load intervals. For
example, Eq. (6) holds throughout the elastic uncracked stage, and Eq. (17)
is valid for the entire period in which the yield stress of the reinforcement is
reached. Only the elasto-plastic matrix given by Eq. (8) is derived for small
load increments. However, it was shown in Ref. [9] that relatively large load
increments can be applied in this case as well.
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Crack Direction

It is assumed that the concrete cracks when the concrete principal tension
reaches the tensile strength. The direction of the concrete cracks is perpen-
dicular to the principal tension in the uncracked concrete just prior to crack
formation. It is, therefore, necessary to determine this direction.

The composite material stiffness given by Eq. (5) may be regarded as Hooke’s
Law generalized for anisotropic materials. The degree of anisotropy depends
on the amount and the mechanical properties of the reinforcement. In general,
anisotropy causes deviation between principal stress and principal strain
direction. This implies that the principal directions of concrete stresses, which
are identical with the principal strain directions, deviate from the principal
directions of the total stresses.

s
2 crack

; di ti
y reinforcement I // irection

x reinforcement

rsl

™S concrete
principal tension

Fig. 8. Deviation of Crack Direction from Total Principal Stress Direction Caused by
Reinforcement.

0.0 1.0 2.0

Fig. 9. Effect of Stress State on the Deviation of Concrete Principal Directions.

The magnitude of this deviation depends on the reinforcing ratios, and
also on applied total stresses. An example for an orthotropically reinforced
element is used to examine the deviation quantitatively. The notation of the
angles is indicated in Fig. 8; the reinforcement parallel to the X and Y axes
is inclined by the angle « with the direction of the total principal stress s;;
the angle 6 denotes the deviation of the concrete principal stress of from the
total principal stresses s .
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The effect of the stress state on this deviation is shown in Fig. 9 as a func-
tion of the stress ratio k=s,/s; for the case of an element with p,=0.02,
p,=0.005, «a=30°, E /E ,=10. Fig. 9 shows that the deviation is strongly
affected by the ratio of principal stresses k. In the case of equal stresses,
k=1.0, the concrete principal directions coincide with the axes of orthotropy
and therefore, 8 =90°—«. However, the deviation is relatively small for a
wide range of stresses which are likely to occur in structures.

In some other approaches [10], [11] no distinction is made between the
concrete and the total principal stresses, leading to crack directions different
from those in this work in which the concrete stresses are considered sepa-
rately. The magnitude of this difference is the same as the deviation of the
concrete principal stress direction from that of the total principal stresses.

Comparison of the Theoretical Reinforced Concrete Model with Tests

The theoretical model of reinforced concrete which was derived deviates
from real behavior in many respects, in order to simplify the mathematical
formulation. Therefore, it is appropriate to compare theoretical predictions
with experimental results. The data of PETER [10) are used for this purpose.

The test specimens in Ref. [10] contained uniformly distributed orthogonal
reinforcement inclined with respect to the principal tension axis as shown in
Fig. 10. A total of 9 panels was tested in uniaxial tension; 7 panels had equal

39x39"
measured T < reinforcement
i Y » .
region N directions
\\ {“\"_"" 9 x/7
\Nl \ //rl
N — I Vgl Fod — N
PANEIR
/’i/ \\.,.:.._ thickno_ass 3,
63" é I‘—:::::.\Wi‘liq—Ah ;31”.dtal..”bars,
acin
[ \ ) P 9

63"

Fig. 10. Peter’s Test Panel Subjected to Uniaxial Tension.

reinforcement in both directions and variable angle « from 0° to 40°. Two
panels were orthotropically reinforced. The tensile force N was transferred
to a panel edge by a mechanism ensuring uniform stress distribution.

The load-extension relationships of tested panels compared with theoretical
results are shown in Fig. 11. The theoretical lines are obtained from Eq. (5)
and (1).

The comparison of the theoretical and experimental load-extension diagram
in Fig. 11 shows that the theoretical stiffness in the cracked stage under-
estimates the real stiffness. This could be expected, because in the test speci-
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Fig. 11. Load-Extension Relationships.

mens the reinforcing bars between adjacent cracks are embedded in the con-
crete which contributes to the stiffness. This effect diminishes with bond slip
progression at higher load and this leads to the better agreement between the
theoretical and experimental stiffness at higher load.

Unfortunately, the arrangement of the test is an exceptional case in which
the theoretical stiffness varies discontinuously with the angle «. Such a case
arises only when the cracks are perpendicular to the applied principal tension;
then the stiffness for « =0° is about twice of that for 0° <o <45°.

The transverse displacement 4,, defined in Fig. 10, essentially represents
the shear deformation of the panel caused by uniaxial tension. The relationship
between the transverse displacement and the reinforcement direction « is
shown in Fig. 12 for both theoretical and experimental results. Good agreement
between the analytical and experimental transverse displacements is observed
for 30°<a<45°. However, when the angle « approches 0° the theoretical
model basically differs from the real behavior. This discrepancy is mainly
caused by the lattice model of the cracked element.

0.3-r. \
Ah,in :: \
O'ZI \ theory

translations avoided by
I/ \ shear resistance of real
cracked concrete

0.14 /| #

experiment,
Ref. 10

30° o~ 40° 45°

Fig. 12. Effect of Reinforcement Direction on the Transverse Displacement at Load N = 77 Kips.
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The shear stiffness of the theoretical lattice model for the shear parallel to
the cracks is very small as o« — 0°. Therefore, the big shear displacements of
the theoretical model can be eventually prevented by very small forces, so that
from the viewpoint of stress analysis the discrepancy indicated by Fig. 12 is
not so serious.

In the real element the shear deformations are prevented by the shear
resistance of the cracked concrete owing to the irregular cracks (aggregate
interlocking) and the dowel action of reinforcement [12], [13]. The shaded area
in Fig. 12 therefore indicates the discrepancy caused by neglecting the aggre-
gate interlocking and dowel action effects. Similar behavior was observed
from comparison of reinforcement stresses.

On the basis of this comparison, some general conclusions can be drawn.
The theoretical model is capable of qualitative simulation of the real element.
The stiffness of the model is generally smaller than that of the real element.
The magnitude of this deviation depends on the applied stress state. The
underestimation of the theoretical stiffness in the cracked stage is caused by
neglect of concrete interaction between adjacent cracks (or infinitesimal
spacing of cracks) in the model, and by neglect of the shear resistance of the
cracked concrete owing to the aggregate interlocking and to the reinforcement
dowel effect.

Finite Element Analysis

The derived stress-strain relations, represented by the material stiffness
matrices, can now be incorporated in the analysis of reinforced concrete panels.
The analysis based on these material stiffnesses includes the nonlinear effects
of cracking and plasticity. The problem can be classified as an inelastic non-
linear analysis of a nonhomogeneous anisotropic body. A direct solution for
such problems is in general impossible to obtain. Hence, for this type of pro-
blem a numerical analysis must be employed.

The numerical analysis is performed by load increments as shown in Fig. 13.

P

~ E
AP]: 1 / intermediate solution

Y final response

-3

Fig. 13. Load-Displacement Diagram of an Incremental Analysis with Force Increments 4 P.
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The boundary value problem within one load increment is solved by the finite
element analysis based on the stiffness method. A panel is subdivided into a
number of finite elements which are connected in the nodal points. A triangular
constant strain element is used in this work. The derivation of this method is
presented elsewhere [14], [15] and will not be repeated here. The stiffness
method requires a solution of the matrix equation

{4 X} =[K]{4 U}, (18)

where {4 X} is the vector of load increments, and {4 U} is the vector of unknown
displacement increments. The size of these vectors is equal to the number of
discrete displacements considered in the analysis. The stiffness matrix [K] is
assembled from the element stiffness [k] matrices by the direct stiffness proce-
dure. The element stiffness matrix depends on the material properties of the
element, and is given by the matrix triple produect [7], [14]

[k] = [[B]* [D][B]dv

Matrix [ B] specifies the strain-displacement relations. The material properties
are introduced by means of the material stiffness matrix [D]. The element
“stiffness matrix changes with every change of the material stiffness, such as,
for example, during the transition from the uncracked to the cracked state.

The procedure involving one load increment can be illustrated by means
of the load-displacement diagram shown in Fig. 13. The solution is first per-
formed assuming an initial stiffness (Point 2 in Fig. 13). Then all material
criteria, are checked in all elements. In those elements in which the tensile
strength or yield stress are exceeded, the material stiffness and also the
corresponding element stiffness matrices are changed. The forces acting on
these elements must be redistributed accordingly to maintain equilibrium. It
may take several displacement solutions (between Points 2 and 3), before all
material criteria are satisfied. Any number of elements can be treated simul-
taneously for cracking or plasticity during one load increment.

Jr 2 A
l
|
I
|

intermediate
solution

|

| .

! -final response
|

A3

L1l | | irs

Fig. 14. Load-Displacement Diagram of an Incremental Analysis with Displacement Increments 43.
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If the displacement (instead of force) increment is specified the load-
displacement diagram may appear as shown in Fig. 14. Thus, the response in
the load intervals in which the structure is unstable with respect to specified
forces can be obtained. Such regions can occur either just after crack formation,
or at the limit load.

The outlined analysis was programmed for computer [7]. In order to be
able to analyze both monotonic and cyeclic load histories, a variety of different
cracking modes representing the opening and closing of cracks have to be
considered. Those used in this program are shown in Fig. 15.

Uncracked
Concrete

Concrete cracked
in one direction

First set of
cracks closed

First set of
cracks closed,
second set of
cracks formed

Both sets of
cracks closed

Fig. 15. Crack Modes.

o LAWY

The output of programs of this type can be very voluminous, so that it
becomes necessary to obtain the output data in manageable form. In this case,
plotting equipment was used to map crack patterns and directions as well as
to mark plastified elements for every load step. Thus, a complete record of the
crack propagation was obtained.

Examples of analytical solutions along with experimental verification will
be presented in a companion paper.



44 V. CERVENKA - K. H. GERSTLE
Acknowledgement

This paper is based on part of a Ph. D. Thesis by the senior author submitted
to the Department of Civil Engineering, University of Colorado. Thanks are
expressed to the University’s Council on Research and Creative Work and to
the Civil Engineering Department for financial support of this study.

Keywords

Cracking; cyclic load; finite element method; lattice model; limit analysis;
reinforced concrete; shear wall; stress analysis; stress-strain relations; struc-
tural analysis; panels; plasticity.

References

1. KuaN, F. R., SBAROUNIS, J. A.: Interaction of Shear Walls With Frames. Journal
of Structural Division ASCE, Vol. 90, No. ST 3, 1964, pp. 285-335.

2. RosMmaN, R.: Approximate Analysis of Shear Walls Subject to Lateral Loads. Journal
of A.C.I. Vol. 61, June 1964, pp. 717-732.

3. CrougH, R. W., WiLson, E. L., King, I. P.: Large Capacity Multistory Frame
Analysis Program. J. Struct. Div. ASCE. V. 89, No. ST 4, 1963, pp. 179-204.

4. CLARK, W. J.: Analysis of Reinforced Concrete Shear Wall-Frame Structures. Ph. D.
Thesis, Alberta, Canada, Nov. 1968.

5. Pavray, T.: The Coupling of Shear Walls. Ph. D. Thesis, Department of Civil Engi-
neering, University of Canterbury, Christ-church, New Zealand, 1969.

6. Kuprer, H., Hirsporr, H. K., Rusca, H.: Behavior of Concrete Under Biaxial
Stresses. A.C.1. Journal, August 1969, pp. 656-666.

7. CERVENKA, V.: Inelastic Finite Element Analysis of Reinforced Concrete Panels
Under In-Plane Loads. Ph. D., Thesis, Dept. of Civil Engineering, University of
Colorado, 1970.

8. Frrippa, C.: Refined Finite Element Analysis of Linear and Nonlinear Two-Dimen-
sional Structures. Ph. D. Dissertation, Dept. of Civil Engineering, University of
California, Berkeley, 1966.

9. Zienkiewicz, O. C., VaLLiarpraN, S., King, 1. P.: Elasto-Plastic Solutions of Engi-
neering Problems ‘““Initial Stress” Finite Element Approach. International Journal
for Numerical Methods in Engineering, Vol. I, pp. 75-100, 1969.

10. PETER, J.: Zur Bewehrung von Scheiben und Schalen fiir Hauptspannungen schief-
winklig zur Bewehrungsrichtung. Dr.-Ing.-Dissertation, T. H. Stuttgart, 1964.

11. Gvozpev, A. A., KarrENKO, N. 1.: Behavior of Reinforced Concrete with Cracks
Under Plane Stress Situation. Stroitelnaia Mekhanika i Rastchot Sooruzhenii, No. 2,
1965 (in Russian).

12. Fexnwick, R. C., Pauray, T.: Mechanisms of Shear Resistance of Concrete Beams.
Journal of Struct. Div. ASCE, St. 10, V. 94, Oct. 1968, pp. 2325-2350.

13. KrerFeLp, W. J., THURsTON, C. W.: Studies of the Shear and Diagonal Tension
Strength of Simply Supported Reinforced Concrete Beams. Journal of A.C.I., Apr.,
1966.



INELASTIC ANALYSIS OF REINFORCED CONCRETE PANELS: THEORY 45

14. Zienkiewicz, O. C.: The Finite Element Method in Structural and Continuum
Mechanics. Mc¢ Graw-Hill, London, 1967.

15. PrzeMIENIECKI, J. S.: Theory of Matrix Structural Analysis. McGraw-Hill, New
York, 1968.

Summary

Two nonlinear effects, cracking and plasticity, are considered in the analysis
of reinforced concrete panels under in-plane forces. The stress-strain relations
for an infinitesimal element of a panel are formed for an uncracked and
cracked element in elastic and plastic stages. An incremental finite element
method is used for the nonlinear analysis of the panels.

Résumé

On considére deux effets non linéaires, la fissuration et le comportement
plastique, dans 1’analyse de dalles (plaques) en béton armé sous 1’effet de forces
dans leur plan. Les relations entre la tension et la sollicitation pour un élément
infinitésimal de la dalle (plaque) sont données pour un élément fissuré et un
non fissuré dans les stades élastique et plastique. Pour I’analyse non-linéaire
des plaques on utilise, en plus, une méthode d’éléments finis.

Zusammenfassung

Man untersucht zwei nichtlineare Einfliisse, Rissbildung und plastisches
Verhalten bei der Analyse von Stahlbetonscheiben unter Einwirkung der in
ihrer Ebene wirkenden Krifte. Die Spannungs-Dehnungs-Beziehungen fiir
ein infinitesimales Element einer Platte werden fiir ein gerissenes und unge-
rissenes Element im elastischen und plastischen Zustand untersucht. Fiir die
nichtlineare Analyse der Platten wird eine Methode der inkrementalen end-
lichen Elemente beniitzt.
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