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Solutions of Two Dimensional Problems of Elasticity Without Use of
the Stress Function

Solutions de problemes d'elasticite bidimensionnels sans emploi de la fonetion de

tension

Lösungen zweidimensionaler Elastizitätsprobleme ohne Benützung der

Spannungsfunktion

JOSEPH L. KRAHULA
Professor of Mechanics, Rensselaer Polytechnic Institute of Connecticut, Inc., Hartford

Graduate Center, East Windsor Hill, Connecticut 06028 U.S.A.

1. Introduction and Method of Solution

The usual method of solving two-dimensional problems of elasticity is to
introduce a stress function such that the equations of equilibrium are satisfied.
The compatibility equations, which are expressed in terms of the stress function,

are then solved for the stress function. This procedure, however, gives
no indication of how to satisfy any boundary conditions. It is the purpose of
this paper to show that it is often advantageous to first speeify one of the
stresses from Observation of a loaded surface and then use the governing
equations to solve the problem if only in view of Saint-Venant's Principle.

Consider any loaded surface, that of a thin plate for example, shown in
Fig. 1. Use coordinates such that the loaded surface eoineides with a line
parallel to one of the coordinate axis. Then the stress perpendicular to the
surface may be of the form

n

For a closed form Solution to exist the equations of equilibrium and compatibility

must then be able to be integrated to determine the other stresses in
terms of Yi (rj) and its derivatives and any funetions of integration which may
arise. These funetions are then integrated and the resulting constants are
adjusted to satisfy the boundary conditions often only in view of Saint-Venant's
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SURFACE 7 - CONST.

Fig. 1. A loaded surface of a thin plate.

Principle. This procedure will now be illustrated for several two dimensional
problems.

2. Application of the Method

Let the loaded surface (t) —y — const.) in Fig. 1 be a horizontal line and
hence solve plane stress beam problems using cartesian coordinates x and y.
The governing Eqs. [1] (zero body forces) in addition to boundary conditions
are

*£* + *£ 0, ^ + 4J 0, P(ov.a_) 0. (1)
dx cy cx cy u

Eliminating rxy from these equations shows that both ux and oy are biharmonic
funetions. Because of the type of load at the surface y const., the stress ay
must be of the form

n

"y Z Ii(y)**> i 0,1,2, ...n, (2)

where Yt (y) is a function of y to be determined. The two equations of equilibrium

yield the other stresses as

v1^ Y/ xi+2 v1^ Y/ xi+1
°* h(i + \)(i + 2)+x^+Pw> T*y= "L"(tTI)"~a(2/)' (3)

where oc and ß are arbitrary funetions of integration. Substituting in the
equations of compatibility yields the reoecurrence relations

rr + 2(* + l)(i + 2)i;;a + (t+l)(i + 2)(t + 3)(i + 4)r<+4 0 (4)

and ß" + 2(Y0* + Y2) 0 a"'+ 2 7/+ 6 73 0. (5)

The forms of Eqs. (4) were to be expected since ay is biharmonic. Note that
the Solutions for odd and even polynomial loads are uncoupled.
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Consider first the examples Yi — 0 therefore ay 0 and

where c1 — c5 are constants of integration. The function ß itself solves the case

of pure bending (ß c1y) and pure tension or compression of a beam (ß c2).

The function oc c3 y2 -f c5 solves the problem of a cantilever beam loaded at
its free end (see article 21 of Ref. [1]).

Consider next the Solutions when Yt is not zero. Depending on the location
of the origin of coordinates the case i 0 solves the problems of uniformly
loaded beam of article 22 of Ref. [1] and the uniformly loaded cantilever beam
of article 413 of Ref. [2]. The problem of a cantilever beam subjected to a

linearly varying load (see art. 23 of Ref. [1]) is solved by letting i 1. To solve

problems of a beam subjected to a parabolic load it is necessary that ay be of
the form

Uy Y0 + Y2x2, (i 0 and 2).

Note that, in general, if the load is of the form q qi£i the stress av must be

of the form
°v ZYn('n)£n> (n i,i-2,i-±).

n

As noted before, it will be found that the large number of Solutions represented
by (4) and (5) will be subject to Saint-Venant's Principle.

The problem of an anisotropic beam is no more difficult than that of the
isotropic beam just treated. The generalized Hook's Law, when the xy plane
is the plane of elastic symmetry (using notation of Ref. [3]), is

€x all Gx + a12 ay + a16 Txy ' €y ~ a12 °x + a22 ay + a26 Txy >

7xy a16 ax + a26 Gy + a66 Txy

and the third of Eqs. (1) becomes

d2o d2G d2a d2r B2r

^i^ + («66 + 2aia)^ + aM-^ + 2o16^f+2^26^f 0. (6)

The reoccurring relations (4) and (5) for this case are

(i+l)(i + 2) (t + 2) +^6 + ^12) ^+2

-2a2Q(i + 3)YiX3 + a22(i + 3)(i + 4)YM 0, (7)

anßy-2ai6*"y) + (a6<> + 2ai2) Yo -2^i6Yi +2a22Y2 0,

ana(;)-2a16r0w + K6 + 2a12)7/-4a26F2' + 6a22F3 0.

Eqs. (7), unlike those of (4) and (5) (for even and odd loads) are completely
coupled, however, they uncouple for an orthotropic beam.

More closed form Solutions will be subject to Saint-Venant's Principle. For
example, since oc and ß are coupled the Solution for an anisotropic cantilever
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problem of art. 21 of Ref. [1] will not be exact but will only be valid in view
of Saint-Venant's Principle [3]. Eq. (7) will yield the Solutions given in articles
14-16 of Ref. [3] as well as many others.

The boundary value problems solved in Ref. [4] may also be solved by first
specifying the stress in the direction of the load. The analysis of deep beams
treated in Ref. [5] may be solved by first specifying oy (see Fig. 7 of Ref. [5])
in the form

00 00

av= 2 Yn(y)0O*"nx + Z Xm(x)cosßmy.

Let the loaded surface (77 0 const.) in Fig. 1 be a straight line inclined
to the horizontal and hence solve the wedge problems of articles 38, 39, and
45 of Ref. [1] using polar coordinates r and 0. The Solutions are

"0 |^(0)r% Tr, -£ ZV M{(0)

Än ' ' r° H(i + 2) r2 '

„ V r YJ yi ri M'e N0
' a[(i + 2)+ *J(i+l) r2 + r '

where Y0 Ao0 +Bo + A2sin20 +B2cos20,
Yi Ai sin i 0 + Bi cosi0 + Ai+2 sin (i + 2)0 + Bi+2 cos (i + 2)0, (8)

Nß c1sin0 + c2cos0, Me c3sin20 + c4cos20 + c5

and the A 's, B's and C's are constants of integration. Such Solutions are
discussed in art. 45 of Ref. [1]. Note that in this case the Solutions for all the
polynomial loads are uncoupled. Let Yt 0 and hence note that N (0) solves
the problems of a force acting on the end of a wedge described in art. 38 of
Ref. [1]. The function M (0) solves the problem of a wedge subjected to a
concentrated bending moment discussed in art. 39 of Ref. [1]. Yi^0 yields
the Solutions of problems of a wedge loaded along the faces (art. 45 of Ref. [1]).
When the material is cylindrically orthotropic or anisotropic, the wedge
problems analogous to (8) may also be solved. Some of these Solutions may be
in closed form1) others must be solved numerically.

The half plane and the wedge problems treated in Ref. [5] as well as the
wedge problems just solved (but having reetangular orthotropy) may also be
treated in the proposed manner by first transforming Eq. (6) (a16 a26 0)
into polar coordinates. The integrations (eq. with variable coef.) in the
Solutions of such problems may prevent closed form Solutions.

More problems of plane stress may be solved by assuming the loaded
surface of Fig. 1 to be different curves such as a circle for example using polar
and bipolar coordinates [7].

x) Those of Ref. [6] and the all the Solutions for orthotropic materials for example.
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The problem of a circular disk or a long cylinder with or without concentric
holes subjected to any loading at the outer surface or the hole may also be
treated in the proposed manner. As a simpler example, consider a disk
subjected to any radial load which may be expanded in a Fourier Series as

q (0) q0 + 2 # (n) cosn0.

ar and ue must be of the form
00 00

°r % + 2 / (r)cos n 6 an(* a0 — % + 2 9 (r)cos n 0
71=1 71=1

and the equations of equilibrium yield
00

Trß= Yii \(rg)dramne.

The compatibility equations yield

/ =^1rM + ^2.-M + J43.m-2 + ^44.-'1-2,

9 ~ [^1] Airm~ U^l] ^--Azr^-A,r—\

(9)

(10)

where A± — A^ are constants of integration which may now be determined
from the boundary condition (9) and the three remaining conditions on the
surface and at the inside surface of the hole. The general case of any radial
and tangential loading may be solved by beginning with a more general
assumption than Eq. (9). Problems treated in this section are solved using
complex variables in chapter 8 of Ref. [8]. The Solution (10) may be modified
to'include orthotropic material and hence solve problems of the type indicated
in*Ref. [9].

Consider next a body of revolution subjected to an axially symmetrical
load distribution such as the tangential load q^ shown in Fig. 2.

<V

s
^*

i%s<\l

*~z

Fig. 2. A body of revolution subjected to a tangential load.
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Let the body of revolution in Fig. 2 be a cylinder (rj r, £ z) and hence
solve problems of a non-homogeneous (G G(r)) cylinder of constant cross

n
section subjected to a tangential load q(t) J]^^ as well as couples applied

t 0

at the ends. The governing equations are

The stress equations must be of the form

» y (r»_V s<+1 F(r)
rr+ ZoB<(r)*, H* -fo—W- J777) ~7^>

where Rt is to be determined, F (r) is an arbitrary function of integration
and

Or ?ra'-- [£]'+&-•
When G is constant it can be canceled out of the equations. Note that the
Solutions for odd and even polynomial loads are again uncoupled. When Ri is

zero and G is constant the elementary torsion formula, for a circular bar
twisted by end couples, results. The problem in the appendix of Ref. [10] may
now be generalized. Ri^O yields Solutions of problems of torsion of certain
nonhomogeneous (as well as homogeneous) cylinders subjected to tangential
surface loads as well as end couples. The Solution may be easily extended to
bars of cylindrically orthotropic material.

Consider next the body of revolution of Fig. 2 to be a frustrum of a cone
(-q — 0,^ p) and hence solve problems of conical bars subjected to tangential

71

load qt ^qip1 as well as twisting couples applied at the ends. The governing
i=0

equations in spherical coordinates may be derived in the form

For this type of loading the stresses must be of the form

71

1=1

where

Z-*i(0)p<, rp<t> £ [sin0J|^]^+ /(p)sin0,

^' ~~de— a cos0, Hi(a) An ^ +Bn

-l±(2* + 3) T C0 nn and l(p) —~, C0 const.
(12)



PROBLEMS OF ELASTICITY WITHOUT USE OF THE STRESS FUNCTION 87

Pn(oc) and Qn(oc) are the associated Legendre Functions2). The Solutions for
all polynomial loads are uncoupled. Fi(0)^O(Co O) yields Solutions of
problems of torsion of conical bars subjected to tangential polynomial surface
loads as well as end couples.

The function 7(p) (Ft (0) 0) corresponds to Föpple's problem [12] of a
conical bar subjected to end couples3).

The Föpple problem4) may also be solved when the bar material is orthotropic

such that

T<f>z== G<f>z79z^ Tr9 Gr97r9^ a jf- •

^yz

Transforming the governing compatibility equation and the stresses into
spherical coordinates yields

Tr<f> rp^sin0 rz^ rp4)cos0 forr^ 0,

(l-a)p2COs^(^)-sinÖ^-acosÖ^(T^cotÖ) 0. (13)

The equilibrium Eq. (11) gives rp(ji K^ß)jpz where K^ must be evaluated from
(13). The Solution is

C sin^
TP<f> ~ p3[l-(l-*)cOS20]V2

Cr2 Crzand hence rr± —^- ^g, tz6 t-ö-, 2W2*9 (r2 + ocz2)b/2 9 (r2 + ocz*)bl2

The constant C is evaluated in terms of the applied torques T as

3T
C

• L2
L(a)i/2 (a

tan2j3
+ tan2 jS)1/2 (a + tan2 ß)3/2J

This problem is one of several throughout this manuscript which is solved
by first equating one stress to zero and then solving for the remaining stresses.
These Solutions correspond to problems where the continuum is subjected to
concentrated loads.

Let again the body of revolution of Fig. 2 be a uniform cylinder subjected
n

to loads q(z) ^qiZ1 instead of the tangential loads q^ shown. Starting with
t 0

the assumption
n

i 0

2) A table of these funetions is given on page 133 of Ref. [11].
3) See also Ref. [1] p. 345 and Ref. [8] p. 104.
4) As well as those corresponding to Solution (12).
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the problem of the symmetrically loaded circular plate discussed in art. 133 of
Ref. [1] may be generalized to include additional (i>0) polynomial loading
conditions. This problem will not be pursued further but consider the special
case when Zi (z) — 0. The governing equations, in cylindrical coordinates yield

Gta sh,„ ^ „„, ^ „„ vKT(z) 07 0, Z'[(z) 0, Z'2f +^^ + (2-v)ö' 0,

ar=[K-(l+v)G']i(\nr-i) + l(Z1-G') + Z2lr2,

or [K-(l+v)G'}\(\nr + \) + l(Z1 + G')-Z2lr2.

These equations solve approximately the problem of a solid circular plate,
subjected to a concentrated load P at the center and supported by shear loads
at the circular edges, as follows:

Let ö(s) c3[l-(!)2], c3 ^c, K 0 and rrz J^ [l - Q]
so that rrz is zero on the upper and the lower surfaces of the plate (Fig. 202
Ref. [1]). The equations for Zx and Z2 may be integrated to give

„ „ 2(l-v)c3z*Zx c±z and Z2 3J 3

For thin plates Z2 may be neglected since Zs/r2 is small in comparison to z.
The constant c4 may be evaluated from the boundary condition ar 0 at
r a and hence

3(l+y)Pgl r 3Pz V r n /]

These equations agree with Eqs. (90)—(91) of Ref. [13] obtained by using the
theory for bending of thin plates.

Other problems of two dimensional elasticity for isotropic or certain
anisotropic material may be solved5) using the procedure enunciated. The examples
treated are ample proof that it is not always best to solve two dimensional
problems of elasticity by first introducing a stress function.
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Summary

Solutions of two-dimensional problems of elasticity are developed without
first expressing the governing equations in terms of a stress function. This
method uses coordinates such that a loaded surface eoineides with a curve
parallel to one of the coordinate axis, which leads to an expression for one of
the stresses. The equations of elasticity may then often be solved for the
remaining stresses if only in view of Saint-Venant's Principle. Closed form
Solutions may be obtained more readily by this method rather than by the
stress function method. This method applies to homogeneous, non-homo-
geneous, isotropic and anisotropic materials whenever integration of the
equations permits a Solution.

Resume

On resoud des problemes d'elasticite bidimensionnels sans d'abord employer
d'equations avec fonctions de tension. Cette methode emploie des coordonnees
oü la surface de poids applique eoineide avec une courbe parallele ä l'un des

axes coordonnes, ce qui mene ä la formule d'une des tensions. Souvent on
peut ainsi resoudre l'equation d'elasticite pour les autres tensions en se servant
du principe de Saint-Venant. Cette methode permet plus facilement d'arriver
ä des Solutions exaetes que celle employant une fonetion de tension. La methode
est valable pour des materiaux homogenes, non-homogenes, isotropes et
anisotropes dans tous les cas oü il existe une Solution pour l'equation differentielle.
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Zusammenfassung

Es werden Lösungen von zweidimensionalen Elastizitätsproblemen
entwickelt, wobei man nicht erst die zugehörigen Gleichungen in Form einer

Spannungsfunktion auszudrücken braucht. Bei der Lösung werden Koordinaten

in der Weise benützt, dass eine Belastungsfläche mit einer Kurve
zusammenfällt, welche parallel zu einer der Koordinatenachsen verläuft; dies führt
dann zu einem Ausdruck für eine der Spannungen. Unter Benutzung des

Saint-Venant-Prinzips können dann auch die Gleichungen für die anderen

Spannungen gelöst werden. Mit dieser Methode kann man eher zu geschlossenen

Lösungen gelangen als mit der Spannungsfunktions-Methode.
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