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Abstract

Shells in the shape of circular cylinders, acted upon by uniform axial forces

or uniform lateral pressure fail by instability, when the loads reach critical
intensity. For shells with some simple edge conditions and stresses within the
elastic ränge exact Solutions of the instability problems of this kind are
available [1]; at the same time close approximate Solutions of the same problems

may be obtained by the finite element method irrespective of the boundary
conditions [2]. Attempts to verify theoretical Solutions by experiments have
however been unsuccessful, and the main cause for this disagreement seems
to be the existance in the shell of some imperfections of shape [3]. In the
present study based on finite element procedure a method is proposed for
determination of strength of imperfectly shaped shells, fabricated of stiff
elasto-plastic material, like structural steel or duralumin. The application of
the method is illustrated on examples.

Nature of Shell Faihire

The behavior of an imperfectly shaped cylindrical shell under load is quite
different from that of a perfect one. A perfect structure resists uniform axial
or lateral loading exclusively by membrane stresses, and fails suddenly by
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snap buckling, involving flexural action, when the load intensity reaches the
critical value. On the other hand, imperfect shell develops flexural stresses

from the very beginning, and thus presents a typical case of non-linear
deformation. For such shell it is reasonable to assume the failure load as the one
whose compression stress at the most highly stressed location, produced by
both compression and flexure, equals the yield stress au of the material. In
most cases deformation of the shell beyond the failure point so defined is

likely to proceed under a reduced load, except when the imperfection is very
minute.

The allowable load for an imperfect shell, as for a perfect one, should be

found by dividing the failure load by the factor of safety.

Shell Instability by the Finite Element Method

The finite element procedure used for analysis of instability of an elastic
circular cylinder shell is described in Ref. [2]. It makes use of the model of
the cylinder composed of rectangular bar elements or cells. The theory is based

on the Rayleigh-Ritz energy principle, by means of which the problem is

reduced to an eigenvalue equation, solved by Computer. The structure has

many critical buckling loads, the lowest of which has usually the greatest
practical importance. The results are given in the form of the critical load
intensity (the eigenvalue) and the mode of buckling (the eigenvector), i.e. the
buckling displacements of all nodes of the model, five for each node: three
displacements along the coordinate axes and two angles of rotation about the
axes lying in the plane of the shell. The Computer also prints out the nodal
forces and moments acting on all cells. These data form the basis for com-
putation of strength of an imperfect shell. Computer can also obtain if necessary
several other critical loads, above the first one, together with their
eigenvectors.

It may be pointed out that, since the buckling mode of a complete shell
consists of several waves along the circumference and one or more half-waves
along the length, the shell model may be formed of only a segment of the füll
shell, but this part must be of a proper angle and length.

Imperfect Shell

It is obvious that the strength of an imperfect shell, as defined above,
would depend both on the mode of deviation from the theoretical form and
on the extent of this deviation. Imperfection of an actual structure is likely
to be unintentional and its shape accidental. Designer, committed to safety,
should, naturally, be interested in the most unfavorable form of imperfection,



STRENGTH OF CYLINDRICAL SHELLS WITH IMPERFECTIONS 57

and intuition suggests, that this form is one of the buckling modes of a perfect
shell, most likely, the first one. The degree of imperfection is just as important
as its mode, but is more definite of the two, and may be established, with some
exercise of judgment, from the knowledge of equipment and the methods used

in fabrication of the shell. Known imperfection in the shape of the first buckling
mode of the perfect shell is the basis for determination of the reduced strength
of the imperfect shell.

Shell Behavior Under Load

Comprehension of reasoning leading to derivation of strength relations in
an imperfect shell may be assisted by reference to a familiär structure, the
pin-ended axially loaded column of a constant cross-section, symmetrical
about the axis of buckling. The similarity of behavior under load of the shell
and the column is very close in spite of physical difference of these structures.

Several cases of loading of the column (or the shell) are illustrated in Figs. 1

to 9, and they are described here one by one. In all cases the state of the
structure is fully elastic.

Fig. 1 represents a perfect straight column under a unit load. Its stress,
caused by axial compression alone, is <j1.

In Fig. 2 the load in the same column is brought up to the critical intensity

/. The column still remains straight, although it is ready to buckle, if
moved sideways. The stress in it, described as the critical stress, is /a1.

In Fig. 3 the axial load is removed, and the column is bent by externally
applied moments to the shape of the buckling mode (the sine curve in case

of the column) with a small central deflection 80, described as being of unit
normality. The stress condition in the column is flexure, and the maximum
flexural compression, occurring at mid-span, is ct2. It must be pointed out, that
the corresponding stress in the shell, although mostly flexural, contains also

minor membrane components.
In Fig. 4 the column is bent in the same buckling mode to normality n,

with the mid-span deflection nS0 and the maximum flexural stress no2. The
value of the latter is assumed here to remain always in the elastic ränge, with
the normality n, if necessary, being less than one, even though the stress a2

may actually be beyond the elastic limit.
In Fig. 5 the critical load / is placed on the column, bent as in Fig. 3. The

eccentricity of the load / creates at all sections the moments needed to keep
the column in its deformed shape without the assistance of any external
agency. The combined maximum compression stress is (/c^ + og).

Fig. 6 illustrates combination of the conditions of Figs. 2 and 4 with the
resultant lateral deflection n 80 and the maximum compression stress (fcr1-\-na2).

Should the mid-span deflection be increased to (^ + n1)80, as in Fig. 7, the
maximum compression would be raised to [fcr1 + (n + n1)a2\.
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Fig. 8 represents an imperfectly fabricated unstressed column with normality

of imperfection n{, i. e. with the mid-span deviation from straightness ^ S0.

If an axial load, gradually increasing from zero, is applied to this column
(Fig. 9), the deviation of the latter from straightness will grow, and its deflected
shape will always conform to the same buckling mode. When the mid-span
offset becomes (?i-f?^)S0, only a part of it, n80, is caused by flexure. At this
stage the lever arm of the axial load is (^ + ^)80, and so the magnitude of
the load ft corresponding to this condition is less than /; it is

k n
/ njnt

n + nt 1 + n/iii
/• (i)
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This equation relates the axial load f1, causing the deflection of normality n
in a column with imperfection ni, to the buckling load / of a perfect column.

The plot of Eq. (1) is given in Fig. 10.

The maximum compression stress produced in the imperfect structure by
the load fx is

1 + n\ni
fo1 + no2. (2)

The maximum stress a becomes the yield stress ay, when the structure
reaches the point of failure; the normality n of its deformation at this point
is given by the quadratic (2) and is expressed as follows:

H 2\a2 G2 I ' 4 W2 a2 / °2

The significance of stresses in this expression with reference to the cylindrical

shell is:

oy the compression yield stress of the material,
acr — f°i ^ne critical compression stress in a perfect shell,
o'2 a fictitious stress defined by the relation

(72=^CT2, (4)

in which <j2 is the highest compression stress, membrane plus flexural, any-
where in the shell, caused by the buckling deformation of unit normality.

Knowing njnt and /, the failure load fx of the imperfect shell is found by
Eq. (1).

Example 1. Circular cylinder shell, hinged at the ends, under uniform lateral
pressure.

Length £ 96", Radius r 30.56", Thickness £ 0.4734". Material: dur-
alumin, E= 10,000,000# /in2, ^ 30,000 #/in2. From the finite element
Solution of 8x 16 model with 3"x3" bar cells, representing a perfect shell.

Critical lateral pressure / ^ 0.10196 (10)-4.E/ 101.96 # /in2. Critical

compression stress acr
—^ 6,590 # /in2.

The maximum compression stress caused by buckling to normality one
(maximum transverse deflection 1") occurs on the radial plane T (Fig. 11) at
the node with the greatest lateral deflection. At the node in question the stress
condition is symmetrical about both the horizontal and transverse planes. The
normal force here is tension.

The maximum compression stress is

869.88 2426.32(6) Jrt „ „ 0
°> -(1.5) (0.4734)

+ 1.5 (0.4784)»
42'08Q * lmK
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Assume imperfect shell with normality of imperfection nt l.

a' Uia2 42,080 #/in2; ^ 0.7125; -^ 0.1565;
°2 o2

n
by Eqn. (3), — 0.651.

ni

Lateral pressure producing failure, Eq. (1)

Example 2. Circular cylinder shell, hinged at the ends, under uniform axial
load.

Length £ 96", Radius r 30.56", Thickness £ 0.1059". Material: dur-
alumin, jE7 10,000,000 # /in2, ^ 30,000 #/in2. From the finite element
Solution of 8x 16 model with l"x§" bar cells, representing a perfect shell:

Critical axial load f pa 0.2207 (10)~3 E 2,207 # /in. Critical compression

stress crcr ^ 20,840 # /in2.

The maximum compression stress caused by buckling to normality one

(maximum transverse deflection 1") occurs on the transverse plane L (Fig. 12)

at the node with the greatest lateral deflection. With the stress condition at
the node in question being symmetrical about both the transverse and the
radial planes, only the nodal force —10,748 # and the moment —667.43 #-in
need be considered. The compression stress produced by them is

10,748 667.43(6) „,„,,« 9

*>= 0.5 (0.1059)
+ 0.5(0.1059)»- »"."2 */m».

Assume imperfect shell with normality of imperfection ni 1.

o'2 917,142 #/in2; -^ 0.03272; ^ 0.02272.

n
By Eqn. (3): — 0.0315.

ni

Axial load producing failure, Eq. (1),

0.0315 rt _ 0.0315 _ rt^ /LÖ3l5=2'207L()3r5=67-2*/m-

The results related to these and other shells with different imperfections
are assembled in Table 1.

Comments and Conclusions

1. The procedure described here is equally applicable when the stresses caused

by the critical load remain within the elastic ränge and when they extend
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beyond it. Naturally, in the latter case the true failure load in a perfect
shell is not /, but a lower load corresponding to the first appearance of yield
stress.

2. Under lateral load, failure of shells with high ratio of r/t is affected by small
imperfections only slightly. As the imperfections grow bigger this effect
increases, particularly in steel, a material with a higher ratio of Ejay than
duralumin.

3. The effect of imperfections on failure is more pronounced under axial
loading. Here the strength of an imperfect shell becomes reduced to a small
fraction of that of a perfect shell, especially in case of steel.

4. The proposed theory may be easily extended to cases in which the imperfectly

shaped structures contain some residual stresses.
5. Some modes of failure of perfect shells, such as the ones involving several

half-waves lengthwise, may appear improbable as modes of imperfections
covering the füll length of shell. However, it is feit, that even if the
imperfections of this kind distort only a part of the shell, the reduction of strength
is not likely to be much different.

Notation

E modulus of elasticity
L length of shell

/ critical load of a perfect shell or column
fx critical load of an imperfect shell or column
n, nx normalities of deformation of structures

nt normality of imperfection
/pa axial uniform pressure at failure
Pj lateral uniform pressure at failure
r radius of shell
t thickness of shell
S0 deformation of unit normality
<r compression stress

<jx compression stress due to unit load, prior to buckling
<j2 compression stress caused by flexure of unit normality
<j2 fictitious stress

<rcr critical stress

<jy compression yield stress

/x Poisson's ratio
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Summary

Shells in the shape of circular cylinders, acted upon by uniform axial forces

or uniform lateral pressure fail by instability when the loads reach critical
intensity. For shells with some simple edge conditions and stresses within the
elastic ränge exact Solutions of the instability problems of this kind are avail-
able. In the present study based on finite element procedure a method is pro-
posed for determination of strength of imperfectly shaped shells, fabricated
of stiff elasto-plastic material, like structural steel or duralumin.

Resume

Des coques en formes de cylindres circulaires se trouvant sous l'influence
de forces axiales uniformes ou de pressions laterales uniformes presentent
des points faibles dus a l'instabilite lorsque la charge atteint des valeurs criti-
ques. Pour des coques a conditions de bords simples et pour des sollicitations
dans des regimes elastiques on dispose de Solutions exactes des problemes
d'instabilite. Dans la presente etude basee sur le procede des elements finis
on propose une methode pour la determination de la resistance de coques im-
parfaites en materiel raide et elasto-flexible, comme l'acier de construction
ou le duraluminium.

Zusammenfassung

Schalen in Form kreisförmiger Zylinder, die unter Einwirkung
gleichförmiger axialer Kräfte oder gleichförmiger seitlicher Drucke stehen, versagen
infolge Instabilität, wenn die Belastung kritische Werte erreicht. Für Schalen
mit einfachen Randbedingungen und Beanspruchung innerhalb elastischer
Bereiche sind genaue Lösungen der Unstabilitätsprobleme verfügbar. In der
vorliegenden auf dem Verfahren der endlichen Elemente beruhenden Studie
wird eine Methode zur Bestimmung der Festigkeit unvollkommen gestalteter
Schalen aus steifem, elastisch nachgiebigem Material, wie Baustahl oder
Duraluminium, vorgeschlagen.
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