
Readability of design programs

Autor(en): Alcock, Donald

Objekttyp: Article

Zeitschrift: IABSE reports of the working commissions = Rapports des
commissions de travail AIPC = IVBH Berichte der
Arbeitskommissionen

Band (Jahr): 31 (1978)

Persistenter Link: https://doi.org/10.5169/seals-24921

PDF erstellt am: 09.08.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-24921

III. 1

IA B S E COLLOQUIUM on:
A I P C "INTERFACE BETWEEN COMPUTING AND DESIGN IN STRUCTURAL ENGINEERING"
I V B H August 30, 31 - September 1, 1978 - ISMES - BERGAMO (ITALY)

Readability of Design Programs

Lisibilité des programmes de calcul

Ablesung von Planungs Programmen

DONALD ALCOCK

MA, MS, MICE, FIStructE, FBCS

Alcock Shearing & Partners

Redhill, Surrey, England

Summary
Computer programs are being used to determine dimensions of structural members

and details of reinforcement in engineering structures. Yet it is seldom
possible for a design engineer to discover from a user's manual how such a pro
gram reaches these decisions for which he, the engineer, is ultimately responsible.

This paper proposes a notation called 3 R for describing computer
programs in a way that could make their logic intelligible not only to programmers
but also to design engineers less familiar with software.

Résumé
Les programmes d'ordinateur sont utilisés pour déterminer les dimensions des
éléments de structure et leurs liaisons. Néanmois, un ingénieur d' études peut
rarement découvrir dans un manuel d' utilisateur comment un tel programme
aboutit aux décisions pour lesquelles il est lui-même responsable en fin de com
pte. Ce rapport propose donc la notation 3 R pour décrire des programmes d'or
dinateur de façon à en rendre la logique intelligible non seulement aux programmeurs

mais aussi aux ingénieurs d'études moins familiarisés avec les programmes.

Zusammenfassung
Computer-Programme werden für die Ermittlung von Dimensionen von Bauteilen
und Angaben von Verstärkungen im Maschinenbau gebraucht. Es ist jedoch selten
für einen Bauingenieur möglich aus einem Anwendungs-Handbuch herauszufinden
wie ein solches Programm Entscheidungen trifft, für welche er als Ingenieur let
zten Endes verantwortlich ist. Dieser Bericht schlügt ein System vorgenannt
3 R - welches Computer Programme auf solche Weise beschreibt, dass darin
enthaltene Logik nich nur dem Programmierer verständlich ist, sondern auch
dem Bauingenieur, der weniger mit Software vertraut ist.

III. 2

1. INTRODUCTION

If a bridge collapses because it was badly designed the consulting engineer is held
responsible - whether the faulty calculations were Made by incompetent eMployees or
by conputer. The legal problen is to prove the design, not the construction, was to
blane - but if proof is possible the consulting engineer's insurance conpany has to
pay up.

That is not necessarily the end of the story. Suppose the consulting engineer had
based his bad design on the output of some proprietory program offered by a conputer
bureau? And if the bureau had offered use of the program on behalf of some other
conpany then the bureau, in turn, would seek recompense fron that conpany. It would
be difficult because the author would maintain his program had been misapplied (a
factor over which he could have no control) and point to the pile of rubble as
evidence. Uhatever the financial outcome and legal consequences of such a case, the
problen posed here is that of a structural engineer injudiciously using results
generated by a "black box".

The blackness of such boxes is exanined in this paper, and a notation presented by
neans of which the logic of design programs could be clearly described - thereby
reducing the opacity of potentially dangerous black boxes.

2. DESIGN BY COMPUTER

Uhen computers were first used by structural engineers the only ready-made programs
were limited in scope to simple analysis. The structural designer would check his
results to ensure, for exanple, that reactions balanced applied loads; then he would
work out areas of reinforcenent and devise details of structural connections in the
traditional way. The structural designer did not need to know much about the inner
workings of the prograns he used, but things have happened to change the picture.
First the advance in analytical techniques (such as finite-element analysis) has made
a conputer indispensable and manual checking practically impossible; secondly, the
computer is now used to decide the dimensions of structural members, details of
connections, and precise sizes and arrangements of reinforcement.

2.1 Using Existing Programs

Despite the dangers of allowing a conputer program to take this kind of decision it
is inevitable that nore and nore consulting engineers will be compelled to do so.
Design by conputer is cheaper than traditional methods; failing to take advantage nay
nean going out of business. But feu structural designers have the tine or expertise
to write their own design prograns so most will have no choice but rely on those
written by specialists. There will be ever more specialization because junior
designers, being directed by their seniors to use existing design prograns, will miss
experience that would otherwise give then skill and judgement in the design process,
hence the abilty to specify their own design prograns.

There would be nothing wrong with a specialist writing a design program for other
designers to use if only those designers knew precisely how the program reached its
decisions, but the evidence is that they do not.

Uhat information can a structural engineer get about a design program? Usually just
its user's nanual. This should tell hin how to specify a problem by preparing data
for punched cards or typing at a terninal of a computer. It should also explain how
to interpret results produced by the program, and it should explain clearly what
engineering assumptions the program makes and by what logic the program selects sizes
and dimensions, but this kind of information is often lacking.

III. 3

2.2 Experiences with sone Design Programs

The Design Office Consortiun CI I, with the author as consultant, recently evaluated
sone publicly available prograns for the design of reinforced concrete beans
according to British Standard Code of Practice CP110. All prograns had users'
nanuals which explained clearly enough how to prepare data, but given an identical
design problen they produced anazingly different solutions. In a typical cross
section the area of steel considered necessary by one progran was several tines that
specified by another.

Except for one progran (in which nistakes were found and subsequently corrected by
the progran's originators) no progran seriously defied Code of Practice CPHM; the
enornous variance was pernissible under the code. Yet fron reading the users'
nanuals there were few clues to suggest the solutions would be different; a designer
night reasonably have assuned all seven prograns would design nuch the sane bean. In
other words the users' nanuals lacked fundanental infornation.

2.3 Inadequacy of Iafornation

It is not unknown for design prograns to have no users' nanuals at all; the designer
gets a few rough notes, or perhaps a denonstration at a terninal to show how the
progran "asks" for everything it wants. More connonly a user's nanual exists, but -
like those describing the bean design prograns nentionod above - it fails to explain
fully how the progran roaches decisions. Those secrets are concealed in the
progranner's docunentation which the user is not allowed to seo - or which would be
unintelligible if seen. Often there is no progranner's docunentation either, the
secrets lying buried in the progranner's head. But still such prograns are used by
designers - and structures built according to their results.

How, then, is a structural engiaeer to discover what a design progran does? One
answer nay be that he can't. If a progranner does not want anyone else to know how
his progran works then potential users have little hope of finding out - and had best
not use his prograns because of the dangers described earlier. But if a progranner
does want to connunicate ideas to his fellow nan he will do so; in words, by flow
charts, or other neans. On the other hand it is not easy for hin to do so because of
the gulf of expertise between an engineer who specializes in writing design prograns
and the practical designer who does not.

The next section of this paper introduces the idea of a notation for describing
conputer prograns and designed to help span the gulf referred to above.

3. BIRTH OF A NOTATION

The author's firn was connissioned by the Besign Office Consortiun to write a
conputer progran for calculating adjustnents to fees payable to building contractors
as influenced by certain Indices published nonthly by the Bepartneat of the
Environnent. This progran is called FORPA 121. The connission was unusual in that
the progran was to run with nininal alteration on different nakes of conputer so that
FORPA could be locally Maintained wherever installed.

The traditional approach to such a problen would be to publish flow charts,
specifications and listings. In this case, however, it was decided to devise a
notation by which to describe prograns generally - then publish a description of
FQRPA written in this notation together with a realization of FORPA transcribed fron
the notation into Fortran. This was done, and an identical Fortran realization runs
today on several different nakes of conputer. Currently an APL realization is being
transcribed.

III. 4

The notation was designed to help in reading programs, writing then, and describing
their arithmetic processes. Because reading, writing and arithmetic are called (in
colloquial English) "the three R's" the notation has been given the name 3R.

3.1 Development of the Notation

Although 3R was devised with a United ain - to describe the logic of FORPA to
programmers and users alike - the notation was felt to have greater potential.
Accordingly the Property Services Agency of the Department of the Environnent
commissioned the author's firm to assist in preparing a proposal 131 for the further
development of 3R in cooperation with members of the C.I.B, working party, U32. The
ain would be to refine and develop 3R and use it to describe substantial programs in
the field of building design, thereby making the logic of decision processes in those
programs intelligible to designers as well as progranners.

Concurrently (and from the point of view of software experts rather than building
designers) 3R was presented by its designer, Brian Shearing, at a Seminar at Oxford
University under the chairmanship of Prof. C. A. R. Hoare. Although some aspects
of 3R were found wanting its reception was enthusiastic.

3.2 Relationship with Programming Languages

It is emphasized that 3R is a notation; not another programming language. It is
possible to use 3R to describe a program in enough detail for a programmer to
transcribe that program into a programming language, and for a potentail user of that
program to comprehend its logic. Nevertheless 3R does have things in common with
programming languages and may even be thought of as a "common factor" of common
languages. For example, 3R has an assignment statement because most languages have
assignment statements; 3R is not recursive because not all common langauges are
recursive; and so on. Accordingly there is nothing in 3R to deal uith
machine-dependent details; where these crop up the 3R description has to break into
human language.

4. A BRIEF EXPLANATION OF 3R

The 3R notation is simple. Although space forbids full definition, little detail is
omitted in the following explanation of the notation as used to describe FORPA 123.

4.1 Overall Structure

A program described in 3R notation is a sequence of lines of text interspersed uith
blank lines for clarity. A line starting at the left margin is commentary. An
indented line is called a "statement" and forms part of the 3R description, but may
still include commentary enclosed in curly brackets.

"Uords" of the notation are written in capital letters. "Names" - invented by the
person describing a program - are written in small letters, several words being
allowed in each name.

Logical flow is generally from one statement to the next until the final one, FINISH.
But it is possible to parcel groups of statements into named "blocks" and put these
anywhere in the text of a program without altering its logical flou - which simply
"passes by" the definition of any block encountered. Definition has the forms

LET example block BE

-(sequence of statements)
END OF example block

III. 5

Writing the nana of such a block in the nain program - as though tha nana wer« a
statement - is called "invoking" a block. It implies logical replacement of the name

by the sequence of statements in the block so named. A block may be invoked not only
from the main program but also from within another block, and that from within
another, and so on indefinitely - provided that no block is invoked recursively as a
result.

Although logical flow nay be "nested" to any depth as just described there nay be ne
textual nesting of blocks with consequent privacy of an enclosed block to its
enclosing block); in 3R notation all blocks are at the same level. Likewise there
is no nesting of loops or conditional statements - the effect of nesting is achieved
by writing one or more "blocklets" within a block as explained later. The structure
of programs described in 3R notation is constrained to be simple and linear so that a
reader has only one level of thought to contend with at a time.

Communication between a block and the invoking piece of program is by arguments or
shared variables or both. This is explained later.

4.2 Variables and Assignments

Variables must be declared before being referred to (not necessarily at the beginning
of a program or block) and may have their range specified. In the examples below
"colour" may take only three scalar values "red", "white" or "blue"; "number ef file"
may take any integral value from t to 99; "total number ef files" only the value 99.
Character variables have their limit of length specified as illustrated by "name of
file" which nay not contain more than six characters.

VARIABLE colour IS red OS white OR blue
VARIABLE number of file IS t..99
INVARIABLE total number of files IS 99
VARIABLE name of file IS CHARACTER**

Conventional real and integer variables may also be declared. And variables may be
subscripted, in which case the ranges of subscripts must be specified.

VARIABLE stiffness matrix C1..3M,1..5fl IS REAL
VARIABLE list of six titles El..A3 IS CHARACTERS

Variables declared in the main program are accessible to the main program and every
block. Variables declared inside a block are private to that block.

Assignment to a variable is indicated by an equals sign. The expression on the right
nay involve symbols ,-,*,/, (exponentiate by an integral power) in the conventional
way. There nay be several assignments separated by semicolons on the same line.

stiffness matrix Ii,j3 -fector*nodulus*inertia/(lengthtpower)
colour * red; name of file * colour * "man"

The operator, in character operations denotes concatenation; the nana of file
above would become "redman".

There are two special operators, 1IV and HOI, for use in non-negative integer
expressions. These yeild an integral result, and integral remainder, of a divisions

integral result - numerator DIV denominator
integral remainder numerator HOB denominator

whereas the operator, /, always yields a real result. Otherwise "mixed node" is not
catered for, but special blocks nay be assumed which are capable of converting from
one node to another. An example is:

III. 6

x real fron integer (i)
ilhen trantcoded fron 3R into a progranning language such a statenent would often
becone the unadorned statenent "X I". But the description of the progran in the 3R

notation is explicit and assunes no inplicit operations.

4.3 Control Btatenents and Blocklets

An endless loop is denoted by a sequence of statenents sanduiched between the words
REPEAT and A6AIN. To leave a loop (transfer to the statenent innediately following
the word A6AIN) one of the statenents in the loop nay be the word IIHILE or UNTIL
followed by a Boolean condition.

REPEAT
< optional sequence of statenents}

UNTIL i > j { or UHILE i <= j >

{optional sequence of statenents}
AGAIN

There is only one way to describe a choice of logical pathways in 3R notation - and
when specifiying any choice all other possibilities nust be explicitly catered for.
The statenent OTHERWISE FAIL is obligatory. An illustration of a choice between two
pathways isi

IF x < y
< statenents to apply if x < y >

IF x > y
{ statenents to apply if x > y >

OTHERWISE FAIL { in this exanple x y inplies failure }

Separate pathways join again innediately after OTHERUISE FAIL. The null statenent,
PASS, is used is cases where no statenents are needed oa a pathway.

The design of this statenent is based on Dijkstra's "guarded connands" 141 and chosen
in preference to the unsynnetrical and ubiquitous IF..THEN..ELSE. Although it nay
seen unnecessarily arduous to enunerate every possible result of every condition,
doing so has been found salutory - preventing nistakes that would otherwise have
crept into prograns. And certainly the person who transcribes fron a 3R description
enjoys the certainty of all cases having been considered.

Execution of the statenent, FAIL, inplies the "status" of the progran becones
invalid. In every progran described in 3R notation lies the concept of its current
status being valid or invalid. Status starts as valid, but becones invalid if the
logical flow neets the word FAIL or an inconsistency such as a subscript out of
range. The idea behind the concept of status is to provide a tidy nechanisn for
terninating prograns in error. By preceding certain statenents with the word TEST,
and consulting two special Boolean variables VALID and INVALID, status nay be tested
and the result acted upon.

TEST elenent vector Cil
IF VALID

PASS

IF INVALID { etc.}

Testing an invalid status revalidates it. It is possible to induce the status to be

invalid again by a FAIL statenent. Unfortunately there is not enough space to
discuss the nechanisn of status nore fully.

III. 7

Ac stated earlier, loops nay not be nested - nor nay choice. Uithin a block,
however, the effect of neeting nay be achieved by naning - heace invoking - an inner
structure as a "blocklet", then defining that blocklet. The first such definition is
introduced by the word UHERE; subsequent ones by AND UHERE.

REPEAT

i « i + 1

UNTIL i > t*
inner nest

A6AIN

UHERE ianer nest IS
J 8 •
REPEAT

j » j 1

UNTIL j > 1«
inaernost loop

AUAIN

ANN UHERE inaernost loop IS { etc. >

All blocklets are written before the final END OF statenent of their enclosing block.
Any blocklet nay access the variables declared within its enclosing block as well
as those declared in the nain progran) so there is no concept of "argunents" to
blocklets as there is to blocks, as now explained.

4.4 Argunents, Input t Output

Additional connunicatioa is possible by invoking a block with "argunents". These
argunents are interspersed anong the words of the block's nane to help the reader.

#The following blockt

LET stress at face of nenber BE

VARIABLE ARBUHENT a IS REAL

INVARIABLE ARGUHENT s IS top OR botton
INVARIABLE ARGUMENT n IS INTEUER

{ sequence of statenents >

ENB OF stress at face of nenber

could be invoked fron the nain progran, or fron aaother block, as:

f stress at (top) face of nenber (4)

where the actual argunents f, top, A replace dunny argunents a, s, a respectively.
All dunny argunents nust be declared either VARIABLE or INVARIABLE as shown.

Argunents nay be declared not oaly in blocks but also in the nain progran. This is
the neans of connunication between the progran being described and its environnent.
The progran's input is declared as a set of invariable argunents; its output as a set
of variable argunents.

INVARIABLE ARGUHENT keyboardtt. .1HN1 IS CHARACTER* 1

VARIABLE AR6UHENT disk filetl.. 1 ••«, 1..1UM1 IS REAL
INVARIABLE AR6UHENT punched cardCt ..tHUUl IS CHARACTER*»

III. 8

S. AN EXAMPLE 3R PR06RAM

Th* first progran to be described in 3R notation was a sinple word-processing
progran. This was subsequently transcribed into BASIC < one day's effort by Irian
Shearing and is the progran by which the photographic Masters of this paper were
produced. Space does not pernit reproduction of the word-processing progran itself
but the following exanple taken fron an earlier paper E31 illustrates its style of
docunentation.

Following this exanple there is a reproduction of the stateneats of the progran with
connentary renoved autonatically by the word-processing systen then a realization
of the progran in Fortran and another in BASIC.

5.1 A progran for searching, described in 3R

The block of progran below is designed to search for a given value in a pre-sorted
table of values. If a natch is found, the position of the value within the table is
to be delivered. If no natch is found, the block is to fail.
The following exanple would set the status of execution INVALIB if the value were not
fould in tabled l..tableCnl, but would set j if "value" were found in tableCjl.

TEST j find (value! in first (n) words of (table)

The progran to achieve the above exanple is as follows.

LET find in first words of IE
VARIABLE ARGUMENT j IS 1..10I0
INVARIABLE ARGUMENT value IS INTEGER
INVARIABLE ARGUMENT n IS 1..1Iif
INVARIABLE ARGUMENT tabled.. 11001 IS INTE6ER

Because the values in the table are sorted the nethod of "binary searching" can be
used whereby the range of values considered is repeatedly halved until a natch is
found. During the search the range of values to be inspected is
tabletfirstl..tableClastl. The initial range is the full table.

VARIABLE first IS 1..1I00
first 1

VARIABLE last IS t..1100
last n

The nain part of the block keeps searching until a natch is found.

REPEAT

choose a value for j
UNTIL tableCjl value

adjust the range
AGAIN

UHERE choose a value for j IS

Assuning a fairly regular distribution of values in the table, the position to be
inspected fron the table is chosen to be that in the niddle of the current range.

j first + last DIV 2

III. 9

AND IIHERE adjust the range IS

If the value just inspected exceeds the given value then the neu range is the louer
half of the current range.

IF tableEj] > value
< first renains unchanged. >

last 1 j - t

If the inspected value is less than the given value then the neu range is the upper
half of the current range.

IF tableCj3 < value
first j + 1

< last renains unchanged. >

The blocklet "adjust the range" cannot be entered if table!j3 is equal to the value.

OTHERWISE FAIL < conputer failure >

Before resuning the nain loop, "first" is checked not to have overlapped "last"
indicating that the value is not in the table or that the table is not properly
sorted!

IF first <= last
PASS

OTHERWISE FAIL

END of find in first words of

3.2 The 3R Code uithout connents interspersed

LET find in first words of BE

VARIABLE ARGUMENT j IS 1..1000
INVARIABLE ARGUMENT value IS INTEGER
INVARIABLE ARGUMENT n IS 1..1MD
INVARIABLE ARGUMENT tabled..11003 IS INTE6ER

VARIABLE first IS 1..1I00
first « 1

VARIABLE last IS 1..1I0D
last n

REPEAT

choose a value for j
UNTIL tableCj] value

adjust the range
AGAIN

WHERE choose a value for j IS

j first + last DIV 2

AND UHERE adjust the range IS

III. 10

IF tableljl > value
-C first renains unchanged. }
last j - 1

IF tableCjl < value
first j + 1

< last resains unchanged. >

OTHERWISE FAIL t conputer failure >

IF first <= last
PASS

OTHERWISE FAIL

ENB OF find in first words of

5.3 Transcriptian fron 3R into Fortran.........and BASIC

1«

20

30

LOGICAL FUHCTIOM FINB(J,VALUE,N,TABLE) 1000

tltl
RETURNS .TRUE. WITH J SET IF AT TABLE(J) 1020
RETURNS .FALSE. IF NOT FOUND IN TABLEI1..N). 1030

INTEGER J, VALUE, N, TABLE<10f0> 104«
INTE6ER FIRST, LAST IBS«

FIRST >1 1*4»
LAST N 1170
J - (FIRST LAST)/2 1180
IF (TABLE(J) .NE. VALUE) 60T0 2# 1«90
FIND « .TRUE. 110*
GOTO 3* 1110
IF (TABLE(J) .GT. VALUE) LAST=J-1 1120
IF (TABLE(J) .LT. VALUE) FIRST=J+1 1130
IF (FIRST .LE. LAST) GOTO 10 1140
FIND - .FALSE. 1150
RETURN IIA«

END 117«

BIN 1(100«)
REN
REN SET N AND V, THEN GOSUB 1050
REN IF V AT T(J) THEN R 1,
REN IF V NOT IN T(1..N) THEN R=«
LET F 1

N

INT((F+L)/2)
<> V THEN 1110
1

LET L
LET J »

IF T(J)
LET R

GOTO 1170
IF T(J) <» V THEN 114*
LET L * J - 1

GOTO 115«
LET F * J 1

IF F <= L THEN 1»70
LET R «

RETURN

REFERENCES

t. Conputer Prograns for Continuous Beans - CP110, Design Office Consortiun,
Canbridge, 1978

2. FORPA Conputer Progran, Fornula Price Adjustnent for Building Contracts,
Design Office Consortiun, Canbridge, 1978

3. 3R - A Notation for Describing Conputer Prograns, Property Services Agency,
Departnent of the Environnent, London, 1978

4. Dijkstra, E.W., A Discipline of Progranning, Prentice-Hall, 1974

	Readability of design programs

