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SUMMARY
A mathematical model for analyzing fatigue data of wires, Strands and cäbles, based on Statistical
requirements (compatibility, stability and limit conditions), is presented and applied to test data.
The model allows extrapolation of results obtained on specimens restricted by the test length of
testing machines to the actual length of cäbles in cable-stayed bridges and similar structures.
Finally, the fatigue strength of cäbles is analyzed from the strength of a Single wire or Strand by
considering the progressive loss of cross sectional area as a result of successive failures of Single
wires.

RESUME
Un modele mathematique pour l'analyse des resultats de fatigue des fils, des torons et des cäbles
de precontrainte est derive en tenant compte des exigences statistiques (compatibilite, stabilitö,
valeurs limites) et est applique ä des resultats d'essais. Le modele permet une extrapolation de la

longueur testee ä la longueur actuelle des cäbles des ponts haubanes ou des constructions
analogues. La resistance ä la fatigue des cäbles est analysee ä partir de la resistance des fils ou
des torons en considerant la perte progressive de la section comme le resultat de la rupture
successive des fils qui la composent.

ZUSAMMENFASSUNG
Ein mathematisches Modell zur Analyse von Ermüdungsdaten von Drähten, Litzen und Kabeln
unter Berücksichtigung statistischer Anforderungen (Kompatibilität, Stabilität, Grenzwerte) wird
hergeleitet und auf Versuchsresultate angewendet. Das Modell gestattet eine Extrapolation der
Werte von Probestücken mit beschränkter Länge auf Längen von Kabeln für Schrägseilbrücken
und ähnliche Bauwerke. Die Ermüdungsfestigkeit von Kabeln wird aus einer Betrachtung des
progressiven Verlustes an Querschnittsfläche infolge von Brüchen in einzelnen Drähten aus der
Festigkeit eines Drahtes oder einer Litze hergeleitet.
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1. INTRODUCTION

A comprehensive study of fatigue data of reinforcing bars, prestressing wires
and Strands, and in particular of the influence of the specimen length on the
fatigue strength [29] aroused the interest to develop a new Statistical model
presented in this paper.

Although the fatigue phenomena related to reinforcing and prestressing steels are
being studied since several decades, systematic investigations in connection with
the design of prestressed structures, cable-stayed bridges and similar structures,
started only in the last twenty years. The experience gained over this period
allows a researcher to have some feeling for the main features of the Statistical
behavior of the fatigue strength [endurance limit, scatter, shape of the S-N-
curves, etc.). However, an analysis remains essentially restricted to find a
mathematical equation fitting the experimental data. This leads to models which
cannot be extended beyond the ränge of the experiments.

On the other hand, an effective model should not include factors of second order,
as for instance the stress level in comparison to the stress ränge. In spite of
the Statistical significance of the stress level, there is a clear tendency
today to neglect it. Wöhler curves based on the stress ränge with a fixed amax
furnish safe design values for all stress ranges with a lower maximum stress. On

the contrary, the parameter specimen "length" is an essential parameter. A model
is needed for extending the S-N-curves to any actual length, for instance to the
length of a tendon of a cable-stayed bridge, which cannot be tested in füll
length.

In order to obtain and evaluate fatigue data, several techniques, developed and
used in other fields (explosives, biological, medical research, etc.), have been

applied. However, a rigorous analysis of their suitability is necessary because
these techniques may not be adequate to study the specific problems of fatigue
of metals. For instance, this is the case for the well-known up-and-down [staircase)

method [25] developed to analyse sensitivity data, i.e. data consisting in
two possible alternatives (success or failure), but not suitable for fatigue,
where the intermediate information (number of cycles to failure) should not be

lost.
These are some of the reasons indicating that new models are required to resolve
some serious deficiencies of presently used methods.

2. SINGLE WIRE OR STRAND

2.1 Present Models Used in Fatigue Analysis
The presently used Statistical models for fatigue can be included in a general
family of S-N-curves (Wöhler curves) defined by the function E(N;Aa), Fig. 1,
which represents the cdf (cumulative distribution function) of N for a given Aa,
where N is the logarithm of the number of cycles and Aa the stress ränge or a

function of it, normally log.
A model can be described with the help of the following functions:
g(Aa) : Median of N as a function of Aa
h(Aa) : Standard deviation of N as a function of Aa

F(Aa;N): Rate of failures for given Aa and N or theoretical cdf of Aa for given N

u, a : Median and Standard deviation associated with F(Aa;N)
NQ : Limit number of cycles to which a specimen is tested (normally No 2,10
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Fig. 1: General Model for Fatigue Analysis

Function Type or Family References

g(Ao)

Linear 5,41,43,47,51,52,53

Polygonal 29,33,34,35,46,50

Parabolic 5,51

Exponentlal 26,27

Hyperbolic

Others 41,43,55,56

h(4o)
Constant 5,50,53

Linear 29,47

EtNjfio)

Normal 4,5,13,29,33,50,53
Weibull 4,41,43,52,57

Free 4

F(AojN)

Normal 4,10,24,25,29,33,36,37,33,40,50

Weibull

aresin 36,37

Extended normal 2,13,14

Ao
Natural 2,4,5,10,13,24,36,37,36,40,41,51,55,56

Logarithmic 5,29,34,35,36,41,43,46,47,50,51,53
N logarithmic all

Table 1: Summary of Models for Fatigue Analysis of Reinforcing Bars,
Prestressing Wires and Strands
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The differences in the various proposed models or techniques of estimating their
parameters are directly related to the type of the selected functions. Table 1

shows a summary of some presently used models in fatigue of steel or reinforcing
and prestressing steel.

Some of the models are only partially defined in the sense that the function
E(N;Aa) is not, or is incompletely established. Others do not take into account
the relationship between the functions E(N;Aa) and F(Aa»N). Such models are
either internally incompatible, as explained later, or lead to cdf belonging to
extraneous or not common families.

2.2 Deficiencies in the Present Statistical Analysis
The fatigue analysis by means of the reported models can be unsatisfactory
because of:
2.2.1 Deficiencies in the Models

(1) The model does not reproduce the real Statistical properties of the experi¬
mental data. In this category are included those models which assume a linear

law for g(Aa), a constant law for h(Aa) and those showing no endurance
limit. Experimental evidence contradicts these assumptions [8, 29, 39], see
Fig. 2.

(2) The model fails to fulfil stability or internal compatibility conditions.
Due to the fact that the models are implicitly assumed valid for any
arbitrary length, the E(N;Aa) and F(Aa;N) function families must be stable. The

stability of the model is guaranteed if, and only if, the E(N;Aa) and
F(Aa;N) functions for different lengths belong to the selected family. For
instance, if the fatigue strength of different pieces of material are
assumed statistically independent, and F[_0(x) is the cdf of the strength of
a piece of length LQ, the Statistical theory shows that the cdf, F,(x), for
a piece of length L

FL(x) 1 - rL (x)
Lo

(1)

For F|_ (x) to belong to a stable family, FnL0(x) must belong to the same

family for all n as well. Whereas normal and aresin families do not satisfy
stability, Weibull and extended normal do. (*).
On the other hand, functions E(N;Aa) and F(Aa;N) must be compatible, i.e.
they must satisfy the relation linking them. Because of the definition of
the function F(Aa;N), as the rate of failures for given Aa and N, the
compatibility condition is given by

F(Aa;N) E(N;Aa) ; V Aa and N (2)

None of the reported models fulfil all these conditions.

2.2.2 Deficiencies in the Estimation of Model Parameters

(1) The run-outs are not optimally handled. In some cases the run-outs are dis-
regarded. In others, they are treated as failures.

(2) The number of cycles to failure is not used. The up-and-down method shows

this deficiency since it neglects the important part of the information
contained in the broken specimens (number of cycles to failure).

(*) The extended normal family of cdfs is defined by F(x;U,a,n) 1 - (1-<J>[——])
where cp is the cdf of the Standard normal r.v., and y, O and n are parameters.
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Fig. 2: Experimental Evidence for the Non-Linearity of the g(Aa)-Function
Non-Constant Character of the h(Aa)-Function and the Existence of
an Endurance Limit [8,39].
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2.3 Minimal Requirements for a Valid Fatigue Analysis

According to the above, a fatigue analysis has to satisfy the following minimal
conditions:
(1) Concerning experimental evidence

- The g(Aa)-function must be nonlinear.
- The h(Aa)-function must increase as Aa decreases.
- An endurance limit exists,that is a Aa value below which there is a zero

probability of failure.
(2) Concerning stability and internal compatibility of the model

- The E(N;Aa) and F(Aa;N) functions must be stable
- The E(N;Aa) and F(Aa;N) functions must be compatible for any N and Aa.

(3) Concerning model parameter estimation

- The method should take into account:
A specific'treatment for run-outs.
All the information, i.e. the number of cycles to failure for broken
specimens.

2.4 Derivation of Proposed Model

As mentioned before, the model is wholly defined as soon as the function
E(N;Aa) is chosen. The selection of the E(N;Aa) function for the proposed model
is based on physical considerations together with stability, limit and compatibility

conditions. The procedure is summarized in Fig. 3. It will be done
simultaneously for the analysis of the random variable (r.v.) number of cycles to
failure, N, for a given stress ränge, Aa, and for the analysis of the r.v.
stress ränge, Aa, associated with a given N.

The role of N as a r.v. is physically clear. Experimentally it is obtained by
just fixing the stress ränge and measuring the number of cycles to failure. On

the contrary, the nature of Aa for a given N needs explanation. Given a specimen

of length LQ, a one-to-one correspondence between Aa and N exists. If it
were possible to test repeatedly the same piece at different Aa-levels, the
S-N-curve for that specimen could be established (see Fig. 4). Therefore, given
the specimen, a Aa can be associated with every N

2.4.1 Physical Considerations

For a wire of length L composed of n imaginary pieces of length L0 the fatigue
failure takes place in the weakest link (Fig. 5), i.e.

XnLo min (Xr X2 Xn) (3)

where xn, represents either the number of cycles to failure associated with a

given stress ränge Aa or the stress ränge corresponding to a given number of
cycles for the wire of length nLQ. This holds because, if a wire of length nLQ
is considered, the number of cycles to failure, given Aa, will be the minimum
of the corresponding N-values for all its constituent pieces (see Fig. 6).

The flaws in the material causing fatigue failure can be systematically or in-
dependently distributed along the wire. In the first case there is a Statistical

dependence between neighboring pieces [12], but independence can be assumed
for distant ones. In the second the Statistical independence can be assumed
throughout.
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dependent on 5 parameters

Fig. 3: Illustration of the Selection Procedure for E[N;Aa)
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l i ^^.
l^N0 N

Fig. 4: Dne-to-one Correspondence between Aa and N for
Given Specimen
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Fig. 5: Schematic Representation of an Element Composed of n Imaginary
Pieces and Associated Fatigue Strength

Crj Diece

iece\
Piece Wirekestfia

Fig. 6: Schematic Representation of the One-to-One
Correspondence between Aa and N for a Wire
Consisting of n pieces

If the fabrication process is regulär and the storage and manipulation process
is homogeneous, there are physical reasons to assume the same distribution
function for the fatigue strength of the different pieces.

2.4.2 Stability Condition

The stability condition implies that the functions E(N;Aa) and F(Aa;N) must
belong to a stable family.
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2.4.3 Limit Condition

If the length of the imaginary constituent pieces of a wire goes to zero, or
the number of pieces goes to infinity, the families of the above E and F

functions must be asymptotic. In the case of independence or asymptotic independence
(long elements) between the number of cycles to failure or the stress ränge for
different pieces, the only asymptotic families are Weibull, Frechet and Gumbel.
Because N and Aa must be positive, only Weibull satisfies all the requirements
[21, 31, 54].

This implies the cdf E(N;Aa) for pieces of length L respectively L are given by

E*(N;Aa,L0) exp
- IM (Aa,L

o o_
N (Aa,L

a o

b(Aa,L
o

(4)

and

E*(N;Aa,L) 1 - exp

N (Aa.L)-, b(Aa,L:
o

N (Aa.L)
a

(5)

where NQ(Aa.L), N (Aa.L) and b(Aa,L) are functions of Aa and L to be determined.
In the case of Statistical idependence between the pieces, expressions (1), (4)
and (5) result in

E*(N;AaL) exp

N - N (Aa.L
o o

N [Aa.L
a o

Identification of Eqs. (5) and (6) leads to

b(Aa,L
o (6)

N (Aa.L) N (Aa.L
O 0 0

N (Aa)
o

b(Aa,L) b(Aa,L b(Aa)
o

(7)

(6)

N (Aa.L) N (Aa.L ]

a a o

1/b(Aa)
N°(Aa)

a

1/b(Aa)
(9)

where N (Aa) N (Aa.L
a a o

The expressions (7) and (8) prove that N (Aa.L) and b(Aa.L) do not depend on L.
o

Following a similar process with Aa instead of N leads to:

F*(Aa;N,L) 1 - exp
Aa - Aa [N,L

o o

Aa (N.L
a o

a(N,L
o

and

Aa (N.L) Aa (N.L
0 0 0

a(N,L) a(N,L

Aa (N)
o

- aCN)

(10)

(11)

(12)

Aa (N.L) - Aa (N)
a a

1/aCN)
(13)
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where Aaa(N) Stands for Aaa(N,L0). The expressions (11) and (12) show that
Aa0(N,L) and a(N,L) do not depend on L.

2.4.4. Compatibility Condition

The compatibility requirement is given by Eq. (2), which in this case becomes

• *
F (Aa;N,L) E (N;Aa,L) ; VAa and N (14)

Considering Eqs. (4) and (7) to (13), Eq. (14) goes over to

N N (Aa)
o

L N (Aa)
a

b(Aa)
Aa - Aa (N)

o

Aa°(N)
a

a(N)

(15)

This functional equation gives the necessary condition which the functions
N (Aa), N°(Aa), b(Aa) and Aa (N), Aa°(N) and a(N) have to fulfil.o a o a

A simplification of equation (15) is obtained by making

b(Aa) a(N) A (16)

where A is constant.

In this case the general Solution of the resulting functional equation (see
Appendix) gives

E (N;Aa,L) 1 - exp
(N - B) (Aa

D
+ E) (17)

The percentile curves can be obtained by making E (N;Aa,L) equal to a constant
P, i.e. their analytical equations are

(N - B)(Aa - C) D

-, 1/A
- — log(1 (18)

The equation (18) corresponds to equilateral hyperbolas, with asymptotes (Fig. 7)

N B

Aa C
(19)

It is possible for both limit values, B and C, to become zero.
The resulting model satisfies the three conditions established by the experimental

evidence:

- The g(Aa)-function is not linear (hyperbola)
- The h(Aa)-function increases with decreasing Aa

- There exists an endurance limit given by Aa C

Additionally, the model shows the existence of a zero-perceptile curve (S-N
threshold curve), which does not coincide with the asymptotes, beyond which
failure does not occur. Physical evidence seems to support this theoretical
result.
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Fig. 7: Percentile Curves Given by the Proposed Plodel

The Solution of the functional equation (15) together with (16) furnishes a model
depending on five parameters A, B, C, D and E which have the following meaning:

A : Weibull shape or slope parameter (Fig. 8)
B : Asymptotic N limit (Fig. 7)
C : Endurance limit, i.e. Aa value below which a zero probability to get fail¬

ures exists for N-*-°°(Fig. 7)
D : Scale fitting parameter obtained for an arbitrarily chosen reference length

Lo
E : Constant defining the S-N threshold curve below which a zero probability

of fatigue failure exists.

I 2

'0.8

ü 0.4
U.

-^A=3
a=i / \

/tC a=2\

0.4 0.8 1.2 te
(N-NJ/ Nn

2.0 2.4

Fig. 8: Typicai Weibull-Distribution Curves

Figure 9 shows the theoretical influence of length on the median and the
0.1587-quantile curves. For L/L0 ->°° the hyperbolas degenerate into the zero-
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Fig. 9: Theoretical Influence of Length on the Median and

0.1587-Ouantile Curves

percentile hyperbola. This implies a zero scatter for every Aa. Therefore, for
long elements, the Aa for design can be obtained from the S-N threshold curve.

2.5 Estimation of the Model Parameters

Data from fatigue tests is generally reported in censored form, because the
testing strategy, due to time and economical reasons, only permits specimens
to fail below a specified limit number of cycles N0. In this sense, the data can
be termed statistically incomplete, and specific methods are required, to
include run-out data.

For the present model, the E-M-algorithm [22] is used. This algorithm is based

upon the maximization of the likelihood function and operates in an iterative
way. Each iteration of the E-M-algorithm involves two steps, which are called
the expectation step (E-step) and the maximization step (M-step).

In the first step the q run-outs of a given stress level AOj are assigned to
expected values, N*. (j=1,2, ,q). of the q order statistics conditioned to the
censoring value N0 (see Fig. 10), i.e.

N / N ^ | F
ij-1

(NJ 1-FN (N)
o

q-j
f (N) dN (20)

D

with

FN (N) 1 - exp L

(N-BHAa.-C) A CN-B)(Aa.-C)i E) - 5_ 1 E} (21)

where L^ and Aa^ are the length and the stress ränge for the i-th specimen, and

fN (N) is the derivative of FN (N).
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o—Run-out

A Assigned Nj-values to

run-outs at the end of

the E-step

x-x

No
limit number of cycles

Fig. 10: Illustration of the E-step in the E-M-Algorithm
The second step is performed by the maximum likelihood method as if all the data
were not censored (the run-outs are assumed real failures with assigned number
of cycles, which for the first iteration are identified with the limit number of
cycles N i.e. from Eq. (17) the following log-likelihood function is maximized
with respect to A.B.C.D and E:

V

n

z

i-1

L.l (N.-B)(Aa.-C)l l E log
L. (N.-B)(Aa.-C)

1 /\ r__l 1
L D L D

o

A-1
El (Aa.-C)

(22)

where n is the sample size and N^ is the assigned number of cycles for run-outs
or the real number of cycles to failure for the complete data, for the i-th
specimen.

In Fig. 11, a diagram of the E-M-algorithm is presented.

2.6 Considerations to the Planning of Tests

The proposed model is also useful for establishing testing strategies [23]. In
Fig. 12 the median curves for two different lengths are schematically represented

and the areas covered by the up-and-down method [24,25,36] are shadowed.
The solid parts of the curves are the zones from which the data are obtained
and where the curve is fitted. The dashed parts of the curves represent the
extrapolated zones of the model. Due to the large extent of these extrapolated
areas as compared to the tested zone this method cannot be recommended for an
over-all description of the S-N field. On the other hand, the reliability of
the endurance limit based on long specimens is higher than that for short
specimens, because of the proximity of the data to that limit.
When a S-N-curve reliable over its entire ränge is needed, the investigation of
a wider interval of Aa-values is necessary. Short specimens require larger
testing areas than long ones (higher stress-ranges and greater number of cycles)
in order to achieve the same reliability (Fig. 13).

On the other hand, the Statistical information implied by the failure of one
specimen of length nL0 at N cycles is equivalent to the information associated
with the failure of one specimen of length LQ at N cycles plus that associated
with n-1 specimens of the same length LQ censored at N. This means that, ir-
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Fig. 11: Flow Chart for E-M-Algorithm

respective of economical considerations, the significance of the Statistical
information supplied by long samples is much larger and reliable than that
given by short samples.

2.7 Examples of application
The validity of the model was tested with fatigue data of prestressing wires and
Strands used in prestressed structural members and in tendons of cable-stayed
bridges. The tests were carried out at the Swiss Federal Testing Laboratories
(EMPA-Dübendorf) and the results are reported in [29]. In the following, Aa

will represent the logarithm of the stress ränge.

2.7.1 Application to Prestressing Wires

Specimens of three- different lengths (140 mm, 1960 mm and 8540 mm), series 1 to
3, ranging from the very short usual specimen length to the record length ever
reported, were tested. They seem to cover a reasonable length ränge for testing
the model. Initially, the model parameters were calibrated for the three lengths
separately. The resulting values of the parameters and derived characteristic
values are given in Table 2, and the corresponding S-N-curves shown in Figs. 14,
15 and 16.

A comparison of the characteristic values for N0 ¦ 2"106 cycles obtained by
the proposed method and three variants [24,25,36] of the up-and-down method
from [29] is given in Table 3.

A first look at these results calls the attention to the fact that the median
values for the proposed method lie always around 1 to 5 % below the medians
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Series 1 2 3

Length 110 MM 1960 MM 8510 mm

A 2.99 4.99 10.2

B

(THRESHOLD N)

11.46
(95103)

9.55
(14004)

9.69
(16215)

C

(Endurance Limit)
S.76

(316.6)
5.45

(231.9)
5.46

(234.1)

D 0.S62 1.508 1.091

E -0.095 -0.092 -0.092

Quantile 0.05 361.2 281.9 283.1

Quantile 0,1587 380.7 295.3 289.2

Median 417.8 316.3 297.4

Quantile 0.8413 460.3 336.2 304.0

Quantile 0,95 489.4 348.2 307.6

Table 2: Prestressing Wire:
Parameters and Quantiles for N 2*106 Cycles Calculated
Using the Proposed Model for Series 1 to 3 Separately

x failure
o— run-out
A final assigned Position

for run-out

so
N / mm

650

-¦"¦

550

500

450

P ,0 95
,00 P =0 84I3

P =0 50
P= O I5873 50
P=0 05

tSHOLO CURVE
Endurance limil

300

250

200 iii.
io« io6 |5 XlO IO 2 x IO 5xlO IO 5>IO

Cvclej [N]

Fig. 14: S-N-Curves for Prestressing Wire of 140 mm Length Based on
Test Data Series 1 (32 Specimens)
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Fig. 15: S-N-Curves for Prestressing Wire of 1960 mm Length Based on
Test Data Series 2 [26 Specimens]
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Fig. 16: S-N-Curves for Prestressing Wire of 8540 mm Length Based on
Test Data Series 3 [14 Specimens!)
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Method of Evaluation Prooflength
(mm)

Median Standard
Deviation

s

Quantile 0,05

Dixon/Mood Series 1

140 420.0 9.0 405.0

Series 2

1960 330.0 30.2 280.0

Series 3

8540 303.3 8.1 290.0

Deubelbeiss Series 1

140 420.0 17.0 392.0

Series 2

1960 330.0 39.0 267.0

Series 3

8540 305.0 18.0 275.0

Hück Series 1

140 420.0 10.1 404.0

Series 2
1960 330.1 31.5 280.0

Series 3
8540 305.0 - -

Proposed method Series 1

140 417.8 37.1(•) 361.2

Series 2
1960 316.3 21.0<*) 281.9

Series 3

8540 297.4 8.2(*) 283.1

(*> sapprox io0.50 - 4o0.1587

Table 3: Prestressing Wire:
Comparison of Characteristic Values for N ¦ 2-106 Cycles
Calculated for Series 1 to 3 Using Different Methods

given by the other medhods. This is the natural consequence of linearity implied
by the up-and-down method in the neighborhood of the limit number of cycles.
A second look reveals important discrepancies between the Standard deviation
from the proposed and the other three methods. Moreover, only the proposed
method shows a decreasing Standard deviation with increasing length, corresponding

to physical evidence. The results for large series reported in [2] and [8]
show the inconsistency of the very low value for s in the first series obtained
by the first three methods. This was discussed in detail in [29].
A comparison of the parameter values given in Table 2 reveals the following
faets:
- The value of A increases with length. On the contrary, the value of D seems

to vary randomly. The agreement between parameters B and C for series 2 and
3 can be judged as excellent.

- The good agreement between the endurance limits for series 2 and 3 does not
include series 1. This could be a consequence of the fact that in series 1
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Fig. 17: Prestressed Wire:
Schematic Representation of the Investigated
S-N-Field in Series 1 to 3

all specimens were tested at stress ranges considerably above the endurance
limit corresponding to a shorter part of the S-N-curve (see Figs. 14 and 17).
Furthermore, series 1 was conducted at high frequency (133 Hz), contrarily
to series 2 and 3, which were tested at low frequency [6 Hz).

Table 4 shows a comparison between the calculated values from series 1 and 3

and the predicted values for the same series on the basis of the calculated
values from series 2. Whereas both sets of values agree in the case of series 3,
differences arise in series 1, specially for the endurance limit. This confirms
the reasons given in chapter 2.6 "Considerations to the Planning of Tests"
about the questionability of tests at high frequency with short specimens if the
studies ränge of IM is not sufficiently extended.

Dus to the fact that the parameter estimation method allows the simultaneous use
of specimens with different lengths, the parameters were also calculated from
the test results of all three series together.
For Figs. 18, 19 and 20 the parameter values from series 1, 2 and 3 together
were used to predict the S-N-curves for the three specimen lengths. Also shown

are the test results of the series with the corresponding length.
Table 5 compares the resulting values with those calculated from series 2 only.
They are in close agreement.

2.7.2 Application to Prestressing Strands

Specimens of four different lengths (490 mm, 1100 mm, 1960 mm and 3860 mm),

series 4 to 7 were tested. For the lengths 1100 and 3B60 mm the up-and-down
technique was applied.
The model parameters were only calculated for all series together. The resulting
and derived characteristic values are given in Table 6 and the corresponding
S-N-curves are shown in Figs. 21, 22, 23 and 24. A comparison qf the characteristic

values for the series 5 and 7, obtained by the proposed method and three
variants [24,25,36] of the up-and-down method from [29], is given in TablG 7.
These were the only two series for which the fatigue strength for N0 2-10
cycles was studied by the up-and-down method.
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Series 1

Specimen Length WO mm

Series 3

Specimen Length 8510 mm

Predicted from
series 2

Calculated Predicted from
series 2

Calculated

QUANTILE 0,05 318.2 361.2 271.2 283.1

Quantile 0.1587 344.1 380.7 280.7 289.2

Median 386.6 417.8 295.4 297.4

Quantile 0.8113 428.9 460.3 309.2 304.0

QUANTILE 0.95 455.3 489.4 317.4 307.6

Endurance Limit 231.9 316.6 231.9 234.1

Threshold N 14004 95103 14004 16215

Table 4: Prestressing Wire:
Calculated and Predicted Characteristic Values for IM 2-106
Cycles for Series 1 and 3

H/ mm

x failure550

run -our600
& final assigned position

for run-out550

500

450

D»ü
40 0

P =0 95
P= 0 84I3

3 50
P= 0 50

P=0 I587

P =0 05
300

S-N THRESHOLD CURVE: P=0250 Endurance

200
IQ* 5*IO" 5xl06 5- IO5x IO Zx IO

Cycles [N

Fig. 18: S-N-Curve for Prestressing Wire of 140 mm Length Calculated from
Series 1, 2 and 3. Test Data from Series 1
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x failure

o- run-out

a final assigned position for run-out

A* final assigned position for run-out
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Fig. 19: S-N-Curves for Prestressing Wire of 19B0 mm Length Calculated from
Series 1, 2 and 3. Test Data from Series 2
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Fig. 20: S-N-Curves for Prestressing Wire of 8540 mm Length Calculated from
Series 1, 2 and 3. Test Data from Series 3
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Parameters All Series Together Series 2 only

A 4.09 4.99

B

(THRESHOLD N)

9.97
(21341)

9.55
(14004)

C

(Endurance Limit)
5.48

(240.3)
5.45

(231.9)

D 1.274 1.508

LU -0.085 -0.092

Quantile 0,05 281.9 281.9

Quantile 0,1587 295.5 295.

Median 318.2 316.3

Quantile 0,8113 340.9 336.2

Quantile 0,95 355.3 348.2

Table 5: Prestressing Wire:
Comparison of Parameters and Quantiles for N 2*106 Cycles
and Reference Length 19BQ mm Calculated from Series 1 to 3

and from Series 2 only

Analogous conclusions as for the wire can be drawn for the Strand. The median
values agree well for all methods. As expected, the median values for the three
variants of the up-and-down method lie above the one for the proposed method.

Furthermore, the proposed method is the only one for which the Standard
deviation again decreases with increasing length. Its values for the studied length
seems to be somehow less than those for wire although for longer lengths the
differences are not significant.

2.8 Conclusions

- Present models used to analyze fatigue data of wires or Strands fail to repro-
duce the physical evidence and/or show some internal inconsistencies.

- A new model taking into account physical evidence as well as conditions of
stability, compatibility and limit is developed. The model is based either on
independence or asymptotic independence of the strengths of neighboring pieces.

- In the parameter estimation procedure the E-M-algorithm is applied in order
to make use of the information accumulated in run-out tests.

- Since the length is included as a parameter, the estimation of the model
parameters can be based on data from specimens with different lengths. An
application to the problem of fatigue of long prestressing wires or Strands is
possible.

- The model analyzes the fatigue strength over the entire ränge of number of
cycles, i.e. broadens the fatigue strength concept to any number of cycles
different from the Standard 2-106.
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Parameter Values

A 5.19

B

(Threshold N)
10.07

(23647)

C

(Endurance Limit)
5.37

(214.02)

D 1.132

E -0.092

Quantile 0.05 253.2

Quantile 0.1587 263.0

Median 278.1

Quantile 0.8413 292.1

Quantile 0.95 300.5

Table B: Prestressing Strand:
Parameter Values and Quantiles for IM 2-106
Cycles and Reference Length 1100 mm Calculated
from Series 4 to 7

Method of Evaluation Specimen Length Median
Standard
Deviation

s

Quantile
0,05

dixon/mood
Series 5

Series 7

1100

3860

280.0

260.0

17.1

17.1

252.0

232.0

DEUBELBEISS
Series 5

Series 7

1100

3860

280.0

263.0

20.0

21.0

247.0

229.0

HÜCK
Series 5

Series 7

1100

3860

279.8

259.8

19.3

53.0

249.0

179.0

PROPOSED METHOD
Series 5

Series 7

1100

3860

278.1

252.9

15.1(M

10.8(*)

253.2

235.0

'*' Sapprox " °uantil e 0.50 - Quantile 0.1587

Table 7: Prestressing Strand:
Comparison of Characteristic Values for N 2-106 Cycles
Calculated for Series 5 and 7 Using Different Methods
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foilure
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Fig. 21: S-N-Curves for Prestressing Strand of 490 mm Length Calculated from
Series 4 to 7. Test Data from Series 4 (10 Specimens)
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Fig. 22: S-N-Curves for Prestressing Strand of 1100 mm Length Calculated from
Series 4 to 7. Test Data from Series 5 [28 Specimens)
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Fig. 23: S-N-Curves for Prestressing Strand of 1960 mm Length Calculated from
Series 4 to 7. Test Data from Series 6 [14 Specimens)
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Fig. 24: S-N-Curves for Prestressing Strand of 3860 mm Length Calculated from
Series 4 to 7. Test Data from Series 7 [15 Specimens)
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- The application of the model in the analysis of fatigue data from an extensive
experimental program carried out at the Swiss Federal Testing Laboratories
[EMPA-Dübendorf) on prestressing wires and Strands with different length [29]
has shown its validity and usefulness.

- The results confirm that the median and the Standard deviation of the fatigue
strength for a given limit of cycles decrease with increasing length of the
specimen. For an infinite length they reach the endurance limit and zero
respectively.

- Comparison of the Standard deviation values obtained by the proposed and
up-and-down methods confirms the unreliability of the up-and-down method for
the estimation of the Standard deviation. On the contrary, the medians obtained
from all methods agree well.

- From the point of view of parameter estimation the testing of long specimens
offers clear advantages.

- The model has shown sensitivity to threshold values, so a reliable estimation
of the entire S-N-field involves testing specimens at both extreme values of
the stress ränge Chigh and low Aa).

3. CÄBLES

Long cäbles made-up of many parallel wires or Strands are used in cable-stayed
bridges or similar structures. The specialized literature [3, 32] presents the
fatigue strength of the cäbles as a governing criterion for the design of such
structures. Therefore, the knowledge of the Statistical behavior under fatigue
becomes essential.
The high costs involved in testing large cäbles lead to the testing of only
short component elements, normally about one meter long Strand and around 200 mm

long wire specimens. From the results of such tests the fatigue strength of the
entire cable has to be estimated. In such an extrapolation the redundance i.e.
the presence of parallel wires or Strands in the cable, and the difference
between the specimen length and the total length of the cable must be taken into
account.

A new Statistical model for analyzing the fatigue strength of a Single wire or
Strand was developed in the first part of the paper. In the following part, the
fatigue strength of a long cable is analyzed from the strength of a Single
element (wire or Strand) by considering the progressive loss of the cross sectional
area as a result of successive failures of Single elements.

For studying the static strength of large cäbles some models can be found in the
existing literature [6, 7, 9, 11, 15 to 20, 30, 41 to 45, 48, 49] but for the
fatigue strength no general model is yet available.

3.1 Statistical Model

For analyzing the fatigue strength of a cable, a model based on the following
assumptions is developed:

(1) The cable is made-up of m parallel elements [wires or Strands) of identical
length L.

C2) Failure in the elements is caused by fatigue. Static failure is excluded.
This implies either small stress ränge increments, with respect to the static

strength, caused by the failure of one element or a sufficiently large
number of elements m.
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(3) No transfer of stress by bond, friction, etc. between the elements is
possible, i.e. the elements are completely independent over their entire
length.

(4) An element with actual length L can be considered composed of n pieces with
a reference length Ln:

nL (23)

(5) The fatigue failure of one element is associated with the first failure
appearing in the n pieces, i.e. with the minimum number of cycles to failure.

(6) The fatigue behavior of a Single element is assumed to correspond to the mo¬

del given in the first part, i.e. the cdf of N for given Aa for an element
is given by eq. (17) :

E (N;Aa,L) 1 - exp
(N-B) (Aa-C)

(24)

where, as in chapter 2.7, Aa represents the logarithm of the stress ränge.

It is worthwhile remembering that knowledge of expression (2) is equivalent
to knowledge of the whole S-N-field for any length L.

(7) As a consequence of the successive failure of elements the stress ränge of
the unfailed elements progressively increases, provided the applied loads
remain constant which is the case for a cable of an actual structure. Since
the S-N-curve holds for one-step tests, i.e. tests with Aa constant, a
so-called cumulative damage hypothesis is needed. In the following, it is
assumed that the previous damage history in the elements is transferred to
the new stress ränge in such a way that the probability of failure remains
the same [28].

(8) The number of cycles to failure for the different elements is assumed to be
an independent or quasi-independent random variable.

(9) The dynamic effect due to the momentary stress increment produced by the
failure of an element on the rest of the elements is neglected.

(10) The failure of the cable is defined as failure of the k-th element. Fig. 25
shows the schematic representation of a system with m elements of length L

subjected to a stress ränge Aa-| and the number of cycles to failure N(-]).
N(2]»>" • N(m)' ranged in increasing order.

At the beginning, the stress ränge in one element is equal to AO/|. As soon as
the number of cycles reaches the value N(i). the first element fails and, as a

consequence, the new stress ränge in the remaining elements becomes equal to
Aam/(m-1). According to the cumulative damage hypothesis the process goes on,
as if the cable were subjected to a stress ränge equal to Aa.. m/(m-1) from the
beginning and for an equivalent number of cycles [see Fig. 26). This process re-
peates itself until a stress ränge equal to Aa1 m/(m-k+1) corresponding to
failure of the k-th element is attained.

According to the assumption (7) the equivalent number of cycles for two different
Aa-levels is given by the cumulative damage hypothesis, i.e. the probabilities
of failure for both levels coincide. This condition, according to Eq. (24)
becomes for the A-failure (see Fig. 27):

Ao
(N

1

li)
AOj

B) (Aa-C) IN..-! - B) (Aa. - C)
1 W) j

Aa.

(25)

Aa.
1 Jwhere the pairs [N Aa and (N ^( Aa.) correspond to the same damage state.
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The number of cycles, N^, reached at the defined point of failure of the cable,
i.e. failure of the k-th element, is given by (see Fig. 26):

k Aa. Aa.
exp(NK) exp(N + £ [expCN .^) - expCN .jj )]

which, taking into account Eq. (31), becomes

k Aa Aa.
exp(N, exp(N,„J + E 0 [exp(Nr .^P - exp(N. .1„ ,P J]K (1) jL (:) j (j-1) j-1 J

where

(26)

(27)

P (Aa„ - C)/(Aa. - C)
J 1 J

Q. exp[B(1 - P.)J

Aa log[m/(m-j+1)] + Aa

(28)

(29)

(30)

The equation (27) allows to calculate the cdf of N^ only by numerical or Simulation

techniques. Since these techniques can be cumbersome, it would be of interest,

from a practical point of view, to give upper and lower bonds for N These
bounds are given by (see Fig. 26):

Ä0k » A°1

V)iNKlN(k) (31)

*
Equation (31) allows the study of the r.v. N^ using the analysis of the order
statistics which is easier to handle. The cdf of the k-order statistics
Aa Aa

N and N are given by [21, 31]:
l k J L K J

G.(N;Ao
k p

m

E [")
i-X

1 -exp -n[-
(N-B) (Aa -C) tJ

E] exp (j-m)n[-
(N-B) (Aa -C) A

S P—* El

(32)
for p 1 and k, respectively. Because of Eq. (31) they give upper and lower
bounds for the cdf of N,,.

3.2 Cäbles Made-up of Strands
*If the cable is made-up of m Strands of length L, the Strand itself contains

r wires, and the estimation of the model parameters has been performed for a

reference length L1 and, as usual, only the first wire failure in a Strand is
considered, the proposed model can also be applied.
Since the cdf of the fatigue strength of one Strand with r wires and length L^

is identical to that for a Single wire with length rL>., and since a cable
composed of m Strands, each of them with r wires, can be assimilated to a cable-
made-up by rm wires, we need just to make

L rL-.
o 1

and
m rm

in using the present model.

(33)

(34)
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3.3 Asymptotic Solutions
Due to the presence of two parameters m and n, the following asymptotic cases
can be considered:

[1) Very long cäbles
(2) Large number of wires or Strands in the cable [m -* «0

3.3.1 Very Long Cäbles

In this case all wires or Strands fail, practically, at the endurance limit.
Therefore, the design must be based on this value (see Fig. 9).

3.3.2 Large Number of Wires or Strands

In this case, if k remains constant, the bounds converge to each other and
either of them can be used for a practical Solution. On the other hand, the cdf
tends to be [31] :

G (N;AO) 1-sxpk
(N-B) (Aa-c)

+ E

K~1
1 tE — (nm)

t 0

(N-B) (Aa-C)
+ E

At
(35)

This function has been represented in Fig. 28.

3.4 Example of Application
In order to illustrate the results and their application to practical cases the
design of a cable showing the following characteristics is presented:

Length L 200 m

m 295 prestressing wires 0 7 mm

Admissible loss of cross sectional area: 5 %; approx. k 15
Selected probability of failure: P 0.05
Number of cycles for design: N. 10? cyclesJ e design

Assuming that wires of the quality defined in chapter 2.7 are composing the
cable, the calculated values, found for a reference length L0 1960 mm, in
Table 5 are used for the design:

A 4.09
B 9.97
C 5.48
D 1.274
E -0.085

From Fig. 29 for P 0.05 and'k 15 the value

A

nm(
(N-B) (Aa-C)

E) 5.4

with

n 200000/1960
m 295 wires
N 107 cycles

is obtained.

This value gives the 0.05-quantile curve for the defined failure of the cable
(5 % loss of section). From this value and for given N, the corresponding
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Aa for design can be calculated (see Fig. 30):

Aa 250 N/mm2

It is interesting to note from Fig. 29 that high probabilities of failure up to
the fifth wire are associated with this design value. This Observation is
supported by the fact that actual cäbles or cable specimens tested in the laboratory
always show some broken wires even for relatively low stress levels.

If a more precise Statistical analysis is desired, the S-N-field can be obtained
just by repeating the same procedure for different probabilities of loss rates
(k-values). Fig. 31 shows the 0.05- and the 0.95-quantile curves for k 1 and
k 15.

3.5 Conclusions

The application of the proposed model is extended to the design of cäbles
made-up of parallel elements (wires or Strands). Two bounds for the fatigue
failure of a cable are obtained from fatigue data of Single elements. As the
number of elements increases, the upper and lower bounds converge to the exaet
Solution.
The median and the Standard deviation of the fatigue strength of a cable for a

given loss of wires, k, and a given number of cycles to failure, N, decrease
with the increasing number of wires, m, tili the endurance limit value and zero,
respectively.
The endurance limit and the threshold value for N coincide for wires and parallel

wire cäbles, or Strands and cäbles formed by Strands.

For cäbles with a large number of elements, m, or for long cäbles, i.e. large
number n, the design values are very close to the endurance limit and threshold
N.

APPENDIX

In this appendix the general Solution of equation
N - N (Aa) Aa - Aa (N)

°- °— (A.1)
N°(Aa) Aa°(N)

a a

is obtained by using the following theorem [1]:
THEOREM: All Solutions of the equation

n

2 *Y Cx)g.(y) 0 (A.2)
i ^ k k
k=1

with variables in arbitrary sets and function values in an arbitrary field can be

written in the form

r n

f.Cx) E a. (J).(x) ; g. (x) E b. tJi.Cy) : k ¦ 1,2 ,n (A.3)
K Kl X K Kl 1

1 1 j=r+1 J J

where r is an integer between 0 and n, and d> &,...,& on one hand and12 r
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\pr+H, ^r+2' • ¦ • '^n °n the other are arbitrary Systems of mutually linearly
independent functions. The constants a^, b^. (k=1,2, ,n; i 1,2,...,r; and

j=r+1,r+2,...,n) satisfy
n
E a b 0 ; i=1,2,...,r ; j=r+1,r+2 ,n (A.4)

k-1 Kl KJ

but are otherwise arbitrary. Inversely, all Systems of functions of the form
(A.3) with (A.4) satisfy (A.2).

Remarks. For r=0 or r=n, E., E 0 per definition and then no condition
(A.4) is necessary. Not all ty^, ijjj necessarily figure in (A.3). For instance
it is possible that a^r 0 (k=1,2,...,n)
The Solution of (A.1) is equivalent to the Solution of equation

n
E f.(x)g, (y) 0 (A.5)

y, k k
k=1

where x and y stand for Aa and N respectively and

f,(x) 1/N°(x) ; g,Cy) y CA.6)
\ a i

f^Cx) N (x)/N°(x) ; g„(y) -1 CA.7
2 o a 2

ffx) -x ; g0(y) 1/Aa°(y) CA.8)
3 3 a

o

f (x) 1 ; g„ty) Aa (y)/Aa Cy) CA.9)
4 4 0 3

For r=1 or 3 there is no Solution of CA.5), and for r=2, the theorem gives
[expressions CA.3) and CA.4)):

-ffltx) a„„<j>„Cx)+a„ A Cx) 1/N°(x) CA.10)
1 11T1 12 2 a

f„Cx) a_,<|>,Cx)+a tj> Cx) N Cx)/N°(x) CA.11)

f3Cx) a31<(>1Cx)+a32(J)2(x) -X CA.12)

f4Cx) a^Cx) *a42$2(x) 1 CA.13)

g1ty) bi3*3[y]+bi4*4ty:i y (A,14)

g2(y) b23<|j3(y)+b244»4Cy) -1 CA.15)

g3(y) b^CyJ+b^Cy) 1/Aa°(y) CA.16)

g4ty) b43ijj3Cy)+b44^4Cy) Aaoty)/Aa°(y) CA.17)
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/b13 b14\

a a a a \
11 21 31 41

'
b23 b24

| -(0
0

a a a a /
12 22 32 42/ i b33 b34 I

\b43 W
\o 0

(A.18)

From (A.12) to A.15) it can be written without loss of generality
<t> Cx) ¦ x

,(x) 1

<J>3Cy) - y

<iyy) 1

and taking into account (A.12) to (A.15) and CA.19) to CA.22) it results

42

32

-a b
31 13

-b
24

1

a41 b14 b23 " °

Substituting now CA.23) in CA.18) one gets

CA.19)

CA.20)

CA.21)

CA.22)

(A.23)

(A.24)

ai1 321 ~1 °^

vai2a22 ° y

from which

11 33 21

r ° \
a -1 \
b b

33 34

\b43 bJ

b ; a
34 12

ta

Ol

43 a22 b44

CA.25)

Finally, Substitution of CA.13) and CA.26) into CA.10), (A.11), CA.16) and
and some algebra give

CA.26)

A.17)

Na(Aa) > 1/Ca^Aa a12)

NQ(Aa) =(a21Aa + a^J/Ca^Aa + a^)
Aa°(N) 1/(a..N - a„.)

a 11 21

Aa
oCN) C-al2N a22)/[ai1N -a21)

CA.27)

CA.28)

CA.29)

CA.30)

which are the location and scale parameters of the Weibull laws.

Substitution of CA.27) to CA.30) into CA.1) leads to

N - NQ(Aa) Aa - AaQ(N) (N - a^/a^ (Aa a^/a,, 1) a21a12

N°(Aa)
a

Aa°(N)
a

1/a
22

11 11

CA.31)

which can also be written as
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N - N (Aa) Aa - Aa CN) CN - B)CAa-C)
+ E (A.32)

(A.33)

(A.34)

CA.35)

CA.36)

N°CAa)
a

Aa°(N)
a

where the new constants e

B 321/ai1

C "ai2/ai1

D 1/a1̂1

E a2iai2/ai1 " a22
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