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Dynamics of Asymmetrie Multistory Structures

Dynamique de structures asymetriques ä plusieurs etages

Dynamik asymmetrischer mehrstöckiger Bauten

J. GLÜCK M. GELLERT A. DANAY
Senior Lecturer Senior Lecturer Graduate Student

Faculty of Civil Engineering, Technion-Israel Institute of Technology

Introduetion

In multistory building design impulsive lateral loads and earthquake ground
motion lead to a dynamic analysis of such structures. A rigorous Solution of
the problem involves a large amount of numerical calculations which may be
carried out with aid of digital Computers only. It is well known that severe
earthquakes will produce nonlinear dynamic response while in the case of a
moderate earthquake ground motion the response of the structure may be
assumed linear. Herein is described a method for linear dynamic response of
multistory structures.

Previous reports treat extensively linear and nonlinear dynamic analysis
of multistory buildings by the discrete method, but most of them involve
Symmetrie structures which leads to two-dimensional analytical modeis [4],
[5]. A three-dimensional discrete model for linear dynamic analysis of multistory

buildings was presented by Weaver [13]. The structure is laid out in a
reetangular grid pattern and consists of shear walls and columns with prineipal
axes parallel to those of the system. A threedimensional model for statical
analysis was presented by Winokur [14].

Another common approach to lateral load analysis of multistory structures
is based on the continuous-medium coneept, in which the discrete structure is
represented by a continuous one, by replacing the horizontal connecting beams
and frame by an equivalent continuous medium. The forces borne in this
medium are assumed to be proportional to the second derivative of the
displacement. The statical analysis of two-dimensional modeis was presented by
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Chitty [3], Beck [2], Rosman [11], Despeyroux [6] and others, and the
dynamics of this model were presented by Osawa [9] and others [10], [8].
A three dimensional model for statical analysis was presented in a previous
paper [7], and the dynamics by Baruch [1]. This model neglects the displacements

due to normal strains in columns and shear walls. As mentioned by
previous investigators the effect of normal strains in shear walls is of con-
siderable magnitude and is not to be neglected in dynamic analysis of multistory

structures.
The object of this paper is to present a more accurate approach to the linear

dynamic analysis of asymmetric multistory structures, using a three-dimensional

continuous model, including the effects due to normal strains in columns
and shear walls. The lay-out of the stiffening elements in the plane of the
structure is arbitrary, without restrictions as to shape of the shear wall cross
section, direction of its principal axes and orientation of the frames. Vlasov's
thin-walled bar theory is used for establishing the torsional properties of shear
walls with non-prismatic section, in which the centroid and shear center do
not coincide. The equations of motion for lateral and normal displacement
functions are formulated in matrix form. The evaluation of the normal modes
leads to an eigenvalue problem of order 2^+12, independent of the number
of stories, n being the total number of coupled shear walls. With the normal
modes known the dynamic response to impulsive lateral loads and earthquake
ground motion may be evaluated.

Fig. 1 shows a horizontal section of an asymmetric structure, where the
circled numbers refer to the shear walls and those enclosed in Squares refer to
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Fig. 1. Floor plane of asymmetric structure.
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connecting beams transformed into a continuous medium. The local system
of axes (Xi, Y^ coincides with the principal axes of shear wall cross section.
System axes are denoted with X, Y, Z.

Assumptions and Limitations

1. Floors have infinite plane rigidity and negligible rigidity perpendicular to
their plane.

2. Columns, beams, shear walls etc. have uniform geometric properties with
regard to height.

3. Shear deformations in shear walls are negligible.

Geometrie and Elastie Properties of Shear Walls

The relation between actions and displacements, expressed in matrix form,
for local axes, including warping effect, is given by:

in which

p4(2) £,I>,(z)iv_.KriD,(s)',

Pi(z) =\l
Vxi (z)

Pyi (z)

j>i (Z)

(1)

(2)

Terms pxi (z) and pyi (z) the respective lateral load in Xi and Yi directions
and pt (z) the torque in shear wall i.

The stiffness matrices of shear wall i are:

(3)*<
EJxi

0

0

EJyi
0

0

0 0 EJwi

0 0 0

KTi 0 0 0
•>

0 0 CrJTi
(4)

in which Jxi and Jyi the respective moments of inertia about the Xi and
Yi axes; Jwi the sectorial moment of inertia of shear wall i; and JTi the
Saint-Venant torsion coefficient of shear wall i.

The displacement vector of shear center of wall i in local axes is:

Dt(z)
IM«)

(5)

in which ^(z), vi(z) the respective displacement functions in Xi and Yi
directions; and 0i (z) the rotation function about Zt axis.
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Equilibrium equations of the whole structure refer to the (X, Y, Z) system
axes. Transformation of the geometric and physical properties from local into
system axes is obtained by combined rotation and translation [12].

Transformation of the displacement vector is given by:

Di(z) TiRiD(z), (6)

in which the rotation matrix is given by:

R,=
cos oct

— sin o^
0

sin fy
cos av

the translation matrix is given by:

T,
0 -r,
1 x,

i
o

0 0 1

(8)

and the system displacement vector is:

D(z)
u(z)
v(z)
[Hz))

(9)

Terms Xif Yi — the coordinates of shear center of wall in system axes; u(z),
v (z) the respective displacement functions in X and Y directions of the
system axes; and 0(z) the rotation function about Z axis.

Stiffness matrices Kt for system axes are obtained by congruent trans-
formation (12).

K^TTRfKtRiTi, (10)

in which Rf and Tf the transpose of Ä^ and Ti respectively.
Stiffness matrix KTi does not change with transformation.

KTi — KTi. (ii)
Transformation of the action vector into system axes is given by (12)

Pi{z)-TTRfp.{z). (12)

Substituting Eqs. (1) and (6) in Eq. (12) yields:

Pi(z) K^izr-K^Diz)". (13)

Geometrie and Elastic Properties of Connecting Beams

Since the stiffness of the shear walls is much more higher than that of the
connecting beams, the walls may be assumed rigid, undeformable compared
with the latter. In this case the mid point of the connecting beam is a contra-
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flexure point with zero bending moment. In a cut at this section as shown in
Fig. 2 a only a shear force will suffice to provide continuity. These concentrated
shear forces are transformed into an equivalent distributed shear force (by
dividing it by story height) acting on a continuous media with shear stiffness
equal to that of the cut connecting beam divided by story height as shown in
Fig. 2b.
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q(z)

X
f//?///S/At///////»/*

\ HV//////A
M

•sc.^GC

m-h
U2 i 1/2

zzz ,?;;;sn—

*o

Fig. 3. Cross section of coupled nonprismatic shear wall.

A cross section of a coupled shear wall with notations used in the text is
shown in Fig. 3. Lateral deflections and rotation of the shear wall at the cut
ends will result in a gap rj (see Fig. 4a, b, c) which expressed in a matrix form is:

Vi Vix + Viy + r)je:=- ef Di (*)' + <$ DÄZY,

in which e7 ^0
W-.10)

(14)

(15)

L/-0

*r0 (16)
w,rO
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a) Due to displacement in X direction only. b) Due to displacement in Y direction only.

oo
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c) Due to warping only. d) Due to displacement in Z direction only.

^r
/
-if- /

e) Due to shear and bending de-
formation of the connecting beams.

Fig. 4. Gaps in cut ends due to displacements in -X", Y and Z directions and rotation.

In Eqs. (15) and (16), Xl0, Yl0 and Xr0, Yr0 coordinates of mid point 0

in left element local axes respective right; and wx and wr the sectorial coordinates,

respectively left and right element shear centers.
Substituting Eq. (6) into Eq. (14) yields:

rjj(z) -(ef R^-e? RrTr)D(z)', (17)

denoting ej =efi?zTz-efKrTr
Eq. (17) may be written as

Vi (z) ¦etD(z)'.

(18)

(19)

The gap at cut ends due to axial displacements of the shear walls may be

written as
8,(2) l/f W, (20)

\WX (z)

in which W(z)
W*(z)

Wn{z)\

(21)
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In Eq. (21) W is the vector of axial displacements of the shear walls;
n the total number of coupled shear walls of the structure.

It is assumed that qj (z) is positive "when producing tension in the left shear
wall (denoted with o) and compression in the right one (denoted with <g>). In
Eq. (20) Uj a Boolean vector related to positive action of qj(z). If tension
is produced in the shear walls connected to continuous media /, a plus one

appears in vector Uj, a minus one if compression, and a zero for all other
coupled shear walls. For the example building given in Fig. 1 the matrix U
containing all vectors Uj is

U=(U1,Ut,Ua...Ua), (22)

in which U

-1 -1 0 0 0 0
1 0 1 0 0 0

0 1 -1 1 0 0

0 0 0 -1 1 0

0 0 0 0

(23)

Due to shear and bending of the connecting beam, the gap which results
at cut ends is given by

<Pi=fi9j(z)> (24)

f>~kärt+^h- (25)in which
GAj

In Eq. (25), Aj the effective area of the connecting beam cross section; and

Ij its moment of inertia.

Compatibility Equations

The compatibility equations at the cut end of the connecting beams at
row j may be expressed as follows:

Substituting Eqs. (19), (20), and (24) into Eq. (26) results

-ejD(zy+fiqj(z)+UTW(z) 0.

h 0 ...0

Denoting / o h

(27)

(28)

(29)

in which s the total number of connecting beams.
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The system of differential equations expressing compatibility at cut ends

of connecting beams may be expressed in matrix form as:

-eD(z)' +fq (z) + UTW(z) 0, (30)

?i)

in which q (31)

Denoting

Equations of Motion

r ^=TTRTei-TTRTer
and eT (ef eg ef).
The equations of motion for given dynamic loads may be written:

KD(z,t)1Y-KTD(z,t)"-eTq(z,ty + MD(z,t) =p(z,t),
F-iW(z,t)"+Uq(z,t) + M*W(z,t) P(z,t),

in which K

M\.rp

M

M*

p(z,t)

P(M)

Z*i,i=l
N

i=l
ra 0 0

0 ra 0

0 0 Jv

m1 0

0 ra, 0

0

0

Px(z,t)
Py{z,t)
Ve {z, t)
Px{z,t)
P?(z,t)

\Pn(z,t)}
1

WAj^

0

ffl,

EA,

0

0

1

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)
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InEq. (36), N the total number of shear walls (coupled or not); inEq. (38),
m the average mass per unit height; in Eq. (39), m1,m2,... mn the masses
of the shear walls, per unit height; Jp the polar moment of inertia per unit
height:

Jp=jP*dm, (43)

in which p the radius vector in horizontal plane.
By solving the vector of the shear force functions from Eq. (30) results

q=f1e D' -/-1 UT W. (44)

The Substitution of Eq. (44) ind Eqs. (34) and (35) yields the following
Systems of equations:

KDLV-(KT + eTf-1e)D* + eTf-1UTW' + MD p,
F-i W-Uf-1 UT W+ Uf^eD' + M* W=P.

A generalized vector of displacements X (z, t) is defined by

Eqs. (45) and (46) may then be written as:

aXIV (z, t) + bX" (z, t) + eX' (z, t)+dX(z, t) +gX L,

in which a
K 0
0 0

-{KT + eTf-*e) 0
0 F1

d

g

L

0 <

17/1 e
,Tf-x,

0
UT

0 0
0 -Uf-XUT
M 0
0 M* >

{*

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

Eqs. (48) represent a system of n + 3 differential equations with the same
number of unknown functions (3 lateral displacement functions u (z, t), v (z, t),
6 (z, t) and n axial displacement functions wx, w2,... wn (z, t).
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Homogeneous Solution of the System of Differential Equations

The proposed Solution is:

Xh (z, t) A erz sin cot Xh (z) sin co t, (5o)

in which r the characteristic value; o> the circular frequency and A the
characteristic vector

Mi
A

A2

An+3)

(56)

Substitution of Eq. (55) into the homogeneous part of Eq. (48) yields

(r*a + r2b + rc + d-üj2g)Aerzsmcot 0. (57)

The condition for existence of nonzero A in Eq. (57) is vanishing of the
determinant of the coefficients. The characteristic equation is therefore

det(r*a + r2b + rc + d-to2g) 0. (58)

In Eq. (58) there are two unknowns, r and a>, the Solution of which requires
a second equation. This equation will be obtained from the boundary conditions.

For a given co2, 2n+ 12 eigenvalues r are obtained, and for each one a

corresponding eigenvector A will be calculated.
The normal mode Xn (z, t) for a given to2n is

X-hn

The Solution obtained contains 2n+ 12 constants which are calculated from
the boundary equations, expressed by a system of 2n+\2 homogeneous
algebraic equations. The Solution of this system calls for vanishing of the
coefficients determinant.

Boundary Conditions

At z 0 with lateral and normal deflections 0

Dh (0) 0, (60)

IFÄ(0) 0. (61)

At z 0 with füll restraint at support

ö»(0) 0. (62)
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At z H with moments in shear walls 0

D*(0) 0. (63)

At z H with shear forces at the top of the structure 0

KDl(H) -(KT + e*y-ie) D'h(H) + e^/-! IJT Wh(#) 0. (64)

At z H with normal strains at the top of the shear walls 0

W'h(H) 0. (65)

In case of structures with foundations on elastic subgrade similar boundary
conditions may be expressed.

General Solution of the System of Differential Equations

Assuming that the dynamic load may be expressed in the form

L(z,t)=L(z)0(t), (66)

in which L(z) a vector showing the distribution of the load with height of
the structure

Px(z)'

L(Z) [p (2)1
\P(z)\

Vyiz)
Pe(z)

Pi(z)
PAz)

(67)

[Pn(z)]

and <t> (t) a time function, Eq. (48) may be written:

aX*Y (z,Q+ bX" (z,t) + cX' (z,t) + dX(z,t)+gX(z,t) =L(z)<P(t). (68)

The Solution proposed for Eq. (68) will be the sum of the normal modes

Xhi(z) multiplied by a corresponding time function 2?t-(£),i.e.

X(z,t)= ZXhi(z)Bi(t). (69)
t=i

Premultiplying Eq. (68) with Xhn (z)T and integrating results

fxhn(z)T[aX^ (z,t) + bX" (z,t) + cX' (z,t)+dX(z,t)+gX(z,t)]dz
°

h (70)
SXZ>(z)L(z)0(t)dz.
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Substituting Eq. (69) into Eq. (70) yields

2 UDLi^DlJ+b^D^ + c^W^)
i=l o

+ Wln (fo22 WM + d22 WM + c21 D'hi)] dz Bt (t)

+HD&MDM + WlnM* WM)dzBt (t)
0

J(D?nP + WLP)dz0(t).
0

Due to orthogonality of the normal modes all crossed products of two normal
modes are equal to zero, leading to the decoupling of the normal modes.

Denoting the generalized mass with

Mn f[D&MDhn + WlnM* Whn]dz, (72)
0

the generalized exciting force with
H

Ln<P(t)=<P(t)5[DTnp+W%nP]dz (73)
0

and the generalized stiffness with
H

Kn J [D& («n D\l + &ii D'L + c12 W'hn)

+ Wln (fe23 Whn + d22 Whn + c21 D'hn)] dz, <74)

the uncoupled equation of motion for the n-th mode will be:

Kn Bn (t) + Mn Bn (t) Ln0 (t). (75)

The Solution of Eq. (75) may be written

B
0

in which
TZ

Q2 =^n
M

and 7n M

n=-gt\<t>(T)8inQn(t-T)dT, (76)

(77)

(78)

In case of earthquake motion the dynamic load vector may be expressed
in the form

(MB0(t) \
\M*W0(t)f-L(z)<P(t) - {„V'U. ¦

(79)

The components of the earth acceleration vector may be independent and
variable according to n + 3 different time functions
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and

Denoting with

and

D0(t)

W0(t)

ü0(t)
»o(0
.$>(<) J

W10(t))
KV)

wnQ(t)
H
SD%n(z)Mdz

7b„ —
Mm

H
SW*n(z)M*dz

7n„ Mm

The Solution of Eq. (75) may be expressed

(80)

(81)

(82)

(83)

Bn(t) ^- j[yBnD0(r) + yNnW0(r)]smQ(t-r)dr. (84)

Interior Forces and Displacements

Knowing the displacement vector D(z,t) for system axes, that for local
axes Di(z,t) for shear wall i will be obtained by Eq. (6).

The shear force vector q (z, t) is calculated from Eq. (44).
The shear force in the connecting beam belonging to row j and storey k

with Ordinate zk is given by
ZK+h/2

PK3=tei{z,t)dz. (85)
Zx-hl'i

The shear forces and torque in shear wall i are

Qi(z,t)
Qxi{z,t)
Qyi {Z, t)

\Qeiiz,t)\
--KtZDiWBtQ)i=l

(86)

+ KT2Dt (z)' Bi (t) + 2 exqx (z, t)-Z erqr (z, t).
i+1 l r

In Eq. (86) the sum on l refers to connecting beams joining the shear wall
from left and r that from right.

The bending moments and bimoment in shear wall are given by

-KiZDi(z)"Bi(t). (87)Mi(z,t) Mvi{z,t)
\Bt(z,t) J

1=1
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Conclusions

A general method for dynamic analysis of multistory structures is presented.
On the basis of this method a Computer program may be prepared for dynamic
analysis of multistory structures with arbitrary layout of shear walls. With
adequate boundary conditions the method may be applied for cases with
sudden changes in height of the geometric properties and loads. For g number
of changes the evaluation of normal modes leads to an eigenvalue problem of
order (2n+l2) (#-fl). The influence of normal strains in the shear wall is
included. Vertical dynamic loads can be taken into account.

List of Symbols and Notations

Upper bar magnitudes in local Systems of axes.
i index for shear wall.

j index for connecting beam or continuous media.
A characteristic vector.
A cross section area.
B bimoment.
B (t) displacement time function.
Ci constants.
D (z) lateral displacement vector.
D0 (t) earth acceleration vector.
E modulus of elasticity.
F flexibility matrix to normal strains.
G shear modulus.
H height of the structure.
Jxi, Jyi, Jwi moment of inertia in X respective Y direction and sectorial

moment of inertia.
JT Saint-Venant torsion coefficient.
K, KT stiffness matrices.
L clear span of connecting beam.
L load vector.
M, M* mass matrices.
Mi 3x1 vector consisting bending moment in X and Y direction

and bimoment with respect to local axes.
Mn generalized mass.
Mx, My moments.
N total number of shear walls (coupled or not).
P (z, t), p (z, t) dynamic load vectors.
Pk shear force in connecting beam at story level k.
Pn generalized exciting force.



DYNAMICS OF ASYMMETRIC MULTISTORY STRUCTURES 105

R rotation matrix.
T translation matrix.
Q 3x1 vector consisting shear forces in X and Y direction and

torsion moment with respect to origin of the system axes.
U matrix dfined in the text.
X, Y, Z coordinates.
X generalized displacement vector.
a, b, c, d,g matrices defined in the text.
ex, er vector defined in the text.

f flexibility matrix of lamella system.
g number of changes in characteristics of stiffening elements.
h story height.
i, j, k, l, r indexes.
n number of shear walls having joints with connecting beams.

q (z) shear force function in lamella system.
r characteristic values.

x, y, z local system of axes for connecting beams.
s number of lamella Systems,

a angle between main axis X and system axis X.
cp,S,rj gap at cut end due to bending and shear of connecting beam,

respectively strains in shear walls and bending and warping of
the shear walls.

co circular frequency.
0 (t) load time functions.
Qn circular frequency of the Tith decoupled equations.
w sectorial coordinate.
u(z),v(z),6(z) lateral displacement functions in X and Y directions and

rotation with respect to origin of the system axes.
^i(0> ~~ ^w(0 axial displacement functions.
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Summary

A general method for three dimensional dynamic analysis of asymmetric
multistorey structures based on the continuum method approach is presented.
There are no restrictions referring to types of stiffening elements and layout
in floor plane. The dynamic loads may be vertical and lateral at arbitrary
locations. The lateral and axial displacements of the shear walls are selected

as independent variables. Normal strains and vertical dynamic loads and
earth accelerations can also be taken into account.

Resume

On presente une methode generale pour l'analyse tridimensionnelle de

structures asymetriques ä plusieurs etages basee sur la methode approchee du
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continuum. II n'existe pas des restrictions quant au types des elements
raidisseurs et au layout dans le plan des etages. Les charges dynamiques peuvent
agir verticalement ou lateralement ä des endroits arbitraires. Les deplacements
lateraux et axiaux des parois de cisaillement sont selectionnes comme variables
independants. Des sollicitations normaux et des charges dynamiques verticaux
ainsi que des accelerations terrestres peuvent egalement etre prises en con-
sideration.

Zusammenfassung

Es wird eine allgemeine Methode für die dreidimensionale Analyse von
asymmetrischen mehrstöckigen Bauten auf Grund der Kontinuum-Näherungs-
methode dargelegt. Es bestehen keine Einschränkungen hinsichtlich der Typen
von Versteifungselementen und des Entwurfs in der Stockwerkebene. Die
dynamischen Belastungen können vertikal und seitlich an beliebigen Stellen
wirken. Die seitlichen und axialen Verschiebungen der Schubwände werden
als unabhängige Variable gewählt. Normale Beanspruchungen und vertikale
dynamische Belastungen sowie Erdbeschleunigungen können ebenfalls berücksichtigt

werden.
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