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Non Linear Analysis of Cable-Stayed Bridges Eccentrically Loaded
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SUMMARY
In this paper the non linear behaviour of long-span cable-stayed bridges under eccentric live loads
is analyzed. Two different structural models are presented. The first is obtained by assuming a

continuous distribution of the stays along the deck, the second one is a discrete model
corresponding to the actual stays spacing. The numerical results obtained show the significance
of nonlinear effects and the accuracy of the structural models used.

RESUME
Cet article etudie le comportement non lineaire des ponts ä haubans de grande portee charges en
flexion et en torsion. L'analyse est developee, en etudiant par modeles d'une facon continue la

distribution longitudinale des haubans, ainsi qu'avec l'emploi d'un modele discret, qui prend en
compte la position reelle des haubans sur la poutre. Les resultats numeriques montrent
rimportance des effets non lineaires et l'efficacite des modeles employes.

ZUSAMMENFASSUNG
In dieser Arbeit wird das nicht lineare Verhalten von Schrägseil-Mittelträger-Brücken unter
exzentrischer Belastung untersucht. Die Untersuchung erfolgt einerseits unter Benützung eines
Modells mit kontinuierlicher Verteilung der Seilabspannung längs der Brückenachse und anderseits

eines diskreten Modells, das die tatsächliche Verteilung der Seilabspannung längs der
Brückenachse berücksichtigt. Die auf diese Weise erhaltenen numerischen Resultate zeigen die
Bedeutung der nicht linearen Einflüsse und die Effizienz der angewandten Modelle.
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1. INTRODUCTION

The considerable progress in the field of structural engineering, material
technology and methods of construction has brought about great interest in the
study of long-span cable-stayed bridges. Therefore, it's a common view to
consider the cable-stayed bridge scheme an efficient alternative to the Suspension

bridge. Basic studies about fan-shaped cable-stayed bridges are given in
[1-3].

Usually, the investigation methods about the statical behaviour of this scheme

are based upon a linear analysis, by using Dischinger's fictitious tangent
modulus for the stays. Consequently, torsion and vertical bending are examined

separately. This approach is unsuitable for bridges whose central span is
longer than 700-800 mt. In this case, in fact, a non-linear analysis, for
a more accurate evaluation of some significant effects, is required. Recent

contributions about non linear behaviour of cable-stayed bridges are given
in [4-7]. In particular, the influence of non-linearities, due to stays'beha-
viour and geometry changes, is shown in [6-7],
A numerical and analytical investigation is developed in the present work,
including the main nonlinearity due to the stays'behaviour. Thus, torsion
and vertical bending of the girder are examined in a coupled nonlinear
analysis. At the beginning the analysis is made by using a continuous model,
already used in [3,6,7]. Solutions, approximate but suitable to account for
the stays'main non linear effect are obtained by using a perturbative method

of Solution. Then, the analysis goes on by using a discrete model of the
bridge, corresponding to the actual stays' spacing.

2. STRUCTURAL SCHEME AND STATICAL BEHAVIOUR

The structural scheme we are going to examine is shown in Fig. 1: the stays
are characterized by a fan-shaped arrangement, the pylons are composed of two

parallel independent towers and the deck is supported by the stays.

The statical behaviour of such scheme is based on two typicai characteristics
[3,6,7], namely:

- diffused stay arrangement along the deck (A/L«l)
- truss-like statical behaviour

Under dead loads g, according to the commonly erection methods used, the

girder has a straight configuration and is free from bending moments. So

that the stresses are given only by axial forces both in the stays and in
the deck. When live loads are applied, deformation and stress increase will
be analyzed by taking into account the non-linearity due to the stays'
behaviour.

We assume that the whole central span is under a uniform live load (Fig. 1):

p'(X) Xp (2.1)

where \ is the load parameter and p is the design value of the live loads.

This load condition is interesting because in such case the maximum torsional
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Fig. 1 Structural scheme

rotation and the maximum deflection occur at midspan.

Thus, if the extensional and shear deformabilities of the girder and pylons
are neglected, bridge's additional deformation is determined by the following
displacement parameters (Fig. 1):

- the girder's vertical displacements v(z)
- the pylon tops' horizontal displacement u

- the girder's torsional rotations 8(z)
- the pylon tops' torsional rotation \\)

Before analyzing the non linear elastic response of the bridge under live
loads, we shall examine the behaviour of a Single stay. Let us consider a

generical stay anchored to the left pylon; the deformation increment Ae produced

by v, u, 0 \\> displacements is:

Ae -j [(v ± 0b) sin2a — (u ± ^b) sina cosa]
H (2.2)

where + or - signs respectively apply to the left or right stay in respect
to the pylons' vertical axis. The AO stay tension increment can be evaluated
as:

Aa E*M (2.3)

where E is the secant modulus of the stay s O-e relationship. The tangent
and secant moduli are defined in Fig. 2. According to Dischinger's theory
these moduli are given by:

e;
i + dE

e;
i +

Ual
ßE

12 oi

1 +
(2.4)

2 ß2

where ß represents the ratio between the final value of the stays' tension
0=0o+A0 and the initial one 0o: ß=o/oo ; E is Youngs' modulus, Y the specific
weight, üa the horizontal projection length of the stay.

The cross sectional areas As and A0 of the double curtain of stays and of
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Fig. 2 Elastic response of the Single stay

the anchor stays, respectively, are found from the design values a„ (which
we assume constant stay by stay) and Og0 of the stays' tension due to dead

loads. We have:

A, gA -[l+(-)2]"2[(-)2-l] (2.5)

Moreover, operating on the truss-like scheme we get the following values of

(2.6)

Og and ogo:

<V a. [1+£[!-(—)T'
P + g ' g" L

Oa being the cable's allowable tension.

According to the assumption of uniform stays' distribution along the deck, the
bridge's equilibrium equations in terms of the displacement parameters v, u, 8

l\) are:

Girder equilibrium

EIv/v qv + Xp (2.7)

C.B" — m, — Xpe* (2.8)

Pylon equilibrium
.ui

— 1 q„dz — Ku-S^-S" 0

(L/2m/dz — Kb2^ — (St — S°)b 0

(2.9)

(2.10)

We observe now that the terms qy ,q0 .m^ and m^, appearing in eqs. (2.7)-t-
(2.10), are the vertical and the horizontal forces and the torsional and
horizontal flexural couples, per unit length, corresponding to the stays-girder
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interaction produced by the stays' axial deformations [7], The terms S£ and
SS are the horizontal components of the anchor cäbles axial forces due to
the displacements u and ijj Moreover, EI and Ct represent the flexural and

torsional stiffnessess of the girder respectively, while K is the pylon
tops' flexural stiffness.

It is convenient to rewrite equations (2.7)-=-(2.10) in dimensionless form.
Therefore, let us introduce the following quantities:

f -, V ^-, U=-Sä-, « t-, t=~ (2.11)
H ' H H' b ' b

a ' ,—, ats(f) a ' ^»(f) (.2.12)
12^, ' 2ß\„d) 2(l+ä7.„r)(l + f2)

e ,±LSa.)"* t C' "' )'" P -BS*- (2.13)
PPg Eb2Hg ' Eg

Hence, equations (2.7)-=-(2.10) become:

-^v'v + k + *gv + (^-«o-f-riv, + *>ju-r(#»4-*j-f ^ (2>14)

t!6" — t fo — «»,,) V — fo + y>R)0 + t£ fo — ¥>*) U + ffo + vR)i/- XtPjf (2.15)

{L/2H
_ L/2H

fK + ^JVdr + Y [ f(«>t —*«)*# —(C + X)U—4"T iA 0 (2.16)
—r/H J —i/H

{L/2H
»L/2H

ffo —*>«)Vdf + 1 f(*>i+*>»)ödr— fe"U — (e + xW 0 (2.17)
—r/H J—r/H

where

JL/2H
-L/2H

f,(*>x+*>«)df + xl+ xj; ~e l F(<PL-<Pn)tt + xf-x°; (2.18)
—«/H J—r/H

and

x°„ y giH sina»cos a°' x Tf
In the previous equations the indexes "L" and "R" are respectively applied
to the left or right stays with respect to the pylons' vertical axis.

An approximate Solution of equations (2.14)-=-(2.17) which reflects the truss-
like behaviour will be given. We will show how this Solution, though approximate,

can represent the main qualitative and quantitative aspects of the bridge's

structural behaviour.
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3. CONTINUOUS MODEL

We observe that the flexural and torsional girder stiffness parameters e

and T which appear in equations (2.14), (2.15) are very small for long-span
cable stayed bridges, usually e 0.1 + 0.3, T 0.05 * 0.1. This circumstance
allows us to apply a perturbative approach to obtain an approximate Solution
of equation (2.14)-=-(2.17). Actually, the Solution is exaet when e + 0 and

T ¦+ 0. Therefore, the general Solution (V, U, 6, l|)) of equations (2.14)-=-(2.17)
can be expressed as:

V(f) V0(f) + V,(f), U U0 + U„ 0(f) fl„(f) + ö,(f), i=ili0+iP, (3.1)

where (V0, U„, 90, <JO is a particular Solution obtained by setting e t - 0

in equations (2.15), (2.16), and characterizing the bridge's dominant truss
behaviour, while (Vx Ux 81; \])x is an approximate Solution of the homogeneous

system (2.15)h-(2. 18), of local nature.

For the particular Solution, putting L/2H=r in eqs. (2.14)^(2.17), we get

Uo i_xpr2 (xg+xg + x) + i(xg-x3 (3.2a)0
2 (2x1 + x) (2x2 + x)

q =J_XPr2t (XS-X3 + t(rf+*;+ X) (3.2b)
2 (2X? + x) (2*2 + x)

V0(f) |xP {v> + & + *<».-»,) + fU (3.2c)

W)=|xPt ^'-^ + i{v' + *J +M0 (3.2d)4 •Pl Vk

An approximate Solution of the homogeneous system can be expressed as [3,6,7]:

V,(r) c,e*' 'sinf(f) + c2e'"r 'cosf(r), 8,(f) k.e^" ' + k^" '
U, +, 0 (3.3)

where

f(f) ^jv^dr, f,(f) ij^"2df, f2(f) -J- [<*"2df, (3.4)

and

*Kf) ^(f) + *>.(f) (3.5)

Hence for the given load condition we get:

v.<f> T^TT {U° + * W + r' <T* + OJ + » (1 +' r')05jQ + ¦".)] +
2 *>"4(r) v

+ XP£ [r'(T£ - T„) + r(l + r')(!TL - T„)]} • [e-/lf'smf(f) - e"/lr,cosf(r)] (3.6)
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•.(0 - Xr- {xtP[r(Tt - T«) + 2r!(ri - TR) +
(0 (r)

+ « |r(2 + äl + T.) + 2r'(TL + T,)l] + *„} e""1" - XPt&f'2'" (3.7)

The maximum deflection 6 and maximum torsional rotation 8(r) at midspan are
expressed by:

£ i XP{(1 + r2)[(l + T£r2) + (1 + v2)] + £r2(l + r2)(TL - TR)} +

+ rU0 - « {u„ + XP[(2 + TL + lTR)r + 2r'(TL + TR)] + XP{[r(äl-TÄ) + 2r3(Ti-T„)]} (3 8)2(» (r)

0(r)/t ^-XP {r2(Tt-TR)(l + ra) + $[2(1 + r2) + r!(l+r')(TL + TR)]} + rtf./t +

r^—- {xP[r(TL-TR) + 2rI(TI-TR) + {|r(2 + TI + TR) + 2r3(TI + Ts))] + ^/t} (3.9)
¥> (r

Furthermore, the bending moment at midspan is expressed by:

-^- 4f *>'"(r) {U0/P + X[(2 + TL + TR)r + 2r'(Xt + TR) +

+ { (rfäl - TR) + 2r' (Tt - T„))]} (3.10)

and the twisting moment at the section C, 0:

-M^L X{T+T>jfc_ (3.11)
pbH tP

The equations (3.8)-=-(3.11) are non linear because of terms depending 011 the
value of the secant modulus of the stays. Therefore, these equations have been

solved by using a direct iterative procedure.

4. DISCRETE MODEL

In the previous section, the non linear behaviour of the fan-shaped cable-
stayed bridge scheme has been analyzed by assuming a uniform stay distribution
along the deck. An approximate analytical Solution has been obtained which

reflects the main truss-like behaviour of such structures. Obviously a more

accurate analysis of stresses and deformations may be obtained only by means

of a discrete model which accounts for the actual stays' spacing and geometry
change. However, the results given in [6-7] shows that with a suitable choice
of the girder stiffness parameter £ the non-linear effects due to geometry
changes are insignificant. Therefore, in the present work a discrete model

which includes only the nonlinearities due to the stays' behaviour will be

analyzed.

The discrete model is defined by the following displacement parameters:

- the pylon tops' horizontal displacement u
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- the pylon tops' torsional rotation \\>

- the girder's nodal vertical displacement v^

- the girder's nodal bending slopes (t^

- the girder's torsional rotations 8^

The finite element discretization is based on a cubic interpolation of the
vertical displacement ve(z) and on a linear interpolation of the torsional
rotation 8e(z) for the element of length A, that is:

v.(z) F:(z)d:", 9.(z) Ffo) d]2' (4.1)

where d and dg are the vectors of the nodal displacement parameters
(deflections, bending slopes and torsional rotations of the end sections),
and Fi, F2 are the shape function vectors. The elastic response se(de) of
the girder element is defined by means of the Virtual work equation:

5d.Ts. j(EIv'5v* + C,0'«0')dz

where d.
dy
d!21

(4.2)

is the nodal displacement vector of e-th element.

The pylon equilibrium equations, analogous to (2.16) and (2.17), are:

-(e + X)u-b7\i + £ A f-(*»i + *>>< + -#- A M*>1-*>>,= 0 (4.3)

-(e + x)*--jj-u + -^ £ ?,(*>!-*>>< + ^ ,£, f,(<f>L + *>»)», 0 (4.4)

where 9>L 9,L(?i).9>R=9»R(?i) and N (L/2+£)/A+l.

The girder equilibrium condition is expressed by:

s_q_Xp 0 (4.5)

where p is the global nodal load vector, s is the assembled elastic response
of the girder and q [q^, qt] is the stays' action on the deck:

q'v |5* [(*>! + *»i)(uf, - v,) + bfo - *>R)W, - »,)] (4.6)
ZHo*f

q; fsA [bfo-yR)(uf,-v,) + b2fo + «Ow,-»,)] (4.7)
2Hfff

For numerical applications, the set of non linear equations (4.3)-=-(4.5),
has been solved by using the Standard Modified Newton-Raphson method.

5. NUMERICAL RESULTS

Numerical results, obtained by using both the continuous model and the discrete
model are given. The main parameters which characterize the bridge scheme

are:
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For the first two parameters, according to the stability condition of the
anchor stays and to the minimum weight condition of the stays, we assumed the
following values [3]: L/2H=2.5, &/H=5/3. The value of öa/E is, for steel stays
Oa/E=7200/2.1xlO For the nondimensional tower bending stiffness K/g parameter,

according to its weak influence on the overall behaviour of the bridge,
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we assumed the mean value K/g=50. While, for the e, t a, p/g parameters,
which have a considerable influence on the overall behaviour of the bridge,
some values, corresponding to long-span cable-stayed bridges, have been considered.

In Figs. 3-10 the values of some dimensionless quantities which are more

significant to describe the bridge behaviour are given. That is, the maximum

midspan deflection 6/L, the midspan bending moment M/pH the maximum midspan
torsional rotation 6(r)/t and the twisting moment Mt/pbH at the section 5=0.
Furthermore, Figs. 11-14 show the comparison between analytical and numerical
solutions. Obviously, the approximation of the results obtained by using
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Fig. 14 Twisting moment at the section
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the continuous model in respect to the discrete one is connected with the
values of the £ and T parameters and with the ratio A/L. In particular,
the approximation of the results relative to the midspan deflection and the
midspan torsional rotation obtained by using the continuous model is related
to the values of parameters £ and T, with errors between 5-8% (Fig. 11)
and 0.5-1% (Fig. 12), respectively, for £=0.2-0.3 and T=0.05-0.1.

In figures 12, 14 similar results are given for the bending moment at the
midspan section and the twisting moment at section £,=0; the error of the
continuous model compared to the discrete one in this case is higher and
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is roughly between 8-20% (Fig. 12) for e=0.2 - 0.3 and T=0.05-0.1 in respect
to the bending moment; while as far as eoneerns the twisting moment, this
error is strongly related to the ratio A/L and is about between 8-40% for
A/L=l/30 - 1/120.

In any case, we can observe, from the figures previously shown, that the
differences between the results obtained by using a linear analysis, and those
derived by a more refined nonlinear analysis, is considerable in particular
in regards to the deformations, that is, midspan deflection 30%) and

torsional rotation 45%).

6. CONCLUSIONS

In this paper the static non linear behaviour of long-span cable-stayed bridges
was analyzed. A suitable continuous model of the bridge was developed and

an analytical Solution of the Statics' basic equations was derived. This Solution

focuses the prevailing truss behaviour of the bridge and allows us to
achieve a synthetic understanding of the statical behaviour of the bridge
and to express, by simple formulas, the more significant stress and deformation
characteristics, useful for design in practice.
Moreover, the influence of the intrinsec nonlinear behaviour of stays on the
overall behaviour of the bridge was examined. In particular the obtained
results show the importance of nonlinear effects on the deformability of the
bridge, which, especially for long-span bridges, is undergoes severe restrictions.
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