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Computational Geometry for Structural Engineering

Etude de formes structurales ä l'aide de l'ordinateur

Computerunterstützte geometrische Tragwerksmodellierung

Shizuo SHIMADA
Professor, Dr. of Eng.

Nagoya University
Nagoya, Japan

-. **A
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promoted to füll Professor in
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bridge engineers as a
specialist numerical analyst on
many practical problems.
Since 1983 he is managing
the Division of Informatics
which was founded in 1980.

SUMMARY
Mathematical studies on engineering shapes are reviewed in order to develop modeling procedures

suitable for the Computer. Geometry is discussed at three different levels, geometrical
elements, figures and images. Dyadic product is introduced for the computation of moments of
inertia and rotation matrices. The problem-oriented language GEOMETRY is proposed for
educational and practical use in structural engineering.

RESUME
L'etude mathematique de formes structurales est presentee en vue d'une utilisation raisonable
de l'ordinateur. Les problemes de geometrie sont traites ä trois niveaux: elöments geometriques,
figures et images. Le produit dyadique est utilise pour le calcul ä l'ordinateur du moment d'inertie
et de la matrice de rotation. Le langage GEOMETRY est propose pour l'enseignement et
l'application pratique aux structures de genie civil.

ZUSAMMENFASSUNG
Ergebnisse mathematischer Untersuchungen über technische Formen werden zusammengestellt

mit dem Ziel, den Computer zu deren Modellierung effektiver anzuwenden. Geometrie
wird anhand von geometrischen Elementen, Figuren und Bildern diskutiert. Dyadische Produkte
für die Berechnung von Trägheitsmomenten und Rotations-Matrizen werden eingeführt. Die
problemorientierte Sprache GEOMETRIE wird für Ausbildung und praktische Anwendungen im
konstruktiven Bauwesen vorgeschlagen.
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1. INTRODUCTION

Geometry is a mathematical study on the properties of, and relations between,
points, lines, surfaces and solids in space. Everybody is aware of some faets of
elementary geometry as if they were self-evident truth. A word 'triangle' for
instance is enough to remind us what properties it has. Even a child can compare
two triangles at a glance whether similar or not. The mathematical conditions of
similarity are rather troublesome and tricky, but applied in every field with or
without remembering geometry.

Geometry becomes difficult without the aid of some analogical sketches. Since
our living world is in three dimensional(3D) Space, we recognize a spatial
object through our eyes stereoscopically. We remember its characteristics so

that we can identify it among others even though it appears in different ways.
Two dimensional(2D) sketches are useful tools to record a shape and to remind
it realistically. Normally, 2D sketches are insufficient media to teil the 3D

information because of lacking in depth dimension. However, a human brain is so
clever as to supply an associated information.
As far as a structural design is concerned, an engineer always imagines a

structural shape that does'nt exist yet. He feels some difficulties to teil to
another person what shape he is thinking about. He is obliged to prepare some

written documents so that his ideas can be correctly transferred to those people
who collaborate with him. If he works alone for his hobby, he may need no such
documents and can directly tackle to materials to create a shape. A group of
specialists with common knowledge among them use a few documents which are
hardly understandable to other people. Provided a collaborator is a Computer,
it should be well taught to help us on the creative design works.

A Computer suits for numerical processing, but not for topological solutions
such as to find out some similarities among various shapes. A Computer should
therefore aid us on the computational problems in geometry. Subjects of the
computational goemotry concern with the analyses of relative relations among
points, lines and sufaces, the calculation of length, area or volume, the
determination of tangential lines or surfaces, the generation of figures under
some conditions, and so forth.
The computational geometry has been specially developed in the network and graph
analyses with respect to the data bases of geography. A problem of Voronoi
diagram(Thiessen graph or Dirichlet diagram) is one of interesting topics. Its
principle of computation is very simple and clear. However, a lot of data
require a reasonable algorithm for a practical use of a Computer. This is the
same Situation in FEM analysis because it deals with a network structure. As

for a structural engineering, classic problems on areas or volumes of structural
members are of daily necessesity.
The author proposes in this paper a language GEOMETRY as a tool for the computational

geometry. One of the aims of the language is at an education to young
students as well as a practical use for engineers. Let us suppose again a

triangle. We know well how to decide its centre of gravity, centre of inscribed
circle and centre of circumscribed circle by the graphical means. However, we

will feel a great difficulty to numerically decide these centres without the
aid of sinusoidal functions. Ever to obtain a value of sin(x) or cos(x) was one
of computational problems, but it has become so easy as being processed by a

pocket calculator.
A little difficulty still remains to obtain the coordinate values of those
centres. The language GEOMETRY can support such solutions. Moreover, it can
provide an easy presentation on a graphic device just like a sketch on a paper.
In order to obtain a reasonable Solution about the analytical geometry, some
standardized ideas are required for the data structure of points, lines,
surfaces, solids and related mathematical values.
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The author classifies his discussions about geometry into three steps. The first
step deals with mathematical tools. "Geometrical elements" are their materials.
A vector and a matrix are numerical tools to establish the methods of calculation

among the geometrical elements. The second step defines a "figure". The

author uses this word as the same sense as a shape. But strictly speaking, a

figure is a geometrical model to represent a shape. A figure has a data set to
draw an "image" on a sheet. The third step deals with a transformation from an
invisible "figure" to a visible "image". The language GEOMETRY is introduced in
the last chapter with some interresting topics. It is designed to meet for the
author's discussions.

2 GEOMETRICAL ELEMENTS

2.1 Coordinate System

Point, line and plane are analytical elements of space geometry. These are
directly given prior to any discussion. We know some of their characteristics
such as a flat plane or a straight line. However, we can not define any units
from which the elements are composed. Let us suppose two points, for instance,
"A" and "B". There exists no numerical relation between two points whtether "A"
is greater or less than "B".

For numerical handling in a Computer,
the elements shall be given by
mathematical values so that some calculation,

for instance, the intersect
between two planes causing a line, can
be performed. A Cartesian coordinate
System is then supposed a priori in
the world, that is, the world coordinate

system(WC). This is also composed
of three planes being perpendicular
to each other. Intersected three

lines are axes. The origin is a
common point to all above elements.
The unit length should be deeided
here. From now on, numerical
characteristics of the elements are able to
decide as relative relations against
WC (Fig-1).
Two dimensional(2D) geometry is
important in usual drawn images on a
sheet. Point and line are analytical
elements in 2D. The world becomes two
dimensional, but it is recommended to
suppose the third coordinate axis
which is perpendicular to a sheet and
gives a distance between your eyes
and a sheet. When a sheet is laid on
a desk, we consider x and y axes on a
sheet. Sometimes, y and z axes more
suit on a vertical CRT screen in
connection with the space geometry.
One dimensional(ID) geometry manages points along a line. This is not emphasized
but a very important technique whenever we measure a distance between two
points. An angle is measured by a curve linear 1D-coordinate system along a

circle. Left/right or up/down is an associated property depending on the sign of
a ID-coordinate value.

fP

S,

s.

A

»y

Fig.1 Coordinate System
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u»(a,b,c

2.2 Point
A point is defined by a set of coordinate values in WC. These values present
respectively a distance with sign between the given point and each coordinate
plane. A set of values are then considered as a mathematical quantity called a

a position vector from the origin. A vector in either 2D or 3D is to be managed
as an array with size of 2 or 3 in
the linear memories of a Computer. A

set of n-points are then extended in
an array such as P(2,n) or P(3,n).
Since a Computer has no spatial
Container to mark a point, an
appropriate design is necessary for the
data structure of the geometrical
elements. A user needs little professional

knowledge about programming
technique. However, he should be
careful not to refer the above arrays
in an inverse style of P(n,2) or
P(n,3). Geometry becomes a very
difficult study when it is written by a
symbolic expression. This is due to
many such rules as to define an order
or arrangement among values.

/
o<H

ax+ by* cz* d

Fig.2 Definition of a plane

2.3 Plane

A flat plane extends infinitely dividing the world into two partial Spaces
relatively positive and negative. A plane has two faces, one of which appears
practically as a surface of a solid body. An analytical tool of a plane is
based on the following equation;

b y 0 (0

where, (x,y,z) is the coordinate values of a point in a plane. This can be
rewritten into Eq.(2) using a product of two vectors.

(a,b,c).(x,y,z) + d 0 (2)

Speaking geometrically, a vector (a,b,c) is perpendicular to the defined plane.
Further, we decide this vector having unit length(Fig.2). Namely, the vecor is a
normal vector to a plane, "d" becomes a distance with sign between the origin
and a plane. The sign of d shows whether the origin stays in the positive or
negative space relatively to the subjected plane. A set of four values (a,b,c,d)
are then defined to represent a 3D-plane for numerical handling.

2.4 Line (3D)

A line is infinitely straight in the world. It must have a point(p,q,r) which is
located at the closest against the origin. Starting at this point, another unit
vector (u,v,w) is so proposed as to decide the direction of the given line. A

set of six values (p,q,r,u,v,w) are then defined to represent a 3D-line.
Equations for this line are(Fig-3);

x p + u.t q + v.t and z r + w. t (3)

where, t is a local coordinate value along this line supposing 1D-geometry. Two

vectors (p,q,r) and (u,v,w) are perpendicular each other in the world.
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Fig.3 Defintion of a 3D-line Fig.4 Defintion of a 2D-line

2.5 Line (2D)

A line drawn on a sheet has two properties with respect to a 3D-plane and a 3D-

line, respectively. A line caused by the intersection between the sheet and a

3D-line divides the sheet into two regions. Equations 1 and 2 are reduced to
those for 2D-geometry.

a.x+b.y+c=0
(a,b).(x,y) + c 0

(4)

(5)

(a,b) defined in 2D-geometry has a unit size and is normal to the
"c" is a distance with sign between the 2D-origin and a 2D-line. A

set of three values (a,b,c) are the definition for a 2D-line (Fig.4). Another
way to difine a 2D-line is to project a 3D-line onto a sheet.

The vector
given line.

v.tx p + u.t and y q

(p,q) is the closest point along the line to the origin.

(6)

where (p,q) is the closest point along the line to the origin. The vector(u,v)
has a unit length and indicates a positive direction of this line. This vector
is perpendicular to the position vector(p,q). Equations 4, 5 and 6 present the
same 2D-line.

3. INTERRELATION AMONG ELEMENTS

3.1 Angle and Distance

Even though the geometrical elements are defined in the previous chapter by a

set of values, there exist no algebrailcal formulas among them on addition, sub-
traction, multiplication or division. There are topological relations such as

left/right, inside/outside, inclusive/exclusive, coincident, common etc. In
order to measure these topological properties, an introduction of angle and
distance helps us more analytically and numerically rather than only to say left or
right. It should be remembered again that the definitions of point, line and

plane are relatively evaluated against the elements which construet the world
coordinate system.
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As to a distance, a vector plays an important role for measuring its magnitude.
A unit vector has a unit length. A scalor is an algebraical multiplier to the
unit vector. A topological propertiy, left or right, is then considered with
respect to the sign of a scalor.
As to an angle, it measures a rotation around an axis. An axis is a 3D-line even
when we consider a problem in 2D-geometry. A vector is necessary in order to
represent an axis. A right-handed law is used to measure the magnitude and sign
of an angle. A right screw is normally supposed to understand the law. A screw
advances by its clockwise turn. A screw resembles a unit vector for an axis. An

angle is a positive scalor when a screw advances. In a case of 2D-geometry, an
axis Stands perpendicularly to a sheet aiming at our side. It traces a point on
a sheet. An angle is measured positive for a reversal clockwise turn.

3.2 Topological Status among Elements

Tables-1/2 summarlize the classified relations among geometrical elements in 3D

and 2D, respectively. The Status codes in Tables are also drawn in Figs.5a/5d.
The interference between two geometrical elements is able to say by words such
as coincident, exclusive, inclusive, etc. However, the computational geometry
has to classify the Status more strictly by numerical codes, because a word
"parallel', for instance, has two or more different conditions.
From a viewpoint of numerical handling, a tolerance should be previously deeided
against a distance and an angle, respectively. For instance, a distance between
a point and a plane is compared with a tolerance. If the distance is smaller
than the tolerance, the point is in the plane practically. A tolerance for an
angle is similarly used to check the parallelism among planes and lines. The
condition has however a critical limit within a finite space. When a graphical
presentation is concerned, such a tolerance is practically deeided from the
accuracy of a graphical screen.

Table 1. Classified relations among 3D-elements

element
A vs. B

topological
Status

Status
code

measure associated
elements

remarks

Pt Pt coincident
exclusive

0
1 dis Ln

Pt Ln inclusive
exclusive

0
1 dis Pt closest point on a line

Pt PI inclusive
exclusive

0

1/2 dis Pt
(Fig.5a)

closest point on a plane

Ln Ln coincident
parallel
intersect
exclusive

0/1
2/3

4

5

dis
ang

ang,dis

PI
Pt.Pl
Pt.Pt

(Fig.5c)

co-plane
skew position

Ln PI inclusive
parallel
intersect

0

1/2
3/4

dis
ang Pt

(Fig.5a)

(Fig.5b)

PI PI coincident
parallel
intersect

0/1
2/5
6/7

dis
ang Ln

(Fig.Sd)

* Pt(point), Ln(line), PI(plane)



IABSE PERIODICA 2/1985 IABSE PROCEEDINGS P-87/85 99

Table 2. Classified relations among 2D- elements

element
A vs. B

topological
Status

status
code

measure associated
elements

remarks

Pt Pt coincident
exclusive

0
1 dis Ln

Pt Ln inclusive
exclusive

0

1/2 dis Pt
(Fig.5a)
closest point on a line

Ln Ln coincident
parallel
intersect

0/1
2/5
6/7

dis
ang Pt

(Fig.5d)

* Pt(point), Ln(line).

a) 0 ?1 2
7779777777777777777777777^ 7777777&77777777777?&77*

c) b >

d) ° 1 ""* 4 5 6/ ^7
//xy////T/7)/////////////////x///////////^/y/xß/////h^

Fig.5 Status codes of topological relations

3.3 Mathematics of 3D-Vectors

A vector is a convenient mathematical quantity which is graphically modeled by
an arrow showing its magnitude and direction. After deciding the world coordinate

System, a vector enables us to calculate numerical properties of the geometrical

elements. Among the formulas of vector mathematics, the author would like
to explain some rules related to a product between two vectors. As to 2D-vector,
the third component is zero or unused, practically.
In order to measure a relative angle between two vectors, a vector product and
a scalor product are commonly used. The former is a special geometrical definition

that produces a third vector perpendicular to the first and second vectors.
A word 'product' normally means a scalor product because it is rather
algebraical.
A dyad ab defined below is a sort of product between two vectors a and b. This
product is represented by a matrix for numerical purposes.

ab (' (b. b2 b3)

\°3

Vb1
Vbi
Vbi

Vb2
a2.b2

a3.b2

a2.b3

a3.b3 (7)
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A dyad is used as an Operator to produce another vector from one vector. Rules
of product are the same as those for matrix algebra. A matrix is usually known
as a tool for remembering a set of 3x3 components in row and column directions.
A matrix is composed, in our discussion, of a series of dyads;

T ab + cd + ef (8)

A rotaiton matrix is frequently used
to rotate a position around an axis.
It is mathematically carried out by
a product between a matrix T and a

position vector r.

T.r (9)

Let us then show how T is constructed
by a series of dyads. Let U be a unit
vector representing a rotation axis.
Any two unit vectors V and W are
supposed so as to compose a Cartesian
coordinate system (u,V,w). A position
P which is given by a vector r is
synthesized by the component vectors
(Fig.6);

r u(u.r) + v(v.r) + w(w.r)
(uu + vv + ww).r (10)

After the rotation around a vector U,
two vectors V and W change their
direction in a plane which is normal
to u;

v' V cos(t) + W sin(t)
w' - V sin(t) + W cos(t)

W

ww

Fig.6 Rotation of a point around an axis

(11)

A new position of P becomes then;

u(u.r) + v'(v.r) + w'(w.r)
(UU + (VV+WW)cos(t) + (VW-WV))sin(t)).r
(E cos(t) + UU(1-cos(t)) + (VW-WV))sin(t)).r (12)

Since two unit vectors V and W are temporary chosen, the componets of matrix T

are calculated by the components of an axial vector (a,b,a) and an angle of
rotation t;

1 'a.a a.b a.a
T | lcos(t) + I b.a b.b b.c

l] [ a.a a.b a.a
(1 - cos (t)) +

0 -c b
e 0 -07

* a 0
i(t) (13)

Equation 13 is practically useful to evaluate a rotation matrix T from a given
axial vector U and an angle t of rotation. The above matrix T is used in numerical

processing. In the meantime, a vector, which has a magnitude t and is
proportional to U, is often considered to represent a rotation. A bending moment
is drawn by such an axial vector for its similar property. An angle and a
distance, introduced in the article 3.1, are therefore able to be considered as
both vectors which are often drawn by arrow marks in a perspective sketch.
However both vectors have each different property for numerical processing.
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3.4 Moving and Rotating

Any two geometrical elements are able to superimpose one to another by moving
and/or rotating. The topological Status shown in Tables 1/2 defines the static
relations between two elements. Moving and rotating are, on the other hand,
dynamic procedures to cause such relations between the same element before and

after its motion.
A word 'move' is used here in a sense of translation without 'rotate'. As to
'rotate', it needs a 3D-line for an axis which includes the origin of a coordinate

System. Generally, an axis will not always meet with the origin. In such a

case, 'rotate' is accompanied by 'move'.

A rotation of a position is carried out by a product between a rotation matrix T

and a position vector r. A movement of a position is carried out by addition of
a directional vector d. We shall define in general a motion of a point in two
following steps 'rotate then move';

r' T.r + d (14)

where r'=(x',y',a'), r=(x,y,z), d=(dx,dy,dz) and T is a 3x3 matrix defined by
Eq-13. For a numerical handling, a 3x4 matrix M is defined as a transformation
matrix which has the vector d as the fourth column vector along with T. A matrix
calculation is defined as;

Cx' ,y',z') M (s.j/,2,1) (15)

Let us then consider the reversal procedure of Eq.14;

r T' (r'-d) (16)

This equation means that the procedure is carried out by 'move then rotate'. It
is mathematically easy to transform this equation into 'rotate then move'
expression. We should be careful to an order of procedure whether 'rotate
then move' or 'move then rotate'.

3.5 Local Coordinate System(LC)

It is a natural manner to inform the size of a rectangle by its width and

height. An implicit coordinate System is considered in this manner at the left
bottom corner to measure its size. A local coordinate system is such a System,
but should be strictly defined for the computational geometry.
A local coordinate system is a copy of WC. Its characteristics are summarized
by a set of four vectors; ej, eg, e^ and d. The first three vectors are unit
vectors indicating the directions of new coordinate axes, respectively (Fig-7)
The fourth vector d is the position of new origin. A 3x4 matrix M is used as a

Container of four vectors for numerical purposes.

eix eiy eiz dx

e2x e%y e2z dy

^3x ezy ezz dz

(17)

A care should be paid to the arrangement of matrix components. The unit vectors
are staying along row directions, while d Stands in the fourth column. Although
a rule to keep the 3x4 matrix components in Computer memories uses a two
dimensional array M(3,4), the components stay linearly as a series of four
column vectors.
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Using the definition of above matrix M, a position is transformed into a new
position by Eq.15. The procedure has the follwing geometrical meaning. A local
coordinate System was at the origin and equal to WC. The System has moved to a

new position as defined by Eq.17. A subjected point to this local coordinate
system changes its position in the world coordinate system. In other words,
Eq.15 computes world coordinate values from locally defined coordinate values.

A reversal procedure is frequently required with respect to a local coordinate
System. The problem is to compute the local coordinate values from the world
coordinate values. In order to understand this procedure, let us suppose a
TV-camera and a view through its lens. Looking at a TV screen in our room, we

often feel an illusion that the view is in front of us realistically. The camera
is, however, at another position and aiming at some direction. The definition of
camera positioning is that of a local coordinate System. The camera measures a

world position by its coordinate System. This is known as the coordinate
transformation, geometrically (Fig.7).
Let us then suppose a camera aiming at an object in the world. A view through a
lens only depends on relative positioning between the camera and the object. To

take a fine picture, we move the camera to and fro. But the same result is
possible by moving the object while the camera remains unmoved. Direction of
motion is strictly opposite with respect to the camera or the object in WC.

Positioning of a camera in the world coordinate System is summarized by a word
'window' in a graphic language. After taking a film, a picture is moved in a

local coordinate system so called a 'viewport'. A transformation matrix is used
as a 2x3 matrix in a graphic language for a 2D domain. But it manages a scaling
at the same time.

-~ d

M&\yjr*
-, ^*

<s>

Fig.7 A local coordinate System
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4. FIGURES MODELING OF SHAPES

4.1 Locus

Let us suppose a triangle. We know well that it is consisted of three edges.
There are, however, many possibilities on presentation techniques on a sheet.
Drawing an outline is a natural way. On the other hand, painting with a colour
will emphasize its fill area and the outline may not be drawn. Sometimes,
vertices are drawn by special Symbols. Someone draws a triangle to show a hole.
For such possibilities, we shall use two words 'figure' and 'image' with each
separate geometrical definition.
A figure is represented by a word 'triangle' in the above paragraph. It has
geometrical characteristics without the aid of any visible 'images'. A term
locus suits to define what a figure is. A locus is a system of points, lines or
surfaces representing a given condition or law. A circle, for instance, is a
smooth curved line composed of a number of equi-distant 2D-points from a centre
point. A word 'circle' is commonly used as a round outline as well as a shape
whose outline is round. A clear difference should be recongnized between two
circles. One is an outline and the other includes all the points inside of its
outline.
An idea is necessary to classify a 2D-figure that it is composed of three figure
elements; Vertex, edge and region. A Vertex is a point. An edge represents a

line segment either straight or curved. A region is a fill area surrounded by
edges. A triangle is consisted of three vertices, three edges, and a region if
inside area is necessary.
The figure elements have common points among them. A Vertex is common with two
connecting edges. An edge between two vertices has an infinite number of points
which are common with a region. Some definitions are necessary to identify
whether some figure elements are vacant or not. If a region is vacant, a figure
means an outline. If an outline is vacant, the points along edges are out of
bounds of a figure. An outline is always necessary to decide a shape, therefore
edges and vertices need the information on vacancy.
The concept of a locus is useful to understand what an image is. An 'image' is
a visualized locus on a sheet or a graphic screen, because it is essentially a

System of dotted points in black or colour. Drawing a point and a line segment
corresponds to the visualization of Vertex and edge, respectively. Painting on a

region, however, takes a little special technique depending on a graphic device.
Vacant figure elements are not drawn or may be drawn by dotted or dashed lines.
A 2D-figure is able to transfer for the data to create an image, but an image
needs more information such as thickness of line, colour, dotted lines, dashed
lines, pattern species to fill area and so forth.
A solid shape is recognized by a 3D-figure. It is consisted of four 3D-figure
elements; Vertex, edge, surface and body which represents continuous fill
materials. If 'body' is vacant, a thin-walled structure is assumed. A 3D-figure
is also a locus, but it has topologically the same structure as that of a 2D-
figure. Because the surfaces are bounded by each other through edges and can be
developed like a map of the globe.
A 3D-figure becomes visible after a projective transformation into a 2D-figure
and displaying graphically as an image. When a solid figure with a homogeneous

fill material is transformed point by point into a 2D-figure, it will cause a

Silhouette without surface characteristics. Not all the points are transformed
into a 2D-figure. Basically, fill materials inside a solid figure are out of our
consideration. A special technique is required to remove invisible edges and
surfaces and to make a realistic image. Hidden line elimination is discussed in
article 5.4.
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4.2 Modeling

Modeling procedures take the following three steps. First step is to establish
an analogical model for the convenience of theoretical and numerical researches.
The second is to decide its geometrical conditions. The last is to prepare its
data for a Computer. As far as the structural engineering is concerned, an FEM

(finite element method) model is one of our targets.
An engineering structure is constructed by a lot of continuous materials. A

finite number of points are chosen so that they represent mean properties
around them. It is natural to consider a network connecting such points. The

points are used as each origin of local coordinate Systems by which the shapes
of local materials are described (step-1).
A series of code is named to the points as well as to the edges. Coordinate
values are set to the points under the assumption of a world coordinate system.
Several attributive data are required such as point loading, forces, sectional
areas, bending stiffness, and stress and deformation that shall be computed.
Structural members have each local coordinate System to indicate their axes
(step-2).
A design for a usage of Computer memories is a modeling in narrow sense. Since
the Computer memories are in 1D-space, a reasonable idea is necessary to manage
geometrical 2D or 3D data. The modeling is a method to describe a shape. A
network model of FEM is simple but it has a purpose to compute stress and
deformation. A precise description of a shape has practical requirement to make

engineering drawings, to estimate amount of materials, and so on.

Several geometrical models are shown in Fig.8. A data structure for a 2D-map is
similarly used to record such a 3D-solid as a polyhedron. A network model(2D)
and a wire frame model(3D) become simple because no data on regions and
surfaces are necessary, respectively. A curved edge is apporximated by a
polygonal line with straight edges practically. A curved surface is also
approximated by small segment surfaces so that each of them seems practically
flat. This modeling is applied to a digital terrain model.

point(2CV3D) line-sgmt. region(2D) map(2D) network (2D)

paperOD) solid (3D) paperworkOD) wire-frame (3D)

Fig.8 Geometrical Models
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There are many ideas for programming techniques. Recently, a smaller program
unit is becoming more covenient in order to use a micro-processor. Due to a

physical limit of memory size, a large amount of data are managed as a data
base out of the memories. Each program uses its own data structure to suit fast
processing. Naturally, a pre-and-post processor is required to manage the data
among a data base.

The principal aim of modeling is to save the efforts for data preparation. A

problem of automatic mesh generation is from such a requirement for an FEM

network. It is the best way to ask a Computer by a language with a few input
data. The author proposes a language GEOMETRY for the processing of 2D and 3D

shapes. The language manages a shape as a figure defined in the previous
article.

4.3 Numerical Properties of Figures
a) Area:

The area of a region or a surface is a typicai value frequently calculated.
We know well how to calculate it about a fundamental figure such as a

triangle, a rectangle or a circle. Any polygonal shape is practically
calculated as an assembly of partitioned triangles or rectangles. The area
has a value with a sign either positive or negative. For example a hole has
a negative value so that an exaet value is obtained for a figure with holes.

In order to calculate the area, the data structure of a figure should have
the topological information on the edges, that is, the direction of an edge
is positive when the corresponding region is on its left side. As to a
3D-surface, the area is represented by a vector whose size is the value of
area. The direction of vector is normal to the surface indicating from
inside to outside through the surface.

b) Centre of gravity:
This is mathematically a mean of coordinate values of the points belonging
to a figure. The centre of gravity of a triangle is a mean of its three
vertices, however, that of a triangulär ring becomes the centre of an
inscribed circle. The cnetre of gravity of a solid material is calculated
by an assembly of partitioned tetrahedrons, whose centres are each a mean
of four vertices.

c) Static moment:
This is an associated value with the above two properites, that is a product
of both.

d) Moment of inertia and radius of gyration:
Normally, a moment of inertia of a figure is calculated based on its local
coordinate System whose origin is set at the centre of gravity. A value of
moment inertia is algebraically the sum of quadratic product of two
coordinate values. For this reason, a moment of inertia is defined as a

Symmetrie matrix in our discussion. It is calculated by the summation of
dyads on position vectors (see Tables-3/4).
A radius of gyration for a sectional figure of a column is a root of a

diagonal element of moment of inertia after dividing by its area. It is
statistically a root mean Square of coordinate values, namely, a Standard
deviation of coordinate values.

e) Principal axes:
When a beam is bent by a bending moment, it turns a little out of an
expected bending plane if the sectional figure of a beam is asymmetric
against axes. Principal axes teil the new local coordinate System by which
the moment of inertia becomes a diagonal matrix.
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Table-3 Parameters for a Triangle

Area;
1 F-s(e-<z)(s-2>)(e-c)

7 /*
^b

where, s=(a+fc+c)/2

Angles;

sinC4)=2F/fce, cosC4) GS-a2) /fce
1 " / sin(B)=2F/ea, cos(B) (-S-fc2)/c<z

sin'C)=2F/ab, cos (C) (.S-c2)/ab

KB N^ /cA '3
where, S={a2XX)/2

Radius of inscribed circle R .;
R. F/st

2\\ a

Radius of circumscribed circle Ro;

Ro dbo 1 UF

Centres of a Tr iangles; r - k1.r1 * k2.r2 + kyr3
where, positions c f vertices are vectors r7, r„ and r,.
parameters have a re lation ; kt * k2 * k3 - 1

Centre of gravity;

A r3
fc^-1/3

k2-1/3
fc,-1/3

Centre of inscribed circle;

A fe.=a/2s

-XI r>
fe2=Z>/2s

fe3=c/2s

0 r.

Centre of circumscribed circle;
kfa2 {S-a2) IZF2

fe2=52(S-fc2)/8f2

fe3=c2(S-e2)/8F2

Centre of three normals intersected;

A r.
k1 (S-b2)(sX)/X
k2 (sX)(S-a2)lX
kf(S-a2)(S-b2)lX

Moment of inertia against WC;

t Zl\ F 3F
J =ü(rjri+r2r2+r3r3) + -y r^

where J is a matrix,
r .r is a dyad.

1- j
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Table-4 Parameters for a Tetrahedron

Centre of gravity;

rg " (rI + r2 + r3 + r4)/4
i\

Volume;

r2 " ri""f r3 - rl
r4 - r2

1-/ -— ""—/)3 (a determinant of a 3x3 matrix)

Moment of inertia;

*>
J j$ (rir-2+r2r2+r3r3+r^r4+16r?r3)

where J is a 3x3 matrix and

riri is a dyad.

A mathematical procedure to find the principal axes is to compute eigen
vectors as well as eigen values of a given Symmetrie matrix. From a geome-
tical point of view, however, the choice of direction of eigen vectors is
important. Eigen vectors should be arranged so as to become new coordinate
axes accounting of each corresponding old axis.

f) Volume of a body:
A solid figure is assumed as an assembly of cones with each polygonal base.
After Computing the area of base, an elementary formula for a cone is
applied to obtain the volume. As described in the item of area, the sign of
volume depends on the direction of the area vector. An edge of a solid
surface should have the information on both surfaces. For this reason, the
data structure of a solid figure becomes more complicated than that of a
network frame structure.

g) Radii and centres:
A circumscribed circle or a inscribed circle of a triangle is well known in
the elementary geometry. It becomes a little difficult by an analytical
equation. Table-3 summarizes those parameters for a triangle.
As to a tetrahedron, a circumscribed or a inscribed sphere has a geometrical
interest. It is, however, difficult to show a refined practical equation. An
aim of the computational geometry is found on such a problem. To decide the
centre of an inscribed sphere seems simple by the aid of descriptive
geometry, but becomes difficult for numerical evaluation without the aid of
a Computer.

h) Package size:
A circumscribed rectangle which contains a given 2D-figure is useful rather
than to compute a circumscribed circle. It helps for instance to decide a

graphical window where an aiming figure stays reasonably.
A maximum or minimum
sectional figure of a

package size.
A circumscribed cube is also used
3D-figure. Such a package size is
calculation without any special cares.

stress due to a bending moment is calculated on a

beam accounting with the centre of gravity and the

to know the package size of a given
frequently used during geometrical
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4.4 Logical Operations between Figures

Addition of two triangles, in a common sense, means that two triangles are
connected side by side making a polygonal shape. There are no algebraical rules
similarly applied to such calculation. Instead of addition, we say two triangles
are operated by a logical OR. A figure is assumed as a system of points, namely,
a set of points. The logical Operation is carried out between two sets of points
by the Boolean algegra.
In order to understand the set theory among logical values, a Venn diagram is
used as a tutorial tool (Table-5). Since a figure is a set of points in our
discussion, Table-5 classifies how two figures make an interference causing
another figure. Supposing the same material, logical OR operates as welding of
two figures, while one of two common parts, given by logical AND, is lost.
Cutting off a part of material needs an opposit figure that represents a die.

Logical NOT produces an imaginary material which fills the whole space infinitely
except the region where a figure has ever stayed. Instead of terms AND/OR/NOT

more understandable words are recommended for a common user, for example, INT
for intersection, UNI for unify, and SUB for subtraction. Each Operation is
carried out by one or more logical steps.
For the case of different materials, the interference between two figures causes
several effects. If two figures are painted with different colours respectively,
there are two possible ways to paint the common area. One figure is overlaid on
another so as to hide a part of background colour. Instead of this, a mixed
colour may be used to identify the common area. A graphic language to drive a

colour graphic screen supports the overlay feature to make an image. Since a
white colour is synthesized by three primary colours, no image will appear on a

white background without replacing it.
Elimination of hidden lines is an important technique to obtain a realistic
image of a 3D-figure on a graphic device. The problem has a difficulty due to
logical Operation among 2D-figures. A figure should have a data structure like a

regional map. A figure is consisted of element figures each of which have some

attributive data. After a logical interference is tested among figures, the data
are compared so as to obtain a desired result. A relative distance is one of
attributes to compare the overlaying depth to decide whether visible or not.
Three categories of interference among 2D-figures are shown in Table-5 as MAP,
HID and CUT with respect to the processing of edges. A MAP image is obtained
when all edges remain after logical Operation. To unify regions by eliminating
some edges is a procedure of HIDden line elimination. To set a new border CUTs

a region into two parts.
An intersected point between two line segments is a result of the logical AND.

Supposing an engineering drawing, the four resulted line segments should be
identified whether or not they include the intersected point as a common point.
A line segment at hidden side should be drawn so telling that the point is
invisible. So that it will be drawn keeping a little distance from that point.
This is the art of drawing to emphasize the line crossing.
A three dimensional map structure may be supposed like a honeycomb which has
common surfaces separating local Spaces. It is, however, out of our discussions.
Sometimes a Status code is only required to teil the information whether two
figures may cause intersect. Tables 1/2 show such Status codes on geometrical
elements. The Status codes between two figures are defined almost the same but a

little difference. As for a point against a region, for instance, exclusive(out-
side), inclusive(inside) and contact along an edge or a Vertex are considered.
One of difficult problems for the computational geometry is to find the simila-
fity and congruency among figures. Such a Classification suits for a man's eye
with a reasonable man-machine communication.
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Table-5 Logical Operations between figures

Figures Logical Operations Commands

A and B are exclusive

r
//,

NOT A

(compliment of A)

EVERT A

AHB

A AND B

(logical AND)

INT A,B,..,

(product)

AU B

A OR B

(logical OR)

UNI A,B,...

(addition)

N0T(N0T(A) OR B) SUB A,B,...

(subtraction)

A AND B,
N0T(N0T(A) OR B) and
N0T(N0T(B) OR A)

MAP A,B,..

(mapping)

A and
N0T(N0T(B) OR A)

HID A,B,...

(hidden lines)

NOT(NOT(A) OR B) and
A AND B

CUT A,B,.,

(cutting)
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4.5 Computational Problems

To draw a triangle using three lengths is a fundamental problem in the descrip-
tive geometry. To decide the coordinates of the vertices is a computaional
problem which requires more numerical conditions. The algorithm is normally very
simple and clear graphically. Sometimes, to compute a numerical value takes a

lot of efforts notwithstanding a simple problem. The computational geometry aims
at numerical processing in general. But in narrow sense, it deals with a problem
related to so many points and lines that it becomes only practical by the aid of
a Computer.

Previous articles have discussed fundamental rules, that is, how to manage
geometrical quantities from a theoretical viewpoint. Computational problems are
to discuss the practical algorithm in a Computer implementation. In order to
talk about algorithm, however, a method of calculation should be mentioned so
that the memory size and Computing time are wihin a permissible limit for a

Computer. There may be therefore different methods to suit for either a big
frame or a micro-processor. Several interesting topics are introduced in the
following paragraphs. Each story may be too short to explain the practical
techniques. Thus, a reader needs to grasp a preliminary knowledge before he
meets each problem.
a) Generation of a curved line:

A smoothly curved line is frequently required so as to connect given key
positions. A part of a curved line between two key positions is a segment,
for which a certain equation is employed taking into account its boundary
conditions. A quadratic equation suits to represent a partially curved line
because of its simplicity and wide adaptability. A third position is chosen
in this case to decide the boundary conditions. Tables-6/7 summarize the
quadratic curve generators. A parameter is shown there to select the line
characteristics such as an elliptic, parabolic or hyperbolic line.
A cubic equation makes a segment fit with two reference positions which are
analyzed so as to satisfy the boundary conditions at both ends. This is well
known as a third-order spline curve. A structural engineer will find this
algorithm to be the same as that to compute the deformation of an elastic
continuous beam supported at different height (Table-8).

b) Generation of a curved surface:
A curved surface is usually approximated by curved lines in two directions.
A partial curved surface is considered by a rectangular or a triangulär mesh
the edges of which are curved line segments. This is called a patch. Table-9
shows some curved surface equations for a proposed patch. In addition to key
positions at the corner of a patch, some reference positions have to be
deeided along the curved edges and inside the patch if necessary. An
equation for a patch is quadratic and/or cubic along two directions.
In order to decide the reference positions, boundary conditions are taken
into consideration. An elastic plate or a grillage structure may be assumed
as a numerical model covering all the surfaces. Two absolute curved line
Systems are practically recommended by the aid of previous item. Any curved
surface is reconstrueted as a seqence of regulär patch or mesh with each
straight edges. This is due to the requirement for numerical processing. A
mesh size is chosen so small as enough to approximate a flat plane. A

triangulär mesh suits tp satisfy the local mesh with flatness.
c) Equi-distant curved lines:

Let us suppose a beach line as a given curved line. The problem is to decide
another curved lines being equi-distant one another on the sea or inland.
The problem appears, for instance, to set both side lanes of a road, the
centre line of which is given by a curved line. There is no mathematical
formula in general except a use of a Computer for numerical trial and error
method. (Fig.9).
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d) Triangulär mesh generation:
A number of points are randomly distributing in 2D domain. A problem is to
connect these points so as to form triangulär meshes. Several ideas are
considered not to generate a triangle with a very acute or obtuse angle.
Man-machine interface is desirable in this problem because there exist many
different solutions.

e) Voronoi diagrams:
The same random points are considered as that of the above paragraph. Here
is a problem to decide local domains subjected to each points. Let us
suppose a regional map. The points inside the map represent railway stations.
Inhabitants will go to the closest Station to catch a train. So each Station
has a domain where inhabitants belong to. Border lines between domains are
bisectors among the points. A resulted map is called a Voronoi diagram.
(Fig.10).

f) Automatic Mesh Generation for FEM Models:
Since an FEM model is a network graphically, a lot of preliminary work is
required for geometrical and topological characteristics. An engineering
structure has more or less a regularity in shape. A few data are enough to
generate the rest of data. Numbering on nodes and edges is carried out by a

little trained manner. But such a work is not always necessary when an
appropriate graphic tool shows an overall characteristic at a glance.
A network model covering continuous 2D or 3D materials is created by no
regulär ways. The automatic mesh generation is therefore demanded by a user
to save his cumbersome work and to avoid mishandling of data. The above
item d) and Table-9 are applied as one of algorithms.
Accounting the use of a colour graphic screen, a recent idea is to create a
model depending on the mesh of screen. A right rectangular mesh is best one.
The maximum number of nodes has a limit depending on a screen accuracy. At
the same time, an analytical theory is studied to meet with this model.

g) Packing and editing:
Building blocks for children are packed in a box with the least size. To cut
out several shapes from a large sheet needs a similar idea of packing.
Editing a document is a sort of packing problems of character fönt together
with photographs and tables. A mathematical block puzzle is investigated by
an analyst using a Computer. From an experience by a lot of practical
packing problems, however, it has become clear that the best Solution is
achieved by man-machine Communications.

Fig.9 Equi-distant curved lines Fig.10 A Voronoi diagram
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Table-6 Quadratic Curves through Three Points

General Equation;

>¦

r

where,

-j^ (h-rl + k2-r2 + *3-r3-

t 0
t=1

ki (1-fc)(1-2t)
k2 t(4+a)(1-t)
k3 t(2t-1)
ko ki + k2 + k3

1 + at(l-i)
t: curve linear coordinate (0,1)

not proportional along length.
a s 0 ; hyperbola,
a 0 ; parabola,
a < 0 ; ellipse.

A/ \

hyperbola(a>0)

,f.,'/ N

/1 \/ i \/ i \/ =* N

/ I

parabolla(a=0)

-\

quarter of an ellipse(a—2+/T '• a half of an ellipse(a=-2)

two thirds of an elllpse(a=-3)
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Table-7 Quadratic Curves being tangential to a Triangle

>

>
-rh

t 1

t=0

h/H (2+a)/(4+a)

General Equation;

r

where,

—Q <-h-rl + k2-r2 + k3.r3)

kr (1-t)
kr, t(2+a)(1-t)
k3 tz
°

1 + a*tl-t>3

t : curve linear coordinate (0,1)
not proportional along length

a y 0 ; hyperbola,
a 0 ; parabola,

-2 <* <2 < 0 ; ellipse(inside)
-4 <^ a < -2 ; ellipse(outside)

hyperbola(a>0) rabolla(a=0) a quarter of an elllpse(a=-2+/T

a=-l

two thirds of an elllpse(a=-3)

round are

a -iKsin^f

a' -ll + lltsln/?

three quarters of an elllpse(a=-2-/T
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Table-8 Cubic Curves by given four Points

General Equation;

r kj.rj + k2.r2 + k3.r3 + k4.r4

where,
r, rj, l"2, V~3 and r^ are position vectors either 2D or 3D.

kl, k2, k3 and k4 axe functions of t shown below.

t : curve linear coordinate between (0,1).
It is not proportional along the length of line.

Boundary conditions are;
t=0
t-1 r Ta

Two intermediate reference points r2 and r-j are used either on the
curve at t=l/3 and t=2/3, respectively, or to specify the tangential
lines at i=0 and t=1, respectively.

t=1/3 ; r r2
t=2/3 ; r r3

or *=0 ; dr/dt 3(r2 - " r7)
or t=1 ; Ar/dt 3(r4 - - rs)

a)
fei (1/2)(1-t)(1-3t)(2-3t)
k2 (9/2)i(1-t)(2-3t)
fe3 =-(9/2)t(1-t)(1-3t)
k4 (1/2)t(1-3t)(2-3t)

b)

2
-0

1
0

w o-tr
«;i 3t(1-t)
fe3 3t (1-t)
k4 t 3

c)

2

1

kl (1/4)(1-t)(2-t)(2-3t)
fe2 (3/2)t(1-t)(2-3t)
k3 (27/4)t2(1-t)
k-i t (3t-2)

d)

e

fei (1-t) (1-3t)
fe2 (27/4)t(1-t)2"
k3 =-(3/2)t(1-t)(1-3t)
fe4 =-(1/4)t(1+t)(1-3t)



Table-9 Curved Surf iees covei ing Given Space Points

General Equation;

r - kn.rn k12 •r12
* k21-r

where, ktJ- :

21 * *22 r22

of two pa rametric coordinates u and u at aa function
corresponding point number i and j.i : either 1-1 2 and 3 at each u ¦0, 1/2 and 1, or
i-t, 2 3 ind 4 at each u-0. 1/3, 2/3 and 1.

j : either J-l 2 and 3 at each q -0, 1/2 and 1, or
J-1, 2 3 ind 4 at each y-0, 1/3, 2/3 and 1.

u, u parametric curve coordinates along two directions in
the ränge >f each (G ¦ 0.

a) Quadratic Curved Surface :overing 9 Points;
" a ff »y kij- fiM.fjlv.

2/L / -|ü fl't) - (1-t)(1-2t)
»ii_—*—•*¦> f2U) - 4t(l-t)
«"p" f3M —t(1-2t)

t,J Quadratic Curved Surface >>' <• Lven 8 Points along Edges;

19 /-* kn • (1-uXI-uXl-2u-2u)" ^ -r-* kl2 -
k!3 -

4(1-k)i;(1-i>)
(l-u)u(2u-2u-1)

2/f
2J k21 - 4u(1-uX1-u)

W2 - 0

i# !¦ ¦ -* }, k23 - 4u(1-u)u

J« Wl - a(1-uX2u-2t>-1)
u W2 - 4uu(1-v)

k33 • uu(2u+2y-3)

Cubic Curved Surface covering 16 Points

aXT ki-.- fiM.f-fWrtu flU) • (l/2)(1-t)(1-3t)(2-3t)
rTTJ f2U) - (9/2)t(l-t)(2-3£)LJ-W f3U) — <9/2H(1-tXl/3t)f f4U) - (1/2)t(1-3tX2-3t)

d) Cubic Curved Surface by G v.-n 12 Points along Edges;

kll - (1/2X1- <)(1-u)(2-9u(1-u)-9u(1-u))
W2 - (9/2X1- ()»(1-i>)(2-3»)

V-—I*
k23 - -(9/2Xl-u)ü(1-u)(l-3u)
kl4 - (1/2X1- <)l>(2-9u(1-u)-9v(1-ii))

/ 1 k21 • (9/2)u(l -uX2-3u)(1-u)
/ t k£2 - k23 - 0

i 1 k24 • <9/2)a(l -u)(2-3u)u
f k31 - <9/2)u(l -uX1-3uXl-f)

•—44
k32 -
k34 -

k33 - 0
-(9/2)u(l -u)(l-3u)u

k41 - (1/2)u(l -uX2-9a(l-u)-9f(1-u))
k42 - (9/2)uu( -uX2-3u)
k43 - -(9/2)uv( -u)(1-3u)
k44 - (1/2)m>(2-9u(1-«)-9u(1-D))

t) Quadratic Triangulär Curved Surface by Given 6 Points;

\/\7—fcV kll "U(2u-0, where u-(l-u-u)
kl2 - 4vu

*V-~Wn kl3 - p(2l)-1)
k21 - '.!<!.'

Xu k22 • 4ui>

Wl - u(2u-1)

1) Cubic Triangulär Curved Surface

"T—-ri-»
\ ^~~>^

\ | "Xji

by Given 10 Points;
ikll - (1/2)u(3u-1X3u-2)
kl2 - (9/2)uw(3u-l)
kl3 - (9/2)uu(3u-1)
kl4 - (1/2)u(3t)-1)(3u-2)
k21 - (9/2)uu(3u-1)

\ ~~Xu
k22 —27uuu
k23 - (9/2)uu(3u-1)
Wl - (9/2)uu(3u-1)

*' \ W2 - (9/2)uu(3u-1)\u k41 - (1/2)u(3u-l)(3u-2)

») Cubic Triangulär Curved Surface by Given 9 Points along Edges;

kll - (l/2)u(3u-l)(3u-2)
kl2 • (9/2)uu.(2u-i))
*13 - (9/2)«<2u-u)

\ ~L- X V H< - (1/2)u(3u-1)(3i)-2)
"V- 'x' Wl - (9/2)uu(2u-u)

\x^ k22 - 0
k23 - {9/Vuvav-u)

*'\ Wl - (9/2)uu(2u-u>
\u k32 - (9/2)uu(2u-u)

Kl - (1/2)u(3u-1)(3u-2)

li) Linear Synthesizing from 4 Corner Points and 4 Edge Curved Lines;

r - (l-u).qjj(u) + u. q2j(u) * (1-u).qJ2(u) q.ij.,1;,)

-(l-u)(l-»).r, - u(1 -v).re - y(1-u).rs - uv.r.

.," 1. --- i. whe re,
r : corner point in vector.

* I qj,-(t) : a curved line from point i
1,1 1%. to point j as shown in

Tables 6/8.
W \ ' Any relation is applied
\\ 11 whenever it satisfies;
2lK r^4
m4 *-qz "' t-0 : qfj-r;

t-1 ' tij-fj



116 IABSE PROCEEDINGS P-87/85 IABSE PERIODICA 2/1985

5. IMAGE TRANSFORMATION

5.1 Images

A man who imagines a geometrical shape in his mind must decompose it into a set
of points and line segments. These data are sent to a graphic device while some

attributes on colour, line species, or line width are transmitted. An image is
physically consisted of points and line segments. There are two kinds of graphic
Systems for making a line segment. A pen plotter is able to draw a line. On the
other hand, a line is practically constructed by a series of points on a colour
graphic CRT. Smoothness of a curve and fineness of texture have a practical
limit due to the accuracy of a graphic device.

Illustrated images are more or less illusions which make some meaningful association

in our minds. They happen to fall into a puzzle or something like a graphic

art unless carefully designed. Notwithstanding his intents, another person
may understand the shape as a quite different object. Specifications for
engineering drawings therefore establish the rules to transform figures into
images. On the other hand, characters are understandable regardless of any
Styling.
An image is created by the data of 2D-figure or 3D-figure after camera works.
Vertices and edges are respectively transformed into points and line segments on
a screen, however, regions or surfaces need special art of drawing to identify
them among others. Hatching line, filling area by pattern, painting by colour
are such techniquies. An image needs many non-geometrical properties such as
colour, line width, line species and so forth.

5.2 Camera

The best way to understand an image transformation is to suppose a photograph
processing. Let us suppose a camera looking at a 2D-figure in the right
direction. Since a camera has a limited scope, we set a camera so that a figure
comes inside a viewing finder reasonably. A rectangle area of a finder is
called a 'window' which bounds the visible area on a plane where a figure
stays. As for a 3D-figure, a conical space is visible through the window.

A shot is taken onto a film with an appropriate size. A graphic device is an
apparatus to visualize an image on a given device frame. The film is projected
on the frame. The size and aspect ratio of the frame are proper characteristics
depending on a device. The size of frame is therefore considered a unit Square
for numerical processing so as to meet with any graphic device. A partial
rectangular area on the frame is called a 'viewport' where a film is projected
and the rest is not exposed.

A film represents a data set for images. A user is, however, responsible to
prepare the data by the aid of a graphical language. The data are directly
transmitted to a graphic device, or stored temporarily in a file. A knowledge on
an imaginary camera helps to prepare a fine film. A camera represents a user's
eye. It Stands at a certain position and looks toward some direction. Setting a

camera is to decide a local coordinate system through which a view is measured.

A familiär 35mm camera is an apparatus to make a picture by the principle of
point projection. A visible world depends on the species of lens such as wide,
Standard or telescopic one. Instead of focus length, an angle of scope becomes a
common parameter regardless of any film size(Table-IO). The parallel projection
Stands at the theoretical limit of a very long shot by a telescopic lens. Since
an angle of scope becomes small, a window should be deeided by the visible size
in WC. After the definition of a camera, a user needs to prepares the data of
figures in their original world coordinate system. When he drives directly a

graphic device, a proportional world coordinate System is assumed on a graphic
frame.
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5.3 Coordinate Systems

A graphic device has generally a rectangular area in which a device coordinate
system (DC) is defined for a pen positioning. The DC is measured by integer
values whose ränge Covers the physical size. A normalized device coordinate
System (NDC) is therefore recommended regardless of any device species. The NDC

has a square ränge (0,1)x(0,1), however it has an unused ränge either on top
or right when the device frame is a rectangle.
A 2D world coordinate system(WC) is assumed to be equally overlaid with NDC at
the first time. A 2D-figure may stay out of the device ränge. A declaration of a

window activates the coordinate transformation so that the window is projected
onto the füll frame of the device. A declaration of viewport defines a local
viewport for layouting several images on the same frame without interference
among them.

A user prepares the data of 2D-figure based on the world coordinate System. He

should remember his declaration on window and/or viewport, but he needs not be
careful for the sizes dependent on a device. Enlarging, moving or rotating of
images is possible in two different ways. One is carried out against a figure
in WC. Another way is carried out against the data set of an image. Normally,
the graphical language supports the latter way as if an image was a film before
a projector.
The projection of a 3D-figure is designed in the same manner as that of the
2D-figure, but a window is three dimensional. A graphic language is not yet so
kind to transmit a 2D-image on a screen that a user has to solve the following
two problems. One is a projective transformation and the other is a hidden line
and/or surface elimination.

5.4 Perspective Transformation

In order to visualize a 3D-figure, a
camera represents a local coordinate
System through which a position is
measured. A point(x,y,z) in WC is
transformed in the first step to a

virtural point(x',y',z') in a local
coordinate system of a camera. A view
direction is assumed to be parallel
to -x' direction in our discussion.
The values (y',z') are used for a
coordinate of image on a parallel
projection.

A transparent screen is supposed when
a point projection is concerned. The
screen is laid at x'=-f before the
origin of LC, perpendicularly to x'
axis. Then a projected point on the
screen is meausred as;

X" -i
y" -f y / X

z" -f z / X

and
(18)

where f represents the focus length of
an imaginary camera. A set of (y",z")
is a coordinate of a transformed 2D-
figure. The relative size of the
transparent screen againt the focus
length is reduced into a parameter TH2

in Table-10.

Q

screen

/r

angle of scope

Fig.11 Perspective projection
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Table-10 Camera Constants using a 35mm film

lens focus angle of
scope

2.tan(ang/2)

f (mm) (degree) TH2 TH2

18 100 1.983 i
i

wide 24 83 1.472 ii TH
28 75 1.277 ii
35 63 1.020 l/\ ^«^J^V

Standard
40
50
85

57
47
29

0.904
0.724
0.430 1/ > f-1.0

100 24 0.354 i / ^<-^
telescope

135
200
300

18
12

8

0.264
0.175
0.116

400
600

6

4

0.087
0.058 1^"' angle of scope

1000 2.5 0.036

5.5 Hidden Lines and/or Surfaces Elimination
A realistic image of a 3D-figure is achieved by eliminating invisible lines
and/or surfaces. This is essentially a three dimensional problem taking into a

consideration about the distance between an eye and an object. Therefore, an
original 3D-figure should have a correct data structure. As to a polyhedron, no
invisible surfaces are necessary for the processing. A convex polyhedron is easy
for making a view only showing visible surfaces. Whether visible or invisible
depends on the plane equation of a surface. When an eye stays at its positive
side, this surface is visible.
The hidden line phenomenon occurs at a countour edge which is bounded by a pair
of a visible and invisible surfaces. A Silhouette of a polyhedron is obtained
by such edges that could make interference with another edges in the behind. A

concave polyhedron has some edges connecting respectively a pair of surfaces in
concavity. These edges are invisible whenever at least one of both surfaces is
invisible. Such contour edges may stay over the opposit visible surfaces.
An edge should then be cut when it intersects with a contour edge in 2D domain.
Its invisible part is in the Silhouette side. Sometimes, a Silhouette hides
another Silhouette. This is classified as hidden surfaces because no intersect
will be found with contour edges but the potentially visible edges should be
eliminated.
The algorithm of hidden line eliminatin is as mentioned in above paragraphs. It
is practically useful on line drawings of polyhedrons, however, it has some

incompleteness for partially hidden surfaces. In order to emphasize a Stereo
graphical effect, shading and contrasting may be drawn on the surfaces by means
of line hatching, pattern filling or colour painting. A map structure is then
required for an image. The contour edges, which may overlay on other surfaces,
should be checked whether or not they become new borders in the map structure.
However, the procedure of hidden line elimination becomes very simple when a

colour graphic CRT is available. Similarly to an oil painting on a canvas, a new
painting replaces background colours. Beginning from a distant view, the painting

procedure hides unnecessary surfaces automatically. This procedure works
well prctically but could cause a little incompleteness by a lot of concavities
among surfaces.
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Notwithstanding a colour graphic device becoming convenient, engineering
documents still use a lot of line drawings in monochrome. Dimensioning lines are,
for instance, partly removed not to make interference among them or with a drawn
shape. An art of drawing is important in a sense of engineering drawings. This
is a sort of hidden line elimination that needs a lot of man-machine
communication.

5.6 Graphical Language

Since a graphical device is physically controled by machine dependent codes, a

user is kindly demanded to use a graphical language which is supplied by a
machine fabricator. There have been many such languages with respect to object
devices. It is required therefore to establish a common language regardless of
any device species. The Graphical Kernel System(GKS) is now under preparation
internationally. The GKS Covers the whole specifications for the design of
hardwares as well as for the control methods, namely a language. Because of the
international Standard, the GKS aims at rather a professional target than user
friendliness.
A graphical language is basically a tool for the image processing, and not for
the figure processing by the author's opinion. A lot of application softwares
are required on the art of drawings. A rectangle drawing, for instance, has
several possible methods. Conditions are; four corner positions, three corner
positions, two base line positions plus height, two diagonal positions with
parallel edges to the coordinate axes, left bottom point plus width and height,
a middle point plus width and height, and so forth. An application Software
will impose one of such conditions.
The GKS never aims the standardized art of drawings. It is alike to prepare the
painting materials for an artist. An automated engineering drawings will be

classified as one of the arts. Some people have, however, expected that the GKS

will set up a Standard language for engineering documents. An engineer has to
set up a lot of application softwares by the aid of the GKS. Every engineering
field has its own special graphical target. Pre-and-post processor of structural
design, such processor for FEM, landsacape modeling, use of aerial photograph,
regional design by the aid of Computer maps, automated documentation including
Computer made graphs, and so forth have interesting topics for application
softwares.

6 LANGUAGE GEOMETRY

6.1 Introduction
Problems of geometry are usually analyzed by the mental association while looking

at some analogical sketches. A few words are enough to teil a property with
an appropriate sketch. For an instance, let us imagine to teach a way for a

stranger. A use of a map is the best. Sometimes we have to teach him by the
lingual aid. However, the correct information is always necessary on distance
and direction, because he is a Computer in our discussion.
The language GEOMETRY is designed to describe the geometrical conditions by
which both a man and a Computer can understand a problem without any sketches.
A Computer is able to aid a man graphically and furthermore to help him for
numerical results. GEOMETRY is essentially a set of FORTRAN subprograms for the
sake of wide adaptability to any Computer Systems. The subprograms are useful
for a professional programmer. However, a common user, possibly a student, is
invited to use an interactive language NUCE-BASIC under which GEOMETRY is
managed.
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6.2 Workability
Since a BASIC language is becoming a populär tool, the author composed a BASIC

interpretor by FORTRAN, say NUCE-BASIC. It works samely as a BASIC wihch is
adopted in a micro Computer. NUCE-BASIC is designed to be able to define more
additional commands which represent FORTRAN sub-programs. GEOMETRY is used under
such a circumstance as special commands. Several subsets of GEOMETRY are
prepared in order to suit for special field of engineering. Graphic softwares
are supported in every case.
The final aim of CAD (the Computer aided design) is generally to obtain the
engineering documents for a customer. On the contrary, CAM (the Computer aided
manufacturing) extends a target up to a machinery processing. During the design
works at a Computer terminal, an engineer always tries several possibilities to
find a reasonable Solution. A quick response is best in these trials and no
documents of good quality are required yet until he will be satisfied on a
result. A historical record, namely a log-file, is helpful to trace back and to
play back his works. The language GEOMETRY is co constructed under NUCE-BASIC.

Following articles show several topics relating to the language GEOMETRY.

6.3 A Tool for Analytical Geometry

Let two lines be x+y-5=0 and 3x-2y+1=0; and compute an intersected point P of
this two lines. Further, let another point Q be (0.2, 0.2); and define a line
equation that connects two points P and Q

The above proposition is a very simple problem. Figure-12 shows its graphic
Solution as well as BASIC composition. Five arrays with size 3 are declared to
represent lines, two of which are coordinate axes. A line is considered here by
Eq.4. A graphic command DPLINE is designed to display a line on a given drawing
frame.

> LIST
1« REH GRAP>MC DEVICE
28 DPOPEH ¦ DCVtJND 1., 2
36 REH SPECIFVN«RAYS
¦48 DI» XLO), VLO
SA Bin AL<3>, BLO).\PQ<3)
6« REM DRAU X-V AXI
7« READ XL I DATA 1. t.'
8» READ VL I DATA t. 1

9« DPLINE XL I DPLINE VL
100 REN DRAU LINE-AL. LINE
lie READ AL I DATA 1. 1. -S
128 READ IL > DATA 3. -2. 1.
13» DPLINE AL ¦ DPLINE IL
Me REN COHPUTE INTERSECTED
ISe USPLL AL, (L, P, l.E-4,
168 REN GIUE A POSITION-O
178 READ 0 I DATA 8.2 9.2
ISO REH DEFINE A LINE-PO AND
19B U2LPP P, 0, PO
288 DPLINE PO
218 REH END OF DISPLAY
228 DPAUSE I DPCLOS

2*.

0(8)

JSITMN
IH0)E

IRftU

Fig.12 A graphical Solution for an analytical geometry
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6.4 Modeling of 3D-Figures

Solid-modeling is attracting a great interest for mechanical engineers with
respect to CAD/CAM of mechanical parts. Structural engineers will find its
application for the modeling of concrete structures. A very geomtrical example
is shown in Fig-13.
A hexagonal cylinder is generated in the first step by a command PRCYLN. Two

more similar shapes are created copying the original shape. Each cylinder is
moved at a desired position. The three cylinders are logically unified to a
single structure. Further, more three sets are copied again from the unified
structure resulting twelve cylinders. After rotating them respectively, twelve
cylinders are all connected. Then a camera is defined to look at this model. An
image is obtained with hidden lines removed. An engineering interest is to
obtain its volume, center of gravity and so forth. Nobody will try to compute
such values without the aid of GEOMETRY.

LIST
10 REH »t« PUZZLE *«»
80 REH
30 DPINT 1,8500,1800
40 PRCYLN 'A', £,. 8.0, 80.0
Se PC0PY 'A', •»•» 'C
SO DIR(1)> 3.0 • DIR(8>- 1.73 I CDIS ¦«', DIR
70 DIR(l)—3.0 I 0DIS *!'. DIR
80 DIR(1>- 0.0 I DIR(B>—3.«4 I CDIS 'C, DIR
90 HUNI 'A', ¦!•, »C*

110 AXIS(8)-1.0 I ANG-S4.73I3.M1S9/1S0. I CENMl-O.O
180 GR0TA 'A*,AXIS,ANG,CEN
130 PC0PV "A','A8','A3'.'A4'
HO Axis<8)-e.e t Axisoi-i.e
150 ANG-3.H16te.S t GR0TA 'A8'.AXIS.AHG.CEN
ISO AHC-3.H16 I GR0TA 'A3',AXIS,ANG,CEN
170 ANG-l.5t3.M16 ¦ GR0TA 'A4',AXIS,ANG,CEN
180 HUNI 'A','A8','A3','A4'
ISO HDC0HP 'A'
800 CP0SI11-38. t CPOS(8)-30. I CPOSOJ-28.
810 TH-e.S
880 DCAH0 'CAHERA'.CPOS.TH
830 DUIEU 'CAHERA'
840 HIDDEN 'A','CAHERA'
860 DPEND

Fig.13 Generation and synthesizing solid models
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7. CONCLUSIONS

Mathematical studies of geomety are discussed from a viewpoint in order to use a

Computer for teaching as well as practical using in structural engineering.
Instead of hand writing on a sheet, a Computer is able to show the geometrical
information on a screen. The method to use a Computer needs some special
techniques, therefore a new kwyword computational geometry has appeard recently. A

systematic consideration is then proposed on the geometrical properties before
using a Computer. Three classified categories are introduced, that is, geometrical

element, figure and image.

Chapters 2 and 3 describe the analytical foundation on point, line and plane.
The geometrical elements are analytical tools for which the vector and matrix
calculation plays an important roll. A dyad, a sort of matrices, is introduced
to synthesize a certain matrix for a numerical processing.
The modeling of a shape is discussed in chapter 3. A model is defined by an
invisible 'figure' because it is a data set to describe a shape. Typicai topics
are mentioned there, however, practical procedures of modeling are summarized
by commands in appendix-A. Some generators of figure are introduced such as for
curved lines and curved surfaces.

Chapter 5 explains a technique to make a visible image from a data set of a

figure. There are a lot of possibilities to make an image on a screen. An idea
of a camera is helpful to understand the image transformation when we use a
graphical language. A brief explanation is described on the problem of hidden
line and/or surface elimination.
In order use a Computer for geometrical problems, a lot of Computer programs are
required with reasonable user-friendlyness. A language GEOMETRY is proposed by
the author in chapter 6. Names of subroutines are summarized in appendix-A as
commands. These are designed to meet with the author's discussions of this
paper. To make good workability on CAD, an interactive program NUCE-BASIC is
recommended by the author. Some example procedures are shown in Figs.12 and 13.

Selected references are summarized in appendix-B.
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Appendix-A Selected Set of Commands in the language GEOMETRY

1. Definition of geometrical elements(2D/3D);

A line through two points
A line through a point with a direction
A line by intersection of two planes
Plane Synthesizers
2. Interrelation between elements(2D/3D);

Distance between two points
Distance between a point and a line
Distance between a point and a plane
Length of a vector/normalization of a vector
A scalor product between two vectors(2D/3D/nD)
Vecor product between two vectors
An intersected point of two lines(2D)
An intersected point of a plane and a line(3D)
An intersected line of two planes

3. Vectors and Matrices;

V2LPP/V3LPP
V2LPV/V3LPV

V3L2F
V3F3P/V3FPL/V3FPV

V2DPP/V3DPP
V2DPL/V3DPL

V3DPF
VN21/VNR21/VN31/VNR31

VN22/VN32/VVPR0D
VN23/W03

V2PLL
V3PFL
V3LFF

VMOVE/VPUSH/VADD/VSUB/VMULT/VSCAD
WDYAD/VMXPRD/VMPROD/VMXTRS/VMXMOV

Symmetrie matrix VMEIG
VMLEQ

VMEAN/VRMSQR/VGCEN/VDRIFT/VPEAK/VCLIP/VFFTR

Basic algebra for vectors
Basic algebra for matrices
Eigen values and eigen vectors for
Solution of linear equations
Several Statistical calculations
4. Triangle and Tetrahedron;
An area and radii of a triangle by given 3 edges VTF3E/VTRI3E/VTR03E
Centres of triangle VTGCEN/VTICEN/VTOCEN/VTHCEN

Circumsphear/insphear of a tetrahedron by given 4 vertices V3R4P0/V3R4PI
Moment of inertia of a triangle/tetrahedron VTMINT/V3J4PT

5. Moving, rotating, deformation, coordinate system;

Transformation matrices
Procedures for transformation

V2R0TX/V3R0TX/V3R0TA
V2PR0T/V2LR0T/V2MR0T/V3PR0T/V3LR0T/V3FR0T/V3MR0T

6. Modeling of 3D-figures and processing;
Basic figure generator
Synthesizers by logical Operations
Moving and rotating
Display service
Volume, axes and moment of inertia
7. Modeling of 2D-figures and processing;
Basic figure generator
Synthesizer >y logical Operations
Moving and rotating
Display service
Area, axes and moment of inertia

PCUBE/PRCYLN/PRCONE/PREVL/PHEDRA
PUNI/PSUB/PINT/PCUT

PGDIS/PGROT/PTRANS
HEDISP/HLDISP/HFDISP/HIDDEN

PBODY

RRECT/RPOLYG/RFAN/RMAP
RUNI/RSUB/RINT/RCUT/RHIDE

RGDIS/RGROT/RGTRNS
HDISP
RAREA

8. Display controls;
Initialization and termination GKINIT/GKTERM/DPOPEN/DPCLOS

Device controls DPAUSE/DPERAS/DPCOPY/DPCURS

Screen controls DPWIND/DPVIEW/DPENSZ/DPENTX/DPENCL/DPCOLR/DPATRN/DPCHAR

Drawing functions DPMOVE/DPDRAW/DPTEXT/DPMARK

Basic image generators DPLINE/DPRECT/DPCIRC/DPARC/DPFAN/DPOLYG

Application softwares DHATCH/DCONTR/DSPLIN
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Appendix-B Selected Refefences and Some Notes.

(A) COMPUTATIONAL GEOMETRY is a recent keyword in the field of the graph theory
and a network analysis. Typicai works are found in the following reports.

1. Preparata,F,P: Steps into computational geometry. Tech.Rep. R-760, UELUENG -
77-2207, Coordinated Science Laboratory, Univ.of Illinois, Urbana, 1977.

2. Shamos.M.I.: Computational geometry, Disserttation, Yale Univ., 1978.

3. Brown,K.Q.: Geometric transforms for fast geometric algorithms. Ph.D. Dis¬
sertation, Dep.of Computer Science, Carnegie-Melon Univ., 1979.

4. Shamos.M.I. and Hoey,D.: Closeset point problems. Proc.of the 16th annual
IEEE Symposium on foundations of Computer science. New York, pp.161-162,
1975.

(B) DYADIC PRODUCT is scarecely introduced in most of books on geometry. It also
never appears in any reports on numerical methods of matrices.

5. Shimada.S. :Mathematics in civil engineering(in Japanese). Tokyo, 1967.

(C) MODELING OF 3D-SHAPES is found many in connection with CAD/CAM of mechanical
parts.

6. Hosaka,-M. Kimura,M. and Kakishita.N. : A unified method for processing poly-
hedra. Information Processing 74, pp.768-772, North-Holland, 1974.

7 Shimada,S. et al.:Researches on the development of Computer programs subjec¬
ted to the graphically aided design of structures. No.385132, Grant-in-Aid
for Developmental Scientific Research, 1980 and No.00585131, 1982. (in Japanese)

(D) GRAPHIC LANGUAGE

8. ISO/ANSI: IS0/TC97/SC5, Information Processing - Graphical Kernes System
(GKS) - Functional Description. DP, 1982.

(E) AUTOMATIC MESH GENERATION

9. Frederick,C.0. Wong.Y.C, and Edge,F.W. : Two dimensional automatic mesh ge¬
neration for structural analyses. Int.J.num.Meth.Engng.,2,pp.133-144,1970.

10. Zienkiewicz.O.C. and Philips,D.V.: An automatic mesh generation scheme for
plane and curved surfaces by 'Isoparametric' coordinates. Int. J. num. Meth.
Engng., 3, pp.519-528, 1971.

11. Durocher.L.L. and Gasper,A.: A versatile two-dimensional mesh generator with
automatic bandwidth reduction. Computers & Structures, 10, pp.561-575, 1979.

12. Stefanou.G.D. and Syrmakezis.K.: Automatic triangulär mesh generation in
flat plates for finite elements. Computer & Structures, 11,pp.439-464,1980.

13. Pissanetzky,S.: KUBIK;An automatic three-dimensional finite element mesh ge¬
nerator. Int.J.num.Meth.Engng., 17, pp.255-269, 1981.

14. Ghassemi.F.: Automatic mesh generation scheme for a two- or three-dimensio¬
nal triangulär curved surface. Computer & Structures, 15-6, pp.613-626,1982.

15. Nguyen-Van-Phai: Automatic mesh generation with tetrahedron elements. Int.J.
num.Meth.Engng., 18, pp.273-289, 1982.
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