
Statik: a computer program for everyday's
structural engineering applications

Autor(en): Anderheggen, E.

Objekttyp: Article

Zeitschrift: IABSE reports of the working commissions = Rapports des
commissions de travail AIPC = IVBH Berichte der
Arbeitskommissionen

Band (Jahr): 31 (1978)

Persistenter Link: https://doi.org/10.5169/seals-24894

PDF erstellt am: 09.08.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-24894

13

IA B S E COLLOQUIUM on:
A I P C "INTERFACE BETWEEN COMPUTING AND DESIGN IN STRUCTURAL ENGINEERING"
I V B H August 30, 31 - September 1, 1978 - ISMES - BERGAMO (ITALY)

STATIK: A Computer Program for Everyday's Structural Engineering Applications
STATIK: Un programme d'ordinateurs pour les problèmes courants de génie des structures

STATIK: Ein Computerprogramm zur täglichen Anwendung im Bauingenieurwesen

E. ANDERHEGGEN

Professor for Applied Computer Science

Swiss Federal Institute of Technology

Zürich, Switzerland

Summary
Within the context of some of the developments in the field of computer applica
tions to structural engineering which took place in Switzerland in the last 15
years, the criteria followed for the design of a new general purpose computer
program called STATIK are presented. A number of specific questions concer
ning man-machine interface problems are raised which may serve as a basis
for further more general discussions.

Résumé
On discute les critères retenus pour le développement d'un nuveau programme
d'analyse structurale appelé STATIK, en tenant compte des conditions particulières

qu'on retrouve en Suisse dans le domaine de l'application des ordinateurs
au génie civil. Un certain nombre de questions concernant la relation homme-
machine peuvent servir de base à des discussions ultérieures.

Zusammenfassung
Es werden die Kriterien geschildert, die zur Entwicklung eines neuen Computer
programmes namens STATIK geführt haben, unter Berücksichtigung der spezieT
len Bedingungen, die in der Schweiz auf dem Gebiet der Computeranwendungen-
im Bauingenieurwesen zu finden sind. Eine Reihe Fragen tauchen auf, die als
Basis für allegemeinere Diskussionen dienen können.

14

1. INTRODUCTION

If one considers the way computer programs for structural
engineering applications are written and used the following
classification seems reasonable:

a. Programs, generally written by non-professional programmers
which are used only by their authors or by few very closed
associates of their authors. Such programs are often found
in the larger firms owning a computer. In fact, although
this looks like a great duplication of efforts, it might
well make sense to write programs for more or less personal
use as the interface problems we are concerned with in this
colloquium can then be easily solved in a local, personal
way. As an example it is believed that most optimum design
programs used today in structural engineering (and there
are not many of them) are of this kind, design being too
much influenced by personal taste and habits to be left to
some not clearly understood black box program written for
general use. But of course not everybody can write his own

programs.

b. Programs written by professionsl programmers requiring from
the user a high level of specific competence generally not
found among practising engineers. Most well-known general
purpose finite element programs are of this kind, an extreme
example being NASTRAN which was written for use in the
aerospace industry by highly professional numerical analysts.
The use of such programs for civil engineering applications
generally requires the professional services of a specialized
software firm acting as an interface between the program and
its user.

c. Programs written by professional programmers to be used
directly by practising structural engineers for whom numerical

analysis is only one, and seldom the most important,
aspect of their professional activities.

The present paper is only concerned with this last kind of
programs where interface problems between automatic computation
and everyday's design work are of greatest concern. The criteria
to be followed when developing such programs as well as the
problems arising by their use are to be discussed. It is felt,
however, that a discussion in very general terms would not make
much sense. Too many factors greatly varying from place to
place would have to be taken into account. Therefore, only some
aspects of the developments which took place in Switzerland in
the last 15 years and which are closely related to the activities

of the writer shall be discussed. It is hoped that such a

"case study Switzerland" will give rise to useful discussions
and lead to generally valid conclusions.

The following factors certainly had a great influence on the
historical developments of computer applications to structural
engineering in Switzerland and indeed it would be interesting
to compare and discuss the influence that similar factors had
in different countries:

a. Swiss structural engineers are not too often confronted
with problems where a sophisticated structural analysis
would make much sense: Switzerland has practically no
aerospace industry; unusual or unusually large structures
are rare; rivers flowing near their sources are narrow
and therefore not too difficult to span; since over 400
years no major earthquake has occurred; most large dams
were designed and built before the advent of computers.
However, there are some large reinforced concrete structures

for nuclear power plants being designed today.

b. For many years Switzerland had by far the highest per capita
cement comsumption of the world which is a good mesure of
overall construction activities. Worth mentioning are the
national and cantonal road construction programs with
hundreds of individually designed, very slender and elegant
cast-in-place reinforced concrete posttensioned bridges.

c. The vast majoritiy of Swiss civil engineers confronted with
structural design works in relatively small, privately owned
consulting offices. This is also a consequence of the Swiss
political system as public works (including national highways)

are generally managed by the cantons which tend to
prefer local consulting firms.

d. Swiss building codes, at least compared with German, are
rather liberal allowing considerable freedom in choosing
design methods. No state employee checking each single
computation exists as this is the case in Germany with the so-
called "Prüfingenieure".

e. Switzerland is a rich country with one of the highest com¬

puter hardware density of the world. Access to computer
facilities is therefore in general easy. As an example the
Swiss Federal Institute of Technology in Zurich with some
7200 mostly undergraduate students has main computer facilities

worth over 50'000'0G0 Sfr. not counting many small
computers scattered about the institutes.

f. Four years of undergraduate studies are needed to become a

civil engineer. At the Swiss Federal Institute of Technology
in Zurich out of 12 mandatory and 4 non-mandatory semester
courses on statics and structures only one non-mandatory
course in the 7th semester deals with computer methods for
structural analysis. Graduate studies leading to anything
similar to a master's degree do not exist and only some 5

16

or 6 students reach each year the Ph. D. degree in civil
engineering.

Within this framework a small group of research workers and
Ph. students headed by the author of this paper has been
active since 1962 at the Swiss Federal Institute of Technology
in Zurich in the field of computer applications to structural
engineering. One of our objectives has always been the development

of computer programs to be used both for teaching purposes
at our school and for practical applications by consulting
structural engineers.

2. BACKGROUND HISTORY; THE PROGRAM STRESS

In early 1964 a magnetic tape with the source code of the
program STRESS was sent to us from the Massachusetts Institute
of Technology. After two years of efforts a modified version
of the program was installed on the main computer of our school
and a course for practising engineers was announced. We had,
however, so many inscriptions that a second course in 1967 had
to be held bringing the total attendance to nearly 600 engineers,
a very large number for Switzerland. The programm STRESS has been
used ever since for teaching purposes at both Federal Institutes
of Technology in Zurich and Lausanne and found wide acceptance
among Swiss consulting engineers. It certainly contributed very
much to the spread and to the understanding of computer methods
in structural engineering in Switzerland.

The main reason for this success is due to the fact that STRESS

was the first finite element program specially designed for
civil engineering applications with limited but clearly defined
objectives: it can handle only linear elastic frames and trusses
which is what most structural engineers not only need but also
clearly understand; it does not attempt to design anything which,
even today, would be a rather hopeless objective for a general
purpose program; is is easy to use due to its simple problem-
oriented input language which in many cases allows the preparation

of new inputs just by extrapolation from old ones without
having to study each time the user's manual, a big advantage
specially for sporadic users.

The developments which took place at the MIT after STRESS are
well known: the much publicized ICES project failed to attain
many of the extremely ambitious and clearly utopian objectives
that were set and was finally abandoned at the MIT. ICES,
however, specially in Europe, had some offsprings like the
"integrated" (whatever that means) systems GENESIS in England, ITS
in Germany or SYSFAP in Belgium and it would be interesting to
hear some comments on such programs from people directly
involved in their development and use. The writer is rather
skeptical toward such integrated systems, unless the word "integrated"

is used in a restrictive sense meaning a series of programs
for a specific application (like highway design) where the output

of a program serves as input for its successor and not in

his original ICES sense meaning a number of programs for totally
different applications (like survey, structural analysis

and project management) all working on the same data base
describing the object to be designed and built in very general,
application independent terms.

3. STRESS'S SUCCESSOR; THE PROGRAM STATIK

After STRESS our group was involved in basic finite element
research which led, of course, to many programs for personal use
but also to two programs for general use: a program called
PLATTE for linear elastic plate bending analysis where, for
the first time, syntax diagrams for input description, as
explained later, were used as well as extensive graphical
output of results (e.g. contour lines of bending moments
envelopes) and a program called FLASH for plate bending, plate
stretching and shall analysis. The program FLASH is today
regularly used for teaching purposes and has also become quite
popular among Swiss consulting engineers being efficient and
very easy to use. However, the points we want to make in this
paper are probably best understood if we consider the criteria
which led to the latest and largest of our programs: the
program STATIK.

Although the STRESS program was a success, we were quite
unhappy with it during many years: it was very inefficient
(which many users never noticed as they never tried to analyse
large structures); it has never been completely error-free
mainly due to the unnecessarily complicated internal data
organization making it extremely difficult to find programming
errors; it could only handle prestressing in a very primitive
way; it had no graphical output, no restart capabilities, etc.
Finally, we decided to write a new state-of-the-art program to
be used directly by Swiss consulting engineers assuming from
them very much the same degree of competence as needed for
STRESS and handling the same kind of everyday's relatively
simple design problems. With a total effort of approximately
5 to 6 man-years the program STATIK was then developed according

to the following criteria.
When using STATIK no difficulty should arise concerning the
mathematical model used, i.e. only those problems are to be
handled where an exact solution for a clear and well understood
approximation of reality is possible. This requirement excludes
all kind of nonlinear, dynamic and two-or threedimensional problems

where the choice of the element mesh has an influence on
results. STATIK can only handle linear elastic framed structures
under statical loads as well as different kinds of cross section
calculations. Much attention was paid to the load case prestress
ing. We also tried (and it is not yet clear if it is relly being

used) to implement some simple design procedures for pre-
stressed and non prestressed symmetric reinforced concrete cross
sections.

18

Input preparation should be very easy also for relatively
inexperienced sporadic users who are only supposed to read a

very short user's manual (48 pages including examples and
appendices) once. This is achieved by using so-called syntax
diagrams for defining and describing in a very concise and
clear way the problem-oriented, free format input language
of the program. Figures 1 to 4 show some of these syntax
diagrams. They are easily understood observing a few simple
rules: the sequence of input data is found by following the
arrows; a thick stroke corresponds to the beginning of an
input statement, a triangle to its end; the first letter of
the upper case words has to be punched on cards or typed on
a terminal as it is; lower case words are identifiers referring

to numerical or nonnumerical problem data to be specified;
what is written between brackets can be left out, etc. The
syntax diagram showing the overall structure of the program
consisting of seven different modules ("QUERSCHNITT PROGRAMM"

to "AUSGABE VON EINFLUSSLINIEN") is given in fig. 1. Fig. 2
shows the syntax diagram of one of these modules ("STRUKTURELLE

EINGABE") used for specifying the structural input data
of very general three-dimensional space frames with straight
and curved members. Fig. 3 shows the syntax diagram of the
program module "RESULTAT AUSGABE" used for requesting numerical

and graphical output of results. A similar syntax diagram
of the program FLASH for the input of structural data for
very general continuous plane and space structures is given
in Fig. 4. Syntax diagrams have proved to be an extremely useful

tool not only for describing input languages (they are also
becoming a standard tool for describing and defining programming
languages, e.g. the syntax of the new ANSI-standard FDRTRAN77
is defined by means of similar so-called railroad diagrams),
but also because they immediately show what a program can do.
Today, we consider them an indispensable feature of all
programs written for general use.

Input echo and numerical output of the program STATIK appear
on numbered pages of standard format (A4) with one or two
headlines at each page which are generally used for the name and
address of the consulting firm using the program. Printer
control characters are not used as they are not understood by most
terminals. Such details are mentionened here because they are
very welcomed by practising engineers and also because they
complicate programming considerably.

The Program STATIK has extensive graphical output capabilities.
In all cases the drawing area is assumed to be 37 x 27 cm which
corresponds to the screen size of the large storage tube
Tektronix terminals. In fact, the STATIK program produces a graphic
file which can be viewed directly on such terminals, a postprocessor

being necessary to obtain the same drawing in any size
on a plotter or on any other graphic device. Figures 5 to 8

show some of these drawings.

19

The program STATIK is written in FORTRAN for a large CDC Cyber
Computer with a conversational remote job entry system (not a

time-sharing system). It is specially designed to be used
from remote terminals connected by telephone. This has the
advantage of requiring only minimal fixed hardware investments
from the user: a cheap alphanumeric terminal is all it is
needed at least to start with. Later, a faster printer, a

graphic terminal possibly with a hard-copy unit or a small
plotter can be added to improve speed and user's comfort.

The program STATIK, if requested, automatically saves all
problem data at the end of the last program module executed.
The computations for a specific object can therefore take
place in any number of subsequent jobs being possible to
change problem data at any time and to execute program modules
in any order. Some kind of interactive "computer aided design"
is therefore possible. It should be noted, however, that
interaction between the program and its user takes place at
the level of subsequent, often very short jobs, and not at
the level of each single line of input text as this is the
case when using a time-sharing system. In fact, we think
that for most structural engineering applications time-sharing
would be an unnecessary luxury.

In October 1977, a course on the programs STATIK and FLASH
with an attendance of approximately 250 civil engineers was
held. It is too early to know if the success we had with
STRESS can be repeated. Among our students, however, STATIK
has been intensively used since nearly two years for all kinds
of applications (sometimes without any specific theoretical
background knowledge) becoming quite popular indeed.

Of course, as always when a program has been written, there
are some features of STATIK we are not so happy about today.
We also had some critics.
Some think that university employees should stick to research
work instead of writing commercial programs like STATIK. Our
answer is that the efforts leading to programs like STATIK
are indeed to be considered research work, not in the field
of structural analysis of course, but in the field of computer
science. In fact, we did our best to solve the interface problem

between the computer and its users just like conventional
computer scientist do, for different problems and different
users, when they develop, say, a new programming language.
Our goals, however, are only attained when many peoples use
our programs as an instrument for their professional activities

which is only possible in a commercial environment.

It would be very much in line with our purposes to have STATIK
run on relatively small computers as it could then be made
available to many more users (e.g. a PDP 11/60 would certainly
be powerful enough for most applications). We must admit,
however, that we made a mistake experienced programmers should
not make: in order to improve efficiency we introduced many

20

machine dependent features greatly impairing program portability.
Although STATIK is completely written in FORTRAN it would
certainly be an extremely long and tedious task to develop today
a general, machine independent version of the program.

Graphical output was planned having in mind Tektronix storage
tube terminals combined with hard-copy units as we thought
such terminals will have a great future being relatively cheap
and easy to connect to a large computer using asyncronous low-
spead (300 to 1200 Baud] data transfer. Today, we are not so
sure about this anymore. In fact, inexpensive small plotters
working in the same way already exist and recent advances in
microcomputer technology may soon make graphical refresh
terminals with a high level of built-in intelligence easily available.

However, the advent of new graphic terminals will not
really impair the use of the program STATIK being a simple
task to have the program produce a hardware independent
instead of a Tektronix-oriented graphical file. Postprocessors
are then used to produce graphical output on different hardware

units (this solution was already implemented in one
version of the program STATIK running in a large computing center
in Zurich].

Quite contrary to many other programs who use English for
input and output (e.g. STRESS), STATIK and FLASH use German.
Rather provincial reasons led us to this choice as we really
did not want our programs to be used from people living too
far away from us, whose problems, habits and level of competence

we do not understand too well. We were also somehow
afraid of the maintenance problems arising when too many
versions of the program are running in different places.
Unfortunately, Switzerland is a multi-lingual country, and we
already had to hear the complaints of our collègues at the Swiss
Federal Institute of Technology in Lausanne who would be much
happier with French versions of the programs.

4. FURTHER DEVELOPMENTS AND CONCLUSIONS

No further development of our programs FLASH and STATIK are
planned as this would contrast with the objectives we pursued
with them. However, we certainly want to pursue similar objectives

in the future for different classes of problems and
assuming from our users a different level of competence. Graduate
studies leading to something else then a Ph. D. degree shall
be introduced soon at our school which will also have a direct
influence on our activities. In fact, we feel that there is
ample room for computer scientists involved with practical
Computer applications to try to span the gap between the real
needs of today's structural engineering and much of the
sometimes brilliant but often isolated university research work.

General conclusions shall not be drawn here, the "case history"
presented being rather intended to raise questions than to
anwer them. However, as a kind of summary, some of these questions

shall be given hereinafter.
Does a classification of programs distinguishing programs for
more or less personal use, programs requiring specialists help
and programs to be used directly clarify the situation How
should a programmer take into account the way his program will
be used

What is the influence of local conditions like those given for
Switzerland on the development of computer applications to
structural engineering in different countries

In which circumstances can integrated systems be useful

What can be done in order to make the use of a program, i.e. the
preparation of input data and the interpretation of results,
as easy as possible In which cases is this of primary importance

How can computer-aided design procedures be helpful in every-
day's structural design work What kind of an interaction between

the engineer responsible for the design and the computer
is needed Can automatic optimum design programs be useful
for structural engineering applications
What will be the influence of recent advances in computer
technology like the proliferation of minicomputers to be used
both off-line and in-line with a host computer

What should civil engineering students learn in order to be
able to use such new instruments properly

It is hoped that such questions will help to clarify the interface
problems we are concerned with in this colloquium and lead

to useful and more general discussions.

Notice : The User's Manuals of the computerprograms STATIK and
FLASH can be obtained from the Institut für Baustatik
und Konstruktion, ETH-Hönggerberg, 8093 Zürich, Switzerland

22

PROGRAMM STATIK
GENERELLER ABLAUF

(DATENFILE name') (GRAPHISCHES (AUSGABEFILE) 'name')

ERSTE TITELKARTE (60 KOLONNEN WERDEN BERUECKSICHTIGT) -

ZWEITE TITELKARTE (60 KOLONNEN WERDEN BERUECKSICHTIGT) —

QUERSCHNITTS PROGRAMM

STRUKTURELLE EINGABEE LICHE)j_ (RAHMEN).

-VORSPANNKABEL EINGABE

LASTEN EINGABE

LOESUNG (DES) GLEICHUNGSSYSTEMS

I-RESULTAT AUSGABE

AUSGABE (VON) EINFLUSSLINIEN

siehe detaillierte Eingabeschemas
zu den einzelnen Programmteilen

* ENDE

Abkürzung für Integer - Listen :

r BIS i (SCHRITT n)-|
{ 1 } •nUP"CM T^KschritT n BIS (-» '-y

wobei I * q : Querschnittsnummer i * v : Vorspannkabelnummer

• k : Knotennummer • l : Lastfallnummer

s : Stabnummer • j : Wandelementnummer

Fig. 1: Syntax diagram showing the overall structure of the program
STATIK consisting of seven program modules callable in any
order after specifying problem files and output headlines.
The syntax of integer input lists used in subsequent
diagrams is also shown.

23

STRUKTURELLE EINGABE {RAEUMLICHE RAHMEN)

G

G
--#TAEBEt{s} ©-KNOTEN konf k,n<„ (kkrtj,) (PLUS n)

- - (STAEBE

ANZAHL (KNOTEN) nkn (ANZAHL STAEBE) n$t

(KNOTEN){k} ©- (KOORDINATEN) x y4 1 ' i-KREIS(DURCH) x y (ZU) xyt-|
L (ZWISCHENKNOTEN BEI)

\LY-J< >
r

[-(ALLE VERSCHIEBUNGSPARAMETER)

A rVERSCHIEBUNG -|(2)- LAGER- -A Kv"-y /"-ROTATION 1 Lz.
(FEDERSTEIRGK. f)7

"-LOESEN-
V

(3)-ORIENTIERUNG (OER VERSCH. PARAM.)-!^ 1,1 k* I—4
L X. V. Z. X. V. Z.J*» Yt h X« y« *«J

J
pVEKTOR—1

k° k,_)-.
©-ORIENTIERUNG-^ L*i *t »i"1 L

T L*iniiKri A
1

V
-WINKEL ß

-ANFANG- r
(6)- EXZENTRIZITAET^r*^Nto"I (dx dy) dz

—^ p4

|- ANFANG -1 rVERSCHIEBUNG-1 I" X"

ENDE—"^-ROTATION 1

^ L z
J ^(h-GELENK-

- FIXIEREN -

(©-MATERIAL emodul gmodul

©-QUERSCHNITT-^'
(KONSTANT) q (PLUS n)

VARIABEL (ANF.) q0 ENDE Iq« (PLUS

V
(Ä)_TYP-rAKT,v—uW L- INAKTIV—1

V
ZEICHNUNG (DES SYSTEMS) ((MIT) STABNUMMERN) ((MIT) KNOTENNUMMERN)

[-(BLICKRICHTUNG x y z)-T<ALLE SE®E)~
T- STAEBE {s} —

• • • •

Fig. 2: Syntax diagram of the program STATIK for the input of
structural data for space frames.

24

* RESULTAT AUSGABE

-(BELASTUNG) - I (foktor) -

lastspez,f,katk)nen-{_(GRENZWERTE).
J- ((foktor) —y

(w)
ODER-
PLUS-

«

GRENZWERTE-

NORM ALKRAFT—

-QUERKRAFT f —
-QUERKRAFT (Z)—

-TORSIONSMOMENT-

-MOMENT (Y)

-MOMENT Z

(IN) n (SCHNITTEN PRO STAB)

(MAXIMALER SCHNITTABSTAND) d -

BEI (X*) T T
NUR (ZWAENGUNGSBEANSPRUCHUNGEN BEI VORSPANNLASTEN)

SCHNITTKRAEFTE ((MIT) ZEICHNUNG) ((UND) WANDSPANNUNGEN) —j

<

r (ALLE STAEBE EINZELN)-

(EINZELNE) STAEBE {»} -

(STAB-) REIHE {s}

VERSCHIEBUNGEN

AUFLAGERKRAEFTE

—I r (ALLE KNOTEN)-!

P-J MKNOTEN) {*} —r

-4

-4

ZEICHNUNG ((MIT) KNOTENNUMMERN) (VERGROESSERUNGSFAKTOR f)

r(ALLE STAEBE)-!
-(ZW. PUNKTE (PRO STAB) n) (BLICKRICHTUNG* y z -4 —4

-(STAEBE) {»}

^ t • t •

Fig. 3: Syntax diagram of the program STATIK for requesting
numerical and graphical output of results.

25

EINGABESCHEMA ZUM PROGRAMM1 FLASH

/>J p (KNOTEN) k (KOORDINATEN x (y (z (PLUS dx dy dz)) (KNOTEN) {k})
-—-BOGEN k,-^^ZENTRUM-Q*(y^z))J- MIT n (ZWISCHENKNOTEN) { k}

M LMATR|x m n (KNOTEN) k dm3dn (KOORDINATEN x y z 1

lPLUS dxm(dym (dzm)) UND dxn(dyn(dzn)) (FAKTOREN-^- fm-y-UND7- fn —
*
-(ISOTROP) [emodul v] dicke

y\

\y

\s

BEGINN
KONTROLLE
NEUE
ZUSAETZLICHE—1 (LASTFAELLE) — @
AUSGABE — (ß)
GRENZWERTE — ©

TITEL DES PROBLEMS (MAX. 80 ZEICHEN

— nkn nel net ((SCHEIBENMODELL) i)
EBENER (SPANNUNGSZUSTAND)
EBENER VERZERRUNGSZUSTAND—

- PLATTE
SCHALE

L ORTHOTROP ' s s s s. 1 1 n n n
ïï

n n
'iJ~(FEDERKONSTANTE f)-

Un MU KUr ,S„ S2J Sjj S,.,, p„ pj2 PM p^ PM p^,

- EXZENTRIZITAET ez—1

- STAB [emodul gmodul] fx fy fz ix iy] iz —(- ^

L WIE t'

-TYP{t}

(ELEMENT) e (KNOTEN) k, k2 k, (k4) (TYP t) (PLUS d (ELEMENTE) {e}
STABELEMENT e (KNOTEN) k, k2 k' (TYP t) (PLUS d, d2 (ELEMENTE) {e}

j [-DIFFERENZ dm dn-|L matrix m n (EL.) e (KN.) k, k2 k3 k4 (TYP t Y-H^tert^,^
(TYP) t0 (te d ELEMENTE {e}

~~~—

^ rFi-rF¥FLi^FirFirFi-i r ELEMENT e—
N^N-^N-r^N-n-NJLN-Tll-fROTATION+k, k2 k' - (KNOTEN {k}

y Lc, c2 c, I c4 c5 c6 }J LX) yt Zt „2 y2 z2V
-ZEICHNUNG faktor BLICKRICHTUNG x y z

-K-H"IL-KEINE (ZEICHNUNG)

Fig. 4: Syntax diagram of the program FLASH for the input of
structural data for plates and shells.



26

Fig. 5: Graphical output of normal-force bending-moment interac¬
tion for a reinforced concrete prestressed cross section.

Fig. 6: Graphical output of prestressing cable geometry and
friction losses.



STMNEIHE I-GfiENZWEFTE FftLl -ZZ* BE J sP 1£L PflfcUlU jCHEP PhUfEN

X N OY 02 an Taa MY HZ * N QY 02 as Ta» NY HZ
0.ÛÛ MU 2131. -8. 60. 130. -0. -219, 33.38 HRX 2611. -3. -16. 133. 249. 45.
Ü.00 HIN 1323. a. S3. -153. -0. 269. 96.61 HJN 2110. 1. -395. -139. -1078. 65.

12. >40 MIN 2646. i. 363. -219. -661. -1. 110.05 fWX 1269. -2. -71. 2S0. -0. 35.

27

srmnciHC Hr-GKNZicnie full -zz« BEISPIEL BBEUnLICtlER RUBREN

X « 0.00 17.00 42.40 90.90 96.64 206.9) 131.92 140.05

X N OY 02 T aaHYaa M2 X N OY QZ T aaHYaa HZ
17.00 MIX 1193. CL -4. -3. BS9. 19. 96.64 MIN 2415. 9. 399. 19. -1632. 76.
12.40 HIN 2437. -2. 432. -34, -169Û. -3. 106.9] HIN 1176. 9. 64. -39. -1224. 26.
70.90 NU 2256. -2. 1. -34. 1306. 43. 131.92 MIX 1121. S. -29. 106. 636. -IIS.

Fig. 7: Graphical output of torsional- und bending-moment envelopes.

Fig. 8: Graphical output of the displaced shape of a multistory
space frame.



Leere Seite
Blank page
Page vide


	Statik: a computer program for everyday's structural engineering applications

