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I

A Simplified Model for Nonlinearly Viscoelastic Columns

Un modèle simplifié pour le calcul visco-élastique non-linéaire des colonnes

Ein vereinfachtes Modell für nichtlineare viskoelastische Stützen

H. A. CERVERA G. J. CREUS
Assistant Professor Associate Professor
Institute of Applied Mechanics and Structures (I.M.A.E.)

Universidad Nacional de Rosario
Rosario, Argentina

1. INTRODUCTION

Adequate theories exist for the analysis of deformation and failure of
linearly viscoelastic columns. J.N. Distéfano, /1/, has studied the problem in
a series of papers of great generality, considering arbitrary and conditions,
lateral loads and initial imperfections, and the most general expression for
linear creep.

However, both instantaneous and time dependent deformations of concrete
are nonlinear, specially at high stresses. In fact, the behaviour of concrete
ranges from almost linear, bounded creep at low stresses to highly nonlinear,
unbounded creep at stresses near the compressive strength.

The effect of nonlinear behaviour on creep buckling is analyzed in this
paper. In Section 2 a nonlinear rheological model apt to describe the behaviour
of concrete for the whole range of stresses is introduced.

In Section 3, the creep buckling problem is studied for the above mentioned
rheological model, using a simplified model for the column.

In seccion 4, the model is refined by considering additional effects
present in real situations, as the influence of axial thrust on the bending
rigidity and the different behaviour of concrete in loading and unloading
processes /2/.

For the simpler situations, analytical solutions to the differential
equations are used. In the general case, a step by step numerical analysis is
necessary. The effect of ageing of concrete may be easily taken into account
by taking age dependent coefficients.

2. RHEOLOGICAL MODEL

The proposed model, shown in Fig.l is similar to the well known standard
solid. Its particular feature is the nonlinear stress-strain relation assumed

for the spring elements 1 and 2. We denote with£i(t) the strain due to the
deformation of spring element 1 and with £î(t) the strain corresponding to
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spring 2 and dashpot. The total strain is £(t)-£i(t)+£2(t)» where t denotes
the time.

For spring 1 we assume the stress-strain delation

cr= e,<(i-A£,) (1)

Yzfr

FIG. 1: RHEOLQGICAL MODEL

Ö" E2£2 (1-|32£2) ;

(T"= KU

Here ff(t) is the stress and E^^are
material constants. This equation defines
a maximum stress (^""kj^and a corresponding

deformation "f/zß,. Increasing deformations

from to 1/^ are possible for
decreasing stresses. No physical meaning
is attached to deformations larger than

The nonlinear Kelvin element constituted

by the spring 2 and the dashpot is
responsible for the time dependent
behaviour. The spring 2 and the dashpot are
defined by the relationships

04Ê24-T-
P2 (2)

where E {$> and K are material constants and the dot indicates differentiation
with respect to time. Being C=(J\(J" we obtain the equation for the nonlinear
Kelvin element

• P*E2 2 E2 _
<T

£î +7£2 -k (3)

which is a Riccati's first order nonlinear differential equation.
We shall consider now the case of a constant stress (J (t)« CE, applied at

time t«0 and mantained thereafter. Inversion of Eq.(l) provides the expression

(«)

for the instantaneous deformation. In order to determine the value of the
delayed deformations, we must replace the value (Jo into (3) and solve it (for more
details see Ref./3/). Adding instantaneous and time dependent deformations, the
final expressions are

l5)

f(t) -A-(t }/t 4^Û°) tf 1 + sin I2 ifFl •( - costV^T t
-tp\ V * J 2pA° S+2{H

(6)

for S<1 5=1 and Ï >1 respectively, being K 4ßA/ez <Jo/Gr* (e)
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The behaviour of the model under constant stress is indicated in Fig.2. We

FIG,2:CREEP CURVES FOR THE RHEOLOGICAL MODEL FIG.3îCOLUMN MODEL

may see that for 8>1 ,i.e. for (T0 > (J2rna* a condition similar to failure is
reached after a finite time. As is the strength under instantaneous
loading, Gz** may be interpreted as the strength under sustained load (static
fatigue). In Ref./3/ a comparison of this model behaviour with the experimental
results of Rüsch /4/ is given.

3. SIMPLIFIED COLUMN MODEL

Let us consider now the system in Fig.3. In this structure the deflexion of
the hinged bar due to the action of the force P is prevented by a viscoelastic
element which in turn reacts with a force S. This simple model contains many of
the more interesting features of considerably more complex systems. For small,
quasi-static deflexions, equilibrium provides the relation

S _ p "V+ Wo (9)

We are interested in the behaviour of this column model in the presence of
nonlinear creep. For the sake of clarity, we shall study first some simpler
situations.

3.1. Linear spring ßco; £2=0°) i The force in the spring is S-E-i w { from this
and (9) we obtain

F, ,y - p(w+w0) or w (10)
L 1

When P -» LE-i we have w ->co ;PB «(_£, may be considered the buckling load for this
case.

3.2. Linear Kelvin material p>2 o 5 E1=oo) • The force in the viscoelastic element

is S=E2 «d'Kw' ; the differential equation for equilibrium is

I Ez P \ PWo _ (n)^ + IK "° 1 '
It may be seen that the solution of (ll) shall be bounded for t-»œ whenever the
the coefficient of w is possitive; thus, the creepbuckling load in this case is
PK«LE2 while the instantaneous load is infinite.
3.3. Linear standard material (ßi=ß2 o ): Proceeding in a similar way, we find
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in this cae Pg»LE z ; PK °LE1 / (E1+E2 •

Both 3.2 and 3.3 are particular cases of the general linear viscoelastic
problem as studied by Distéfano/l/. The creep buckling load is given (as it
should) by the reduced modulus load. Physically, this may be interpreted
saying that, in order to obtain the load stable for t-»oo, only the spring
constants are significant,as the action of the dashpot vanishes for t—»oo(*).

3.4, Nonlinear spring (E2=ao)s The force in the spring is now S-E, w(l- ftw) ;
from this and (9) we have

(12)

Solving for w we find that for each pair of values (P,wQ) there exist two
equilibrium points, defined by

W =-_l (f., 1U1 (r.
2ft ILEa /" 2 V

(13)Pw/0

j*.-, -

and represented by points A and B in Fig.4. It is easy to see that A corresponds
to stable equilibrium and B to unstable
equilibrium. The maximum load that allows
stable equilibrium is obviously that
corresponding to point C and may be
obtained making the square root equal to
zero. We obtain

S P(w.+w)/L

Pe =LE,|(2Wo^l)-2Wop,f + ^5 }
(14)

Wer

FIG.4: NONLINEAR SPRING
Also from Fig.4 we may see that, in order
to reach the critical condition, one may
increase the load P to Pe or increase the

initial excentricity w0. Thus, a column whose material is characterized by a
nonlinear stress-strain relation for instantaneous loading has a critical
deflexion at which the applied load is the critical load. This fact is
specially important in the treatment of creep buckling problems.

3.5. Nonlinear Kelvin material Ei °o :In this case we have S»Ezw(l-f52w)+Kw;
From this and (9) we obtain

W _
Ezßi W

K \ LEzJ
Pv/Vo

O (15)
R K \ LE2y LK

Eq.(l5) is formally identical with (3). Following the same procedure we obtain
the corresponding solution for w(t), namely

(*) This is of course only true for materials with bounded deformations, i.e.
solids.
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(16)

(17)

(18)

for r<1 » V=\ and respectively, being

Thus, the critical load is given by

_Ü^ (19)

Pe LEi(l + 2(*Wo -V4fS>W0(^vV0+'\)) (20)

Comparing this with (14)^ we see that, as for the linear case, the load for
infinite stability corresponds to the instantaneous critical load of a similar
column where the Kelvin body has been replaced by the spring.

3.6, Nonlinear standard materialt In this case, a closed solution has not been

found. The problem has been solved numerically, using a step by step procedure.
The time interval of interest is divided into small (*) time intervals A t.

Then, at a time t, the force S(t) satisfies the equation

where w„ is the delayed deflexion for time t (of course, w„ =0 for t=Q), and wB

is the elastic deflexion. In the following time interval (t,t+&t) we consider
the spring 1 frozen, while the Kelvin element deforms under the action of force
S(t) assumed constant during the interval. The corresponding creep deformation
is

and the delayed deformation now amounts to wD(t+A t)=» wD(t)+A Wj, Then,Wj)(t+At)
is replaced into (21) and the process continues in the same fashion. The outlined
procedure is very easily programmed for a digital computer.

The analysis of the results may be better understood looking at Fig.5.
Line OA represents the t=0 isochronous curve for the material and corresponds
to the 0-fL relation for spring 1 in Fig.l. Line OFR corresponds to the t= oo
isochronous curve and represents the behaviour of springs 1 and 2 in series.

(*) Small when compared with the characteristic retardation time of the model.

S(t) Z.(vfo + W) £(>«.+%+=£(\No+W»(t) +
2 ßi J2|*i

(21)

Aw, SCt)-E»WPCt)(l-M»(t))
(22)

B 3 VB
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Different loads, applied with excentricity w0 are represented by straight lines
beggining at N. We observe that!

1)The instantaneous buckling load PE (line NA) depends only on the
characteristics of spring 1 and the Initial excentricity wQ.

2)The creep buckling load PK (line NF) depends on the characteristics of
springs 1 and 2 and the initial excentricity w0. More precisely, it may be

evaluated as the instantaneous buckling load of an ideal elastic nonlinear
column with a spring equivalent to springs 1 and 2 in series.

FIG.5s NONLINEAR STANDARD MATERIAL

This behaviour resembles in some ways the case of linear viscoelastic
columns (see Section 3.3) where a reduced modulus exists. Of course, being the
present problem nonlinear, a unique reduced modulus does not exists, and the
load PK depends on the initial excentricity.

3)A column loaded with P^< PK reaches a limit deflexion with a velocity
that depends on the value of K.

4)lf a load Pe > P$ > PK (represented by NC) is applied, an instantaneous
equilibrium position D is reached at t»0. As time goes on,successive equilibrium

positions D, ,DZ,.. .are reached.At some time tcr (which depends on the value
of K) the delayed deflexion Wj, reaches a value for which P^ is critical for
spring 1. At this time, the column fails suddently. Failure points lay along a
frontier indicated by AC.

The pattern of behaviour described closely resembles that observed
experimentally /5,6/.

4. A REFUSED MODEL

The model studied in Section 3 does not take into account:
a)the effect of axial thrust P (in the bending rigidity
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b) the different behaviour of concrète in loading and unloading processes.
In order to take account of this influences, a refined model may be used, as
indicated in Fig.6. Accordingly, the stress-strain relation for the springs in
the rheological model has been generalized, as indicated in Fig.7

Eî.p» S EiJ)i

FIG.6: REFINED COLUMN MODEL

Cf(+)

0 Ar
B\uf —

1 Gc-)

FIG.7:STRESS-STRAIN RELATION

Stresses and strains are now taken with their corresponding signs
(compression: positive; tension:negative). Then, the base curve OA in compression is
given by Eq.(l) with Ei and Pic >0 ; the base curve 08 in tension is given by
the same Eq.(l) with E< and ßn <O During unloading, the material behaves
along line CDE with origin in C and E^ p* ftt < O This curve contacts
the base curve 00 at point E smoothly (both curves have a common tangent at
point).

By putting together the equilibrium and compatibility equations for the
column model, and the constitutive relations of the springs, a system of
equations is obtained that allows the study of the stability of the model.
Comparing the critical loads obtained using this model (PcrZ } and the model in
Section 3 (Per 1 the effect of axial deformation may be evaluated,

,0 K ®
0.8

0.6

0.4 l ~w.=o.u „ 0_o1

021 " -T-tS
L/b

Per

w» 3.0
w. 1.0
w»=0.1,

- w* =3.0'
- w. =1.0
-. w. =0.1

-=30

0.1 1.25 2.5 ftic-'fiu

if) =0.1

0 10 20

FIG.8: COMPARISON BETWEEN COLUMN MODELS

30

In Fig.8-a we observe that the influence of axial deformation increases with
the nonlinearity coefficient yô,c • The influence of the initial excentricity w0
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and the slendemess ratio L/b is also shown. In Fig.a-b we may see how the
critical loads for both models depend on wQ and L/b.
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SUMMARY

The effect of nonlinear behaviour on creep buckling is analized,
using a nonlinear rheoiogical element to express material properties
and. simplified models for the column.

RESUME

On analyse l'influence du comportement non-linéaire sur le
flambement dû au fluage en utilisant un élément non-linéaire pour
exprimer les caractéristiques du matériau, ainsi que des modèles
simplifiés pur la colonne.

ZUSAMMENFASSUNG

Unter Verwendung eines nichtlinearen rheologischen Elementes
für die Beschreibung der Materialeigenschaften und eines
vereinfachten Modelles für die Stütze wird die Wirkung des nichtlinearen
Verhaltens auf das Kriechknicken untersucht.
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