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Introduction

A hyperboloid of revolution supported by a ring beam and a large number
of closely spaced columns, as shown in Fig. 1, is commonly used as a natural
draught, reinforced concrete cooling tower. An analysis of a column-supported
hyperboloid subject to gravity loading has been presented elsewhere [5], and
a review of the literature treating symmetrically loaded shells of revolution
with discrete supports is contained therein. In addition, Steele [11] and
Elms [1] have examined the effects of self-equilibrated edge loading on this
class of shells. The wind load considered in this paper, shown in Fig. 2, is a
quasistatic design wind load based on the results of wind tunnel tests [10].
Many other pressure distributions have been discussed in the literature including
prototype measurements [7] and all are amenable to this analysis when
represented in harmonic form.

The objectives of the present investigation are [I] to generalize the
previously developed Solution [5], which is valid only for large values of the
harmonic number n, so that it is applicable for all values of n > 1; and [II]
to use this Solution, in conjunction with the available continuous boundary
Solutions [3], [4], [6], to analyze a column-supported hyperboloid of revolution
under the design wind loading.

In order to clarify these objectives, it is necessary to examine the idealization
proposed for the lower boundary of the shell. As shown in Fig. 3 a the meri-
dional stress N^ is assumed to be uniformly distributed over the width of the
column. The intensities of the distributed reactions are determined from a
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Fig. 3. Superposition Representation of Column Reactions.

continuous boundary analysis by Computing the force tributary to each
column and dividing by the column width. This idealized support system is
represented by a superposition of the continuous boundary reaction, shown
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in Fig. 3b and a self-equilibrated edge load, shown in Fig. 3 c, which is
composed of the negative of the continuous boundary reaction between columns
and the difference between the uniformly distributed column reaction and the
negative continuous boundary reaction within the column width. When this
edge loading is represented by a Fourier series, all harmonics participate
except n 0 and n 1 which are not self-equilibrating but must correspond
to an external loading [2]: This is in contrast to the Solution for gravity loading
in which symmetry restricts the partieipation to harmonics which are integer
multiples of the total number of columns [2], [4]. Therefore, it is necessary
that the Solution employed in Ref. [5] be generalized to include all harmonics

n> 1.

Surface Geometry

The geometry of a hyperboloid of revolution, shown in Fig. 1, is defined by

rl-(k*-l)y*=\, (la)

in which rn —-, y —, &2 i + (lb)u a a b*

and R0 the horizontal radius, Y the vertical coordinate, a the throat
radius and

a T a S -, xb ,_— ._ -, (lc)
/*2-a2 fi 2 —a2

in which s the base radius, t the top radius, and S and T the vertical
distances from the throat to the base and the top of the shell, respectively.

The coordinate system is also shown in Fig. 1 where the positive directions
of <f> and 6 are indicated. The angles </>s and <f>t denote the base and top of the
shell, respectively, and

|/&2-l _ -aik*-\ ,_Ä'-ar' 7PW7=T' ** flf*-(*dn-*-l)»' ^
in which rg and r^ are the nondimensional prineipal radii of curvature. Also,
H denotes the constant thickness of the shell and 2 Q the angle subtended by
the column measured in the horizontal plane. The shell is geometrically
described by the dimensionless parameters a/s, ajt, H\a, k and the throat
radius a.

It is convenient to define the geometric parameter

8 I \csc26. (3)

For the hyperboloid, in view of Eqs. (2 a) and (2b),

S=--. (4)
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Governing Equations

Derivation and Definitions

The formulation is based on the Novozhilov equations in terms of stress
resultants which combine the bending theory equilibrium equations for thin
shells of revolution and the Gol'denveizer compatibility relationships [5], [8].
The stress resultants used in the formulation, shown in Fig. 1, are nondimen-
sionalized as

{R} {n^nBnHm^mdmHg^ -^{N^NQNHM^aMQaMHaQ^Qo\ (5 a)
a

and taken in the form

{i?}=2r®i{£_}, (5b)
n 0

in which {Rn} {n^n n0n nHn m^n mdrl me<j)n q^n qdn}

and [©] [eosn 8 cosn 0 sinn 0 cos n0 cosn 0 sinn 0 cosn 0 sinn 0\.

Transformation of Equations

In order to uncouple the Novozhilov equations, the parameter §, as given
by Eqs. (3) and (4), must be a constant [8]. Although not strictly true for a

hyperboloid, § will be approximated by a constant S (<f>s) where (f>s denotes the
base of the shell as shown in Fig. 1. This approximation is based on the assumption

that the edge effects are rapidly attenuating from the base of the shell,
which has been shown to be valid for gravity loading [5].

— k2
Taking S ~ r (6)

scsc<ps

the homogeneous Novozhilov equations for harmonic n take the form [5], [8]

d2P-^-^, 0, (7 1,2), (7)

in which £x and £2 complex auxiliary variables defined elsewhere [5]

Fß -- -ß-[1 ± ^l-±in2vo-±n2(v8)2] + (-^Ü*J v 2 re \rösin(/>/
1 d2r<f> 3 ldr<j>\2 cot</> dr$ r<f, 2 + cos2</>

2 r^ d<f>2 4=r2^\d(f) J 2r(f) d<f> resin2<f> 4sin2<f>

h

/12(1-/*2)
and jjl Poisson's ratio.

The upper and lower signs correspond to j 1,2 respectively.
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At this point, the treatment must be generalized from that presented in
Ref. [5] which was based on the recognition that only harmonics which are
integer multiples of the total number of columns participate in the Solution
for symmetric loading. For the asymmetric loading considered in this paper,
the Solution must be valid for all n> 1 necessitating the retention of certain
terms which were dropped in the previous treatment. The reason for eliminating
harmonics n 0 and n 1 from consideration in this Solution was stated in
the introduction.

The first term of F3- is O(r^), the second 0(n2) and the remainder 0(1).
Furthermore the term 4w2(vS)2 under the radical is negligible compared to
4n2vS. Dropping small quantities leads to

Ft - W^ e*n L^=j, tf l,2), (8)

in which
n v n v

Wj 0.25 ±0.5 W0cosy0± —-TT0siny0 + 2 +0.25 TF02,
J u 'u resm2cf) u 'u r2sm4</> u

y. 0.5 tan-1 yj,
— rg sin2cf) (1 ± W0 cos y0)

Yj 2vn2±r0sin2</> W0siny0'

WQ= [1 + 16^(^8)2]0-25,

y0 =0.5 tan-1 — 4 n2 v o).

Solution of Governing Equations

The Solution to Eq. (7), obtained by asymptotic integration, is [3], [8]

ij ~(Clje^ + C2je-^), (9)

in which ß.=jFjd(f)
and Clj and C2j are complex integration constants.

Once the Solution to Eq. (9) is obtained, the complex auxiliary variables
defined in the formulation may be decomposed into real and imaginary
parts and suitably combined to give explicit expressions for the stress resultants

defined in Eq. (5). The details of these transformations are given else-
where [5]. After considerable algebraic manipulation the stress resultants for
harmonic n may be arranged in the form

{Rn} [B][D1][D2i[Ü]{C}, (10)

in which {Rn} is given by Eq. (5b) and the elements of matrices B, D1, D2,
U and C are specified in Appendix 1. The resulting expressions for the stress
resultants are similar to those presented earlier [5] appropriately amended
by the incorporation of the generalizations introduced in this paper to extend
the theory to include the lower harmonics.
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Application of Solution

Discrete Support System

As described in the introduction, the discrete support system is assumed

to be represented by the superposition shown in Fig. 3. The continuous support
system shown in Fig. 3 b is best solved using the homogeneous Solution given
elsewhere [3] and taking the particular Solution as the membrane theory
Solution [4]. The self-equilibrated system shown in Fig. 3 c is solved using the
expressions derived in this paper.

Assuming that the column reactions are uniformly distributed over the
width of the columns with total magnitude equal to the tributary continuous
boundary reaction, the intensity of the column reaction Rx for a column
with center line at 0 0\ is given by

0X+(7r!c)

^X=^jn(j)(cl>s,0)d0, (11)

0A-(7T/C)

in which c the total number of equally spaced column support points,

n^ the continuous boundary reaction,
2nX

and A the column number (0,1, ...,c— 1).

The continuous boundary reaction n^ (cf>s,0) is given by
00

where the expressions for n(j>n are given elsewhere [3], [4], [6]. It should be noted
that Eq. (12) represents the meridional stress resultant at the base of the shell
as shown in Fig. 3b. Substituting Eq. (12) into Eq. (11) and integrating yields

fr - ^ 1 V- //x • utt cosn8x /loxR^n^^Q+üLn^^s)^- —. (13)
n=l

The stress resultant distribution shown in Fig. 3 c is given by the negative
of Eq. (12) between columns and the difference between Eqs. (13) and (12)
within each column width. In order to represent this mathematically, it is

convenient to expand the system of c column reactions, each of which may be

evaluated by substituting the appropriate value of 0\ in Eq. (13), into a Fourier
series. To be consistent with the assumption of a uniformly distributed column
reaction, prior to expanding Eq. (13) in Fourier series R\ is evaluated expli-
citly at each column A with the series contained in Eq. (13) truncated at the
same value of n which produces acceptable accuracy for the computation of
n+ in Eq. (12).
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The Fourier cosine coefficients for the c column reactions are given by

A=c-1 (2ttA/c) + Q A=c-i
1 V f ö njn 2 V v 27rnXsmnU

n<f>n=— Tj \ Rxcosn0d0 — > i£Acos— —,(n>l) (14)
77 ^=0 t9

J " A=o c n
(2ttAIc)-Q

and the support condition shown in Fig. 3 c is represented by
00

n<f>(<f>s) ^^Ini^^snO, (15)

in which n\ n (</>8) ^ -^.
In order to retain overall vertical equilibrium of the shell, it is sufficient

to consider the transverse shearing stresses q^ distributed in a like manner
as the meridional stress. For the Solution of the loading case represented by
Fig. 3 c

oo

M&) £?;»(&) cos» 0, (16)
71=2

in which g;n(<f>s) q,4>n-q<f>n,

q(j>n the transverse shearing stress for harmonic n
obtained from the continuous boundary analysis,

and q'^n is computed by using q(j>rl in Eq. (13) and then
evaluating Eq. (14).

Boundary Conditions

At the base of the shell

^ ^B) q<t>n q$n' (17)

The ring beam will be assumed to be rigid circumferentially, and also to
restrain movement in the horizontal plane. These kinematic conditions

V 0, Ucoscf>s+Wsin(/>s 0, (18)

in which U, V and W are the meridional, circumferential and radial displacements

respectively, may be expressed in terms of the stress resultants using
the strain-displacement and stress resultant-strain relationships as

edn n8n-H<n<l>n Q> (19)

in which egn represents the circumferential strain for harmonic n.
The base will be assumed to be unrestrained against rotation about the

circumference so that
m_„ 0. (20)
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The top of the shell is assumed to be stress free, i. e.,

in which

n*n °> lln 0, n64 n
0, ™<4_ 0, (21)

Numerical Analysis

A typical hyperboloid, defined by a/s 0.55, a/J 0.90, fc2 1.18, c 30,
Q 0.021 and h 0.00712, will be considered to illustrate the behavior of the
various stress resultants. These values correspond to an actual shell with a
6 in. thickness and 140 ft. throat diameter. The design wind pressure, Pr, is
taken as unity for purposes of comparison. Such a shell with a continuous
boundary has been studied elsewhere [5], [6], [8]. In the following figures, only
the stress resultants due to the design wind pressure are shown. It should be

noted that for actual shells, the stresses due to dead load must be added to
obtain the net effect of the combined loading. Since a small Variation in design

i
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/k/ -e= c
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wind load can cause a very large change in the tension in the vicinity of the
windward column, it is recommended that an ultimate strength approach with
appropriate load factors for the combination of dead and wind loading be

used. Recommendations for suitable load factors and material safety coefficients

have been made by Paduart [9].
In Figs. 4 and 5 values of the total stress resultants, as computed from

superposition analysis shown in Fig. 3, are plotted against arguments of y.
Also shown are the values of n^, n$, ng^, m^, and m# obtained from a continuous
boundary analysis. Results are shown only for the windward column with
centerline at 0 0°. The corresponding results for the column with the maximum

compressive reaction show similar trends but are generally opposite in
sense.

Although </> was used as the independent variable in the previously derived
expressions, the vertical coordinate y is preferable for illustrating the meri-
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dional Variation of the stress resultants. For this shell the base corresponds to
y —3.579. The coordinates # 0, ß/2, 7r/4c and 7r/2c indicate respectively,
the column center line, the column quarter point, and the eighth and quarter
points of the are betw^een column center lines measured in the direction of
increasing 0. The series given by Eq. (5b) are truncated after 480 terms where
the remaining terms are less than 1% of the partial sum. In the interest of
computational expedience, harmonics with Fourier coefficients n'^n less than
1% of R0 are neglected. It is apparent from Figs. 4 and 5 that consideration
of the discrete support system results in a significant magnification of both
the in-plane and bending stress over those computed from a continuous
boundary analysis. The intensification of the stress resultants dissipates
rapidly away from the base of the shell corroborating the basic assumption
used in deriving Eq. (6).

Fig. 6 illustrates the convergence of the Fourier series given by Eq. (15)
describing the boundary system shown in Fig. 3. The truncation of the series
a,tn 480, of course, provides the best representation but the greatest improve-
ment is obtained in increasing n from 120 to 240.

The effect of altering the spacing of the columns is illustrated in Figs. 7

and 8. Values of c 30 and 60 are plotted. For c 60 the column width is
halved so that the value of n^ at the base of the shell is the same in both cases.

Increasing the number of column is seen to be beneficial, in general, since the

8= 0
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Fig. 8. Bending Stress Resultants - Effect of Column Spacing 0 0°



58 PH. L. GOULD - S.-L. LEE

e o

u— h«0.0 )7I2

¦^s^ 136

Shell Dato

a/s 0.55
a/t « 0.90

k2 « 1.18
C 30
A 0.021

n « 480

0 10 20 30 40 50
n«,

-3.2

1

II
il

—h«o.o )7I2
©= 0

/is- — h * o.os 136

(/ i

-8-4 0 4 8 12
ne

1

e= a
hiO.oo 12 Jh= 0.0213«

Ji^

-24 -20 -16 -12 -8
ne<|>

Fig. 9. Membrane Stress Resultants - Effect of Shell Thickness 0 0°.

amplification of the stress resultants due to the discrete supports is reduced
in all cases except for the meridional bending moment.

To provide increased resistance for the comparatively large bending stresses

in the vicinity of the base of the shell, the thickness is often increased. The
analysis of shells with variable thickness is beyond the scope of this investigation;

however, since the column effects are greatest in the immediate region
of the base of the shell, it is feit that taking the value of H as the base thickness

in the current analysis provides a good approximation. In Figs. 9 and 10,

the stress resultants are shown to be increased only slightly while the shell

in-plane and bending capacities are increased many times so that increasing
the thickness at the base of the shell is apparently an efficient means of dealing
with the local effects of the discrete support Systems.
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Conclusions

Considering the homogeneous part of the governing equations of the bending
theory of shells of revolution in complex form and introducing certain
geometrical approximations based on the geometry of the hyperboloid and the
supposition of rapidly attenuating edge effects facilitates the derivation of
explicit expressions for the in-plane and bending stress resultants for a general
harmonic loading. Using the results of a continuous boundary analysis together
with the derived homogeneous Solution, the column-supported boundary is
represented in idealized form by assuming the column reactions to be uniform
under the action of a quasistatic design wind load.

For a shell with representative dimensions, both the in-plane and bending
stresses are increased significantly over those values computed considering a
continuous boundary. Using a greater number of columns to provide a given
total support width reduces the magnitude of the amplification of the stress
resultants. Also, local thickening in the region of the shell boundary appears
to be an effective way of providing increased resistance against the compara-
tively large stress resultants in the vicinity of the base of the shell.
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Appendix I. Explicit Expressions for Stress Resultants

iDi] f0e 06 08 08 05 05 07 07.18X8 > (22)

[D2]

oc9 -oc, -ai -eco

1 0 0 1 1 0 0 1 -1 0 0 -1 -1 0 0 -1
0 -1 1 0 0 -1 1 0 0 1 -1 0 0 1 -1 0

*14

*14

*13

*14

*16 *15

*15

*10

*17

no *12

*18 *18

*15

*12 *12 *11

*12

a9ft 0C9n OC-,

*20.

,(23)

8X16

[U]

ß21 cos 025 0 0 0 0 0 0 0

ß21 sin 025 0 0 0 0 0 0 0

0 021 cos 025 0 0 0 0 0 0

0 021 sin 025 0 0 0 0 0 0

0 0 022 cos 026 0 0 0 0 0

0 0 022 sin 026 0 0 0 0 0

0 0 0 022 cos 026 0 0 0 0

0 0 0 022 sin 026 0 0 0 0

0 0 0 0 023 cos 027 0 0 0

0 0 0 0 023 sin 027 0 0 0

0 0 0 0 0 023 cos 027 0 0

0 0 0 0 0 023 sin 027 0 0

0 0 0 0 0 0 024 cos 028 0

0 0 0 0 0 0 024 sin 028 0

0 0 0 0 0 0 0 024 cos/328

0 0 0 0 0 0 0 024 Sin028_

(24)

16X8
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[B]

1

r# sin2 </>

-1
rß sin2 (/>

0

0

0

0

0

0

0

0

0

"(!-/*)
re sin2 cf)

r^ sin2 </>

0 -

0

0

0

1

0

0

0

-nv2 (1 — /x) cos</>

r# sin2 <£

0

0

0 0 0

0 0 0

COt cf) -1 o
rß sin </> n r^ sm <£

— v 0 0

-Vfl 0 0

}

0 0 -v(l-/x
nr^sincß

0 0 0

— nv 0 0
rß sin cf>

{C} {(?! 02 C3 C4 C5 C6 C7 C8},

where C^ — C8 are constants of integration and

0

0

0

v (v — jjl) COt</>

— v (v — fi) coscf>

0

0

0

— v cot (f>

r<t>

vcot <f>

r<f>

0

0

0

0

— v

0

(26)

Yi n
Yi 2

"""
4 '

ß: y^
.fl /sill^

06 ßsßs, ßl

n2 v (r^, +. 0) cos <f> W0 sin y0

ßscot$l ZrA -1h'-r-v—^i' ß>==2yy~l

ß. r2 sin3 cf>
010

08 =0307'

2 n* v2 (r<f> + re) cos <j>

r^ sin5 cf) '

0ii -jTT - (09 +0io) > 012 ~ j # — 09 010'

_
1 dy\ _

—1 [Q.5n2v(l + W0cosy0) (rj, + rg) sin</> cos</>"]

Pl3~l~d4~ 1+yf L (2 7i2v + ^sin2^lf0sinro) J '

__
1 dy2 _

—1 |~0.5w2v(l+.%cosy0)(r<£ 4-^) sin</> cos<£1

^~l~dcj " l+y| [ (2^2v-rösin2(/>l^0siny0) J '

015 0f-
03 011

(2n2v — re sin2 </> 1^ sin y0)

_ fl 03 012

,(25)

J8X8

(27)

8^'
ßls ß3aciCOSy2W™,

ß21 eß^W1-0-125,

HlQ — H4 sw29
019 oc^siny^^25,
022 e~ßi r W-0.12S>

025 73-¦ßli>

ß17 ßa«tCOByiW?-**,

ß20 a4siny2TF20-25,

ß23 eß2r W2-0-™

026 r3+^i«>
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027 74-02^ 028 r4+02i>

ßj^fReFjdcf), ßJi=flmFid^9 ßir =fReF,**, (j 1,2),
<f>t <f>t <f>8

oc1=ny—2vS, a2 1 — a1? a3=l + al5

r<h
«4 ="7=» «5 «2 a13 + al a14 > «6 «2 «14 ~ «1 «13 >

yröv
a7 a2 a15 — oc1 a16, a8 a2 a16 + ax a15, a9 a3 a17 — ax a18,

«10 «3 «18 + «1 «17 > «11 «3 «19 + «1 «20 > «12 «3 «20 ~ «1 «19 >

«13 015 ~ 017 > «14 03 (013 + 019) > «15 015 + 017 >

«16 03 (013 -ßll)> «17 016 ~ 018 > «18 03 (014 + 02o) >

«19 016 + 018 > «20 03 (014 - 020) •

Appendix II. Notation

a throat radius
b shell parameter defined by Eq. (lb)
c total number of column support points
C1 — C8 integration constants
Cxj, C2j complex integration constants
[DJ [D2] matrices defined by Eqs. (22) and (23)
Fj variable defined in Eq. (17)
h, H shell thickness

j index designation (1 or 2)
k shell parameter defined by Eq. (lb)
m^, rrtß, rriß^, m^ß nondimensional moment resultants

m4>n>m0n> m0<t> n ™<}>>™0i ™0<j> f°r harmonic n
M^, Mß, Mß^, M^ß moment resultants
n harmonic number

n^,nß, nß^, n^ß nondimensional stress resultants
n<f>n>n0n>n0<l>n n<f> > nd > n0<)> for harmonic n

^w, n"^n coefficients defined by Eqs. (14) and (15)
%* effective membrane shear

V<f>n

N^, Nß, Nß^, N^ß stress resultants
Pr reference design wind pressure
q^, qe nondimensional transverse shearing stress resultants

q<f>n>40n U^Q for harmonic n
q'^nSqQ coefficients defined by Eq. (16)
q$n effective meridional transverse shear

Q^, Qß transverse shearing stress resultants
r<f> r0 j ro nondimensional radii of curvature
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{R}, {Rn} vectors defined by Eq. (5)
Rx column reaction
jR0 R^, Rß radii of curvature
s base radius
S vertical distance from throat to base of shell
t top radius
T vertical distance from throat to top of shell
[Ü] matrix defined by Eq. (23)
U, V, W displacements
y, Y vertical coordinate

«i~~«2o variables defined by Eq. (28)

ßj variables defined by Eq. (9)
03 — 028 variables defined by Eq. (27)

ßJr, ßn, ßjr variables defined by Eq. (27)

y3, y4 variables defined by Eq. (27)
8 parameter defined by Eqs. (3), (4), and (6)

€ßn circumferential strain for harmonic n
0, B, 0X circumferential coordinates
A column number
ix Poisson's ratio
v parameter defined in Eq. (7)
cf) meridional coordinate
cf)s, cf)t angle locating base and top of shell
Q angle in horizontal plane subtended by half width of a

column
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Summary

The governing homogeneous equations of the bending theory of thin shells
of revolution are solved for a hyperboloid of revolution in a form suitable for
representing a column-supported boundary. For a quasistatic design wind
loading, a superposition representation is used to derive a set of explicit
expressions for the stress resultants. The data presented indicates that the
consideration of the discrete support system in the analysis, rather than the
idealized continuous boundary, results in an increase in stresses in the vicinity
of the base of the shell.

Resume

Les equations homogenes determinantes de la theorie de flexion pour voiles
minces de revolution sont resolues pour un hyperboloide de revolution, dans
une forme appropriee pour la representation d'une limite appuyee sur des
colonnes. Pour une distribution de charges du vent quasiment statique, une
representation de superposition nous permet de deriver un ensemble d'expressions

qui fournissent la resultante des charges. Les donnees presentees indi-
quent que considerer l'analyse d'un Systeme de supports rapproches, plutöt
qu'une limite idealisee et continue, entraine un accroissement des solliciatations
dans la region de la base du voile.

Zusammenfassung

Die bestimmenden homogenen Gleichungen der Biegungstheorie dünner
Rotationsschalen werden für ein Rotationshyperboloid in einer, für die
Darstellung einer durch Stützen getragenen Randlinie, geeigneten Form gelöst.
Für eine gewissermassen statische Windbelastung wird eine Überlagerungs-
darstellung benutzt, um eine Gruppe bestimmter Ausdrücke für die Belastungs-
Resultierenden abzuleiten. Die dargestellten Daten zeigen, dass die Betrachtung

des unstetigen Tragsystems in der Analyse, eher als die idealisierte
kontinuierliche Randlinie, in einem Anwachsen der Beanspruchungen in der Nähe
der Schalenbasis zum Ausdruck kommt.
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