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Failure Mechanisms for Reinforced Concrete Beams in Torsion and Bending

Mecanismes de ruine pour des poutres en beton arme soumises ä la torsion
et ä la flexion

Bruchmechanismen für Stahlbetonbalken unter Torsion und Biegung

p. MÜLLER
Research Associate, Institute of Structural Engineering, Swiss Federal Institute of Technology (ETH),

Zürich (Switzerland).

Introduction

To describe the failure of reinforced concrete beams with thin-walled closed
cross section in torsion and bending, Lampert [2, 3] used a space truss model
based on the lower bound theorem of the Theory of Plasticity. The good correspon-
dence between theory and test results stimulates to generalize the model. The
application of the Theory of Plasticity to the general plane stress problem of
reinforced concrete shear walls [5] has led to a better understanding of the
collapse mechanisms of these beams. Indeed all collapse mechanisms, known so
far, turn out to be incompatible with the state of stress assumed in the
truss model.

The aim of this contribution is to develop new compatible mechanisms. The
very simple basic mechanism has significance for engineering practice in allowing
easy visualization of the failure modes assumed by the truss model. The truss model
and the new mechanisms supply together, as lower and upper bound Solutions,
respectively, the exact interaction relation for thin-walled closed cross sections subjected

to torsion and bending.
We confine ourselves to constant bending moment and torque, and, for

simplicity, to rectangular cross sections. The present work is part of the study [5]
which the reader is referred to for general cross sections and detailed information.

Basic Theory

The present investigation is based on the classical Theory of Plasticity, e.g. [1],
in particular on the concept of plastic potential and on the upper and lower bound
theorems of limit analysis. The latter is based on the following idealizations and
assumptions:
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1. A rigid-perfectly plastic or elastic-perfectly plastic material is visualized (Fig. 1).
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rigid -perfectly plastic Fig. 1. elastic - perfectly plastic

2. The elastic and plastic deformations are small in the sense of no significant
changes in the geometry of the structure, so as to allow the formulation of
equilibrium equations for the original configuration.

Yield Criterion for Reinforced Concrete Shear Walls

The following assumptions are postulated:
The assumptions ofthe Theory ofPlasticity in the sense of Section 2 are admissible.

The concrete is assumed to be in a State of plane compressive stress; in
particular, the tensile strength of concrete is neglected.

The reinforcement is idealized as a State of plane stress in its direction.
The assumed redistribution of steel and concrete stresses stipulates for füll
aggregate interlock and dowel action in initial cracks. Local and bond failure
are excluded.

The ränge of ratio of reinforcement is such that:
a) no failure occurs at first crack formation;
b) compressive strength of concrete is never reached.

6. The reinforcement is placed as a orthogonal net.

Assumption 1, in particular, the necessary ductility of failure, is sufficiently
confirmed by [6, 7, 8]. 5b) and 6) are not postulated in [5]. But as the yield
criterion merely serves to develop mechanisms compatible with the space truss model,
we do not need more generality.
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Fig. 2.

The membrane forces Nx, Ny, Nxy, acting on the differential element of Figure 2,

are equivalent to the sum of the stress resultants nx, ny, nxy of the concrete and

zx, zy of the reinforcement. It is convenient to introduce the coordinate system (x, y)

parallel to the orthogonal reinforcement.
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The concrete stress not reaching compressive strength, the only yield condition is

nx + ny //nx - nvV ^ ^

or nx^ < nx ny, nx < 0, ny < 0,

whereas steel is governed by the yield criterion

<Jf Fx I

|zx|<Px -

|zy|<Py

tx '
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tv '
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(4)
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Fig. 4

In the three-dimensional space of stresses (Fig. 3) the yield surface of the
concrete is an elliptic cone, while the yield locus of the reinforcement is represented
by a rectangle in the plane (Nx, Ny). The sets of stress points with the properties
(3) and (4) are convex sets. Hence, the convex set of stress points, satisfying the
unknown yield criterion 0(NX, Ny, Nxy) ^ 0, is defined by (1) as a linear combination
of the convex sets defined by (3) and (4); i.e. O is "found to be the envelope of
all translationally shifted yield loci of concrete with centre within the shaded
rectangle of Figure 3. Hence, & is represented by the concrete cone with tip at the
point (Px, Py, 0) as illustrated in Figure 4, and the yield criterion may be written

#!=Nxy2-(Nx-Px)(Ny-Py)<0,
02 Nx - Px < 0, 0)3 Ny - Py < 0.

(5)

Considering assumption 5b), the yield criterion (5) coincides with that reported
by Nielsen [10].

For stress points (Nx, Ny, Nxy) on the yield surface (5), the stress resultants
in the components steel and concrete are

2-x lx? Zy .ry, 1

nx-y=nxny, nx<0, ny<0, l
or n„<n, 0, J (6)
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where ni and nn denote the major and minor principle concrete stress, respectively.
Thus both components of reinforcement are yielding, while the concrete is in a
uniaxial State of compressive stress. Evidently this coincides completely with the state
of stress, the truss model is based on.

The longitudinal reinforcement and the stirrups of the shear wall shown in
Figure 5 are interpreted as stringers and posts of a truss, whose struts
idealize a uniform state of compressive stress in the concrete. The inclination of
the struts is determined from the condition that both the longitudinal and the

stirrup reinforcement are yielding. Assumption 5b is taken for granted.

F-v

r i

\/ \/\

Fig. 5.

Whereas the truss model and the foregoing more general results harmonize
with respect to the statical aspects, care is needed however in the translation
of the kinematics of a truss to reinforced concrete shear walls.

Yield Law and Kinematics

For states of stress at the yield limit (5), with non-zero Nxy, the following is true

*i 0,*2<0,*3<0, (7)

and hence, according to the theory of plastic potential, the rates of plastic strain
are related to the stresses as follows

S^^-MNx-PxH-ä.n*
y Y

0NX
-= A.(2Nxy) A.2nx

(8)

(9)

^xy

where Ä, > 0.

Substituting the expressions (8) into (7) we find that

yj 6X 8y, 8X > 0, 8y > 0,

or, 8i and en denoting the major and minor principle strain-rate, respectively,

8,>8„=0. (10)

If a>! 02 03 0, (10) is replaced by (11).

8,>8„>0. (11)
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Thus the only velocity fields compatible with the considered stress fields are
those with no compressive strains. (10) and (11) are merely the dual kinematical
interpretation of assumption 5b preventing concrete crushing. Although this con-
sequence of the upper limitation of reinforcement ratios seems somewhat trivial,
it has been overlooked in all torsional collapse mechanisms proposed so far.
Above all this is due to the fact that the yield criterion (5) and assumption 5b have
only been used implicitly.

Calculating the direction of the minor principal strain-rate en 0 in (10), there
results

tan 2a -Yxy _ -2NX
Ey EX

-2n„
-(Nx-Px)+(Ny-Py) ny-nx

(12)

Now the last expression in (12) equals the direction of concrete compressive
trajectories. Thus the principal axis of plastic strain-rates and those of concrete
stress-state coincide. Considering (9) in (12) we obtain

"" Yxy i

2tan0t
(13)tan 2a

2ev

ii i
1 - (tan a)2

y
4ey V 2ey

By means of tan a, (9) may also be expressed parametrically by two equations
from (14) and (15) _

v"""zt-^r-±Jii- (14)
AOv i xv V °v

rxy ¦

tana
+ 8y tan a, (15)

where ex > 0, 8y > 0.

t
J~

1 ^y\ tana ^^ \

-y*Ä *S\*
\
\

-Jt

tana

~--7<l_ ,—£y tan ot

-Xxy

Fig. 6.

On the other hand, if we derive the kinematic relations using a truss with rigid
strut, as shown in Figure 6 [2, 3], we only obtain equation (15). The kinematics
of a truss does not correspond with the kinematics of shear walls governed by the
flow rules (8). The truss only prevents compressive strains in the direction of the
struts and therefore neglects the solid nature of the shear wall.

Discontinuities in the Velocity Field

From the Theory of Plasticity we know that the velocity fields associated
with collapse often are discontinuous. Therefore, we further have to derive the
restrictions imposed to velocity jumps by (10). In doing so we have to visualize a
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discontinuity line as the limiting case of a finite transition layer with rapidly but
continuously (e.g. linearly) changing velocities as shown in Figure 7.

4*7¦ ^o

Fig. 7.

The depth of the transition layer tending toward zero, the plastic strain-rates are

(16)

u ~ v
T, et 0, Ynt J>d d

H(Ww+u ,£n
1/ü
2\d +li

Evidently (10) is only true, provided that

ü > 0, v 0. (17)

Thus only the normal velocity component may jump, and discontinuity lines
and concrete compressive trajectories coincide in direction, viz. a ß. Now the
physical crack pattern observed in tests tends towards the theoretical pattern
of concrete compressive trajectories at collapse state [6-9]. We therefore may regard
discontinuities governed by (17) as the cracks of the ideal rigid-plastic shear wall
obeying (8), and we name them collapse cracks. (17) has been adopted in [4] in the
following concise form: collapse cracks open normally to their direction. It must be

emphasized that, for an elastic-perfectly plastic material, the statement only refers to
the increments of crack widening at collapse State.

On the other hand, if there is also a jump in the tangential velocity component,
viz. v ^ 0, we obtain from (16) &j > 0, en ^ 0. Hence, the concrete is crushing, and
its contribution to the rate of energy dissipation must not be neglected. ynt being
non-zero, the discontinuity lines and the concrete compressive trajectories coincide
no more. Because the physical crack pattern, prior to failure, again tends toward
concrete compressive trajectories, rather than toward the possible discontinuity
lines, we avoid the term "crack" for the latter. According to the Theory of
Plasticity for plane stress and strain such discontinuities are named slip lines. Thus
"collapse crack" is reserved in its original meaning for discontinuities with no
concrete crushing, whereas "slip lines" always imply concrete crushing. Together
with a yield criterion including concrete crushing, such slip lines are studied in
reference [5] in the context of shear in reinforced concrete and shear walls in
general. In this connection, the reader is also referred to reference [11] recently
published, where partially similar results have been derived independently.

The results of this Section may be summarized as follows: Only collapse
cracks but not slip lines are compatible with the yield criterion (5).
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Reinforced Concrete Beams in Torsion and Bending

To prepare the derivation of a new mechanism, the space truss model [2, 3] and
two mechanisms incompatible with the latter [2, 12] are recapitulated, as lower and

upper bound approaches respectively to the ultimate strength of reinforced concrete
beams in torsion and bending. From the theoretical point of view, it must be

pointed out that the space truss model intrinsically applies to thin-walled closed
cross sections. Hence, mechanisms compatible with the latter must be derived for
the same statical system. The applicability of the same relations to solid cross
sections is well confirmed by test results [6, 7, 8], but is not followed up
theoretically in this study.

r^ZT ^. X

SC

<es,S

^r-
Ŝ-b

\l^\
Fig. 8a. Fig. 8b.

Consider a beam with thin-walled closed rectangular cross section as shown
in Figure 8a, for example. The longitudinal reinforcement is concentrated in four
corner stringers of equal yield force Zf. The yield forces ofthe stirrups, measured per
unit length, equal Pu in the top and bottom shear walls and Ps in the side shear
walls. The reinforcement ratio is within the ränge of no concrete crushing.

In the space truss model the concrete is assumed to be in a uniaxial State of
compressive stress being uniform in each shear wall. Hence, the inclination of
struts a and the shear flow S are uniform in each wall, the resultant of concrete
stresses is acting in the centre of the wall, and the bending moment is sustained
only by the top and bottom walls. The bending moment and the torque being
constant, it is further assumed that the stringer forces are constant along the
beam, or equivalently, that the shear flow S is constant around the sectional
perimeter. For convex cross sections the reinforcement of all but one shear wall must
reach the yield stress. Thus, for positive bending moment, only the reinforcement
forces of the top wall are unknown. Conveniently the equilibrium equations
of moments are then formulated relative to the x- and y-axis lying in the top wall

M 2Zfh - 2Sh cot as \ - Sb cot auh,

T 2Sh | + Sbh 2S-bh 2SF0.

From the free-body diagram Figure 8b we obtain

S Ps cot a^ Pu cot au.

(18)

(19)

(20)

In particular, (20) implies also that the strut inclinations of the side walls are
the same, what we already have used in (18). Substituting from (19) and (20)
into (18) we obtain the interaction relation
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T2 /h 1 1

M 2Zfh - - + -4F<AbPs Pv
(21)

The same relation may also be derived directly by means of the yield criterion (5),
each shear wall being in a uniform state of membrane stress Nx, Ny, Nxy. To t>e a
lower bound Solution, the loads must be applied by rigid diaphragms. Additionally,
proper anchorage of longitudinal reinforcement has to be ensured by an anchorage
region, for which statically admissible stress fields must be found satisfying the end
boundary conditions. However, within the beam theory these problems may be

regarded as constructive problems. The transition from the space structure to the
beam is effected by the transition from the yield criterion (5) to the yield criterion
(21) in the generalized stresses acting on the differential beam element. Static
boundary conditions are satisfied then in the generalized stresses. In this sense the
truss model Solution is a lower bound to the exact interaction relation. To have
a complete Solution, we still must find a mechanism related to the assumed State of
stress by (8).

w,x*/
***¦ *^"" V fW

*»iX

Fig. 9.

In [2] the usual assumption ofbeam theory is postulated: Cross sections normal to
the beam axis remain plane. The velocities üK, vK of shear wall K are related
(Fig. 9) to the displacement parameter rates ü, v, w, v, W, & of the beam axis by

uK u - zw,x - y v>x,

Vk — (v + v) sin 8 + (w + w) cos 8 + rd, (22)

where v, w and v, w result from pure bending and pure shearing, respectively,
as shown in Figure 9b. )>x and )>s denote differentiation with respect to the
x- and s-direction. The rates of strain are

Slk uk,x u,x - zw,xx - yv>xx,

Yk uk,s + vk,: ¦ V v sin 5 + W x cos 8 + r9 x.
(23)

Hence, the rate of longitudinal extension eLK varies linearly across the wall,
whereas the shear strain-rate Yk is constant (Fig. 10).

Fig. 10.

i i
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Considering (14): tan aK
28lk

Yk
'

the strut inclination varies linearly in each wall too. Hence, the mechanism is not
compatible with the constant stress-state of the space truss model. Assuming in each
wall a constant distribution of the stirrup strain-rate eBK, and calculating eBK with
(9) for the average rate of longitudinal extension eLK in the centre of the wall, we
may derive (21). However, (9) is violated in general. If the contribution of concrete
crushing to the rate of energy dissipation, in regions with yK2 > 4eLK • eBK, would
not be neglected, ultimate strength would be higher than (21).

An upper bound approach with discontinuous velocity fields is the well known
"Skew Bending" mechanism [12].

'////////s/s/s/Ti

m

rs
i /

A^
»

a) ^~\t
Fig. IIa, b, c.

Consider a rotation of the free end of the cantilever with thin-walled cross
section shown in Figure IIa, about a skew axis AD. The position of the axis
is fixed by the two ends of a crack ABCD running around the beam. The fact that
the load factors derived from this mechanism are lower than predicted by (21), has

erroneously been explained by nodal forces [13]. The true reason may be easily
recognized from the top view Figure IIb. If the sectional shape is preserved as
usually assumed, there must be a jump in the tangential velocity component
along the discontinuity line BC in the bottom wall. Hence, the contribution of
concrete crushing to the rate of energy dissipation must not be neglected, and
higher load factors than predicted by (21) would be obtained, if concrete strength is
assumed according to assumption 5b.

On the other hand, if only the normal velocity component is assumed to jump
along ABCD, a sectional deformation Av is forced upon the free end of the cantilever
(Fig. IIb, c).

tJ>

Th/hTn/h

Vb 5>*V5* Vb

Th/h

Fig. 12.

However, for a cantilever regarded as a folded structure, lower load factors may
be obtained with mechanisms as suggested in Fig. 12. Because of the deformable
cross section the results depend on the ratio of Tv and Th, i.e. of the torques applied
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to the vertical and horizontal walls, respectively. For cantilevers of sufficient length,
the load factors are always lower than predicted by (21). The latter is reached only
for Tv Th T/2, i.e. for the optimal load application corresponding to constant
shear flow.

On the other hand, combining appropriately the two mechanisms shown in
Figure 12a and Figure 12b, we may assume a non-deformable cross section without
violating (17). This mechanism is treated in detail in the next Section. The
resulting interaction relation coincides with (21), and the strut inchnations cor-
respond to constant shear flow. Hence, the statical assumption of constant shear
flow corresponds evidently to the kinematical assumption of a non-deformable
cross section. This corresponds also to the assumption of a rigid diaphragm
in (21), which prevents the mechanisms of Figure 12.

Discontinuous Failure Mechanism

First a compatible mechanism with discontinuous velocity fields is derived.
It allows not only easy visualization, but is also the basic element of all other
continuous and discontinuous compatible mechanisms. As in the statical approach
we only allow for membrane forces, and all resistance of the shear walls normal
to their plane is neglected.

top view

*

V

B^"

I V,~

bottom shear wall

UG^

L hcot av + 2b cotau + h cot ah - bcot ß

Fig. 13.

ÜG p
I IG

ei—±\.
«E

G I

Consider again a rigid rotation of the front part of the beam shown in
Figure 13 about a skew axis AE situated for instance in the top wall. However,
contrary to Figure 11, the inclination ß of the axis of rotation is not determined
from the position of the ends of one crack, but is an additional parameter to be

determined from condition (17) and from the assumption that the sectional shape
is preserved.

Consequently, two cracks have to be considered, starting from the points A
and E of the axis of rotation. The hinge AE opens in the front wall the collapse
crack AB, which, on his part, opens the crack BC in the bottom wall. At C the
crack must be closed again, because there is no hinge in the top wall at D.

The same is true for the collapse crack EFG. The two cracks running around
the beam separate in the bottom wall the portion BCFG being connected along
the sides CF and BG with the fixed and the rotating part of the beam, respectively.
Considering (17), the portion BCFG undergoes a rigid rotation in its plane.
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Now, if the shape of cross section Gl is preserved, the velocities of point G,
in the plane of the bottom shear wall, are (top view)

üG cph sin ß, \ (24)
vG cph cos ß.

On the other hand, considering the rigid body rotation of the portion BCFG
in the bottom wall (Fig. 13 bottom shear wall), we obtain

vG üGi (25)

where, according to Figure 13, L is a function of the inclination ß of the axis of
rotation and of the free parameters of the mechanism, that is the inchnations a of
the collapse cracks. Considering (24) in (25) and substituting for L we find

cot ß ^ \ (cot av -l- cot ah) | + cot au. (26)

The mechanism satisfies condition (17) everywhere, and a deformation ofthe cross
section is prevented for arbitrary crack inchnations by choosing the ratio of twist
and flexural curvature cot ß according to (26). In particular, referring again to the
example of Figure 8a, we may use the crack inchnations (20) obtained by the

space truss model. Hence, the mechanism is compatible with the state of stress
assumed in the lower bound approach, and the interaction relation (21) corresponds to
the limit load of a beam with non-deformable cross section, within the scope of
membrane theory.

To verify the statement, we equate the rate of external work

La (p sin ß M + (p cos ß T (27)

to the rate of energy dissipation
Ld (p sin ß {h2 \ (cot 2av + cot 2ah) Ps + hb cot 2au Pu + 2Zf h}, (28)

and considering (26) we obtain

M 2Zf h + \ (h2Ps cot 2av - \ T cot av)

+ i(h2Pscot2ah-|Tcotah)
+ | (h2Pu cot 2au - \ T cot au).

Minimizing M for fixed T with respect to the crack inchnations we find

2 -= 2h2Ps cot av - £-T 0,
d(cotav) b

T 1 T 1

and cot av —
2bh Ps 2F0 Ps

S S
Hence, cot av cot ah —, cot au —, (30)

and by Substitution into (29) relation (21) is obtained again:

M-2Z>h-£(b-i!;4> <21>

To get the whole ränge of interaction, we also have to consider the mechanisms
with axis of rotation in the other shear walls. For pure torsion all the reinforcement
is yielding in our example. Hence, each of these mechanisms is possible. In particular,

(29)
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a mechanism with pure twist and extension, as shown in Figure 14, is also
feasible. It may be regarded as a linear combination of the two mechanisms
with axis of rotation in the top and bottom shear wall.

\*\ü\
Fig. 14.

Finally, there should be pointed out that the length of the presented
discontinuous mechanism, i.e. in our example

iMin h cot av + b cot au (31)

evidently is the minimum failure region required by a mechanism satisfying the
conditions of no concrete crushing and no cross-sectional deformations. If the most
critical part of the beam is shorter than the minimal failure length calculated
with the corresponding reinforcement, (21) is to be regarded as a lower bound.

Continuous Mechanisms and Beam Theory

Spreading the rotation (p in the top wall and the cracks over a finite length
d we get a continuous mechanism as shown in Figure 15a. All relations still hold, if the
reinforcement does not change over the additional length. Evidently it is not
possible in general to describe these mechanisms by beam theory, which relates
the displacements within a cross section to displacement parameters of the beam
axis. Only in the case illustrated in Figure 15b this is partially possible.

Failure region
dä>

const.

^N

*
W& Section

A x^!
/d<P

a) Fig. 15. b)

Consider a continuous mechanism with constant curvature-rate of the top wall
within the zone ABCD, viz. d(p/dx const., and hence, with a zone of uniform
strain-rates EFGH in the bottom wall. If the failure region is long enough, as shown
in Figure 15b, there exist sections Q lying completely within the region ABEF-
CDGH. Obviously cross sections Q have plane strain-rate distributions, and all
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their longitudinal fibers have the same curvature. Thus beam theory may be used
for these sections. On the other hand, looking at the different distances dl5 d2
between the section corners and the rigid parts of the beam, and considering
that the rate of extension is the same for di and d2 and is zero in the top wall,
we find that originally plane sections do not remain plane.

Hence, the beam assumptions (22) must be completed by warping terms.
Referring again to Figure 9, the in-plane velocities of shear wall K are

üK ü-zwx-yvx + Ü(s), 1
.32v

vK= -vsin8 + wcos8 + r$ + V(s), J

where the terms Ü, V, rö account for warping, stirrup elongation and the assumption
ofa non-deformable cross section, respectively. The strain-rates eLK, eBK ofthe
longitudinal and stirrup reinforcement, respectively, and the shear strain-rates yK are

£lk üK, x ü>x - zw xx - yv xx, 1

eBK vK,s =VS l (33)
Yk =üK,s + vK,x Us + rd,x. J

Contrary to equation (23) the shear strain-rate distribution across a wall depends
now additionally on a warping term to be determined appropriately. Assuming
a constant tan aK in each shear wall according to the state of stress in the truss model
and considering (14) we find a linear Variation of all strain-rate components:

Yk 2eLK * cot aK, eBK 8LK cot 2aK, 1 m,
eLK^0, 8bk>0. / W

Integrating (33) and substituting from (34) we obtain

Ü(s) j" (2eLK cot aK - r0,x) ds,
s

V(s) =JeLKcot 2aKds.
(35)

Continuity of the üK around the closed cross section is ensured, provided that

|Üsds 0 $yKds-9x$rds,
s SShence 9>x r=r§ 2sLK cot aK ds. (36)

2F0 s

tan aK being substituted from equation (20), the strain-rates are everywhere
compatible with the State of stress assumed in the truss model. For zero strain-
rates in the top wall of our example, equation (36), together with (33), evidently
gives the same ratio of twist and curvature as equation (26).

However, it must be emphasized that the pure sectional or beam analysis, i.e.

equations(32)-(36) alone, do not yet represent a kinematically admissible mechanism.
Since the plastified sections are warping, kinematic boundary conditions are violated
at cross sections separating rigid and plastified parts ofthe beam. In other words:
Equations (35), (36), (33) imply that the parameters ü>x, öx, w>xx, v>xx are constant
along the beam axis. This corresponds to the primary assumption that cross sections
Q lay completely within the region ABEF-CDGH. To be kinematically admissible,
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the beam mechanism must be completed at the ends with the more general
mechanisms of Figure 15a and consequently corresponds to the mechanism shown
in Figure 15b.

Assuming no change in the reinforcement within the failure region, and equating
the rate of external work to the rate of energy dissipation for the mechanism of
Figure 15b as well as for the differential beam element governed by (32)-(36), we
obtain the interaction relation (21). Hence, although a pure sectional mechanism
does not exist, the modified sectional approach is valid, Standing for a mechanism of
the type of Figure 15b. In particular, the essential results concerning arbitrary
cross sections in [2] are preserved.

Finally, we realize that the presence of shear forces in general is inconsistent
with the assumption ofa plane strain-rate distribution over a cross section according
to(32)-{36).

As shown in Figure 15b, this assumption implies that the longitudinal reinforcement
is yielding over a long failure region. For step-wise constant longitudinal reinforcement,

as usually used in engineering practice, such a mechanism is inconsistent
with the presence of shear forces and varying bending moments. The introduction
of additional pure shearing parameters for the beam axis v, w (Fig. 9b) to allow
for shear forces, as suggested in (22), does not change the State of affairs and,
hence, only discontinuous mechanisms are promising.

Application in Design and Conclusion

The space truss model represents a rational basis for the ultimate strength design
of reinforced concrete beams in torsion and bending. Additional design rules are

necessary to prevent premature concrete failure, local failure and excessive crack
formation under working load. Corresponding design specifications have already
been accepted in the Swiss Code SIA-162 RL 34 and in the Model Code of CEB
(Comite Europeen du Beton), and they are treated elsewhere at length [3, 4].
Taking advantage of the possible plastic redistributions of forces in the longitudinal
and stirrup reinforcement, they allow a more economic design of the reinforcement.
Moreover the design for shear, torsion and warping torsion can be put on a
consistent basis.

The present paper is a contribution to the theoretical background of these

developments. A rigorous kinematic or upper bound approach corresponding to
the truss model has been missing so far. Allowing easy visualization of the failure
model, the new design specifications are based on, the presented basic mechanism

may also be helpful to design engineers. Moreover/the paper shows that the term
"truss model" has rather historical and phenomenological significance. From a
theoretical point of view, the model is a strict application of the Theory of
Perfectly Plastic Solids to thin-walled beams in torsion and bending governed
by the yield condition (5).
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Notation

Forces, Stresses Lengths, Areas, Angles

Ds, Du resultant of concrete stresses in side

resp. bottom shear wall.
La rate of external work.
Ld rate of energy dissipation.
M moment.
Nx, Ny, Nxy membrane forces in shear wall,

measured per unit length.
nx, ny, nxy membrane forces in concrete, mea¬

sured per unit length.
Px, Py yield force of x- resp. y-reinforce-

ment, measured per unit length.
Ps, Pu yield force in side resp. bottom

stirrups, measured per unit length.
S shear flow.
T torque.
Tv, Th torque applied to vertical resp. hori¬

zontal shear wall.
Z0, Zu force in top resp. bottom longitu¬

dinal stringer.
Zf yield force in longitudinal stringer.
zx, zy membrane forces in reinforcement,

measured per unit length.
Q} yield function, plastic potential.
ae steel stress.

af yield stress in steel reinforcement.

Displacements, Rotations, Strains

u, v, w displacements.
U, V warping function resp. circumferen-

tial elongation.
£x> £y, Yxy strains.
£lk> £bk strains in longitudinal resp. stirrup

reinforcement of shear wall K.
yK shear strain in shear wall K
cp skew rotation.
A, proportionality factor.
0 angle of twist.

b
d
h

FX,Fy

F0
1,L
r

s

tX,ty
x, y, z
a

Subscripts

width of cross section.
layer depth, distance.
height of cross section.
area of one reinforcement bar in
x- resp. y-direction.
areaenclosed by reinforcement cage.
length.
distance to the shear wall plane
from x-axis.
circumferential coordinate.
spacing of x- resp. y-reinforcement.
coordinate system.
inclination of concrete compressive
trajectories and collapse cracks;
direction of minor principle strain.
inclination of discontinuity line or
axis of rotation.
angle between y-axis and outward
normal to the shear wall.

e steel.

f yield.
h behind, horizontal.
n normal.
o top.
s side.

t tangential.
u bottom.
V front, vertical.
x, y, z related to x-, y-, z-axis.

I, II related to major resp. minor prin¬

ciple axis.

L related to longitudinal reinforce¬

ment.
B related to stirrup.
K related to the shear wall K.
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Summary

To predict the ultimate strength of reinforced concrete beams with thin-walled
closed cross section in torsion and bending, the truss model has proved to be a

powerful approach. However, all collapse mechanisms known so far turn out to be

incompatible with the latter. In particular, it is shown, why mechanisms such as
"Skew Bending" supply different load factors than the truss model. The yield
criterion for reinforced concrete shear walls, implicitly used in the truss model, is
derived. By means ofthe corresponding flow rules, new mechanisms are developed
being compatible with the State of stress assumed in the truss model. The present
study is based on the classical theory of plasticity and on the fundamental theorems
of limit analysis.

Resume

Pour le calcul ä la rupture des poutres-caisson ä parois minces en beton arme
soumises ä la torsion et ä la flexion, le modele de treillis jouit d'un succes croissant.
Cependant, tous les mecanismes de ruine connus ä ce jour se montrent incompa-
tibles avec ce modele. En particulier, des mecanismes tels que le «Skew Bending»
fournissent d'autres valeurs de la charge limite que le modele de treillis. Le critere
de plasticite pour les plaques en beton arme, use implicitement dans le modele de
treillis, est introduit. A l'aide de la loi d'ecoulement plastique correspondante, on
developpe des mecanismes nouveaux compatibles avec l'etat de contrainte suppose
dans le modele de treillis. La presente etude est basee sur la theorie de la plasticite
et sur les theoremes fondamentaux de l'analyse limite.
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Zusammenfassung

Zur Erfassung des Bruchwiderstandes von Stahlbetonbalken mit dünnwandigem
geschlossenem Querschnitt unter Torsion und Biegung hat sich das Fachwerkmodell

als sehr geeignet erwiesen. Dagegen zeigt sich, dass bis heute keine mit
diesem Modell verträgliche Kollapsmechanismen bekannt sind. Insbesondere wird
darauf eingegangen, warum Mechanismen wie «Skew Bending» zu anderen
Traglastfaktoren führen als das Fachwerkmodell. Die dem Fachwerkmodell implizit
zugrunde liegende Fliessbedingung für Stahlbetonscheiben wird hergeleitet. Unter
Verwendung des zugehörigen Fliessgesetzes werden neue Mechanismen entwickelt,
die mit dem im Fachwerkmodell angenommenen Spannungszustand verträglich
sind. Grundlage der vorliegenden Arbeit sind die klassische Plastizitätstheorie und
die Grenzwertsätze des Traglastverfahrens.
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