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Analyse inélastique de la structure asismique des refends en béton armé - Un essai
pour obtenir la formule modèle mathématique pour le béton armé -

Inelastische Berechnung von erdbebenfesten Stahlbetonwandkonstruktionen -

Modellierung von Stahlbetonmaterialien -

NOBUAKI SHIRAI TOSHIO SATO
Assistant Professor
Department of Architecture, College of Science and Technology, Nihon University,
Tokyo, Japan

SUMMARY
A finite element formulation capable of clarifying inelastic behavior of reinforced
concrete shear wall structures is presented. Inelastic effects such as tensile cracking
of concrete, nonlinear stress-strain response of concrete and steel, bond between steel
and concrete, aggregate interlock between cracked concrete surfaces and dowel
action of reinforcing bars are considered and particular attention is given to a
constitutive modelling of these effects which have an important effect upon hysteresis
characteristics of reinforced concrete structures. Finally, an incremental self-correcting
approach used as a numerical procedure is briefly explained.

RÉSUMÉ
On présente une .formule par la méthode des éléments finis capable d'éclairer le
comportement inélastique de la structure asismique des refends en béton armé.
Compte tenu des effets inélastiques tels que de la fissuration dans le béton due à la
traction, de la contrainte non-linéaire et de la réponse de déformation du béton et de
l'acier, de l'adhérence entre l'acier et l'armature, de l'effet d'engrènement des faces en
béton fissurées et de l'effet goujon, plus particulièrement on a essayé d'obtenir la
formule modèle mathématique de constitution desdits effets qui donnent une grande
influence sur les caractéristiques d'hystérésis des structures en béton armé.
Finalement, on explique en bref le mode d'accès auto-correction incrémental employé
comme un procédé numérique.

ZUSAMMENFASSUNG
Es wird eine Formel nach der Methode der finiten Elemente zur Klärung des
inelastischen Verhaltens von erdbebenfesten Stahlbetonwandkonstruktionen
präsentiert. Es werden inelastische Effekte wie Zugrissbildung im Beton, nichtlineare
Spannungsdehnungslinie von Beton und Stahl, Verbund zwischen Stahl und Beton,
Rissverzahnung zwischen Betonrissoberflächen, Dübelwirkung des Armierungsstahls
betrachtet. Der Modellierung dieser Effekte, die eine wichtige Auswirkung auf die
Hysteresecharakteristiken von Stahlbetonkonstruktionen haben, wird besondere
Aufmerksamkeit gewidmet. Abschliessend wird kurz eine inkrementelle,
selbstkorrigierende Methode erläutert, die als numerische Analysemethode verwendet
wurde.
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1. INTRODUCTION

The reinforced concrete shear strucrure is a structural system being composed of
columns, beams and wall panels and is the most efficient earthquake resistant
element. Therefore, it is necessary for investigating inelastic behaviors of
reinforced concrete shear wall structures subjected to cyclic loads such as
seismic forces to consider all sorts of inelastic effects including cyclic
behaviors. Attempts to model inelastic effects have been carried out by many
investigators so far, but it is felt that simple and effective models for a
finite element formulation have not been proposed yet.

The inelastic effects included in this paper are l)brittle fracture of concrete
(tensile cracking), 2)nonlinear stress-strain response of concrete and steel,
3)bond between concrete and reinforcing bar, 4)aggregate interlock and 5)dowel
action. Particularly, the bond model based upon a new concept of bond
behaviors and the modelling of aggregate interlock and dowel action evaluated as
equivalent shear moduli by introducing crack spacing and width are described in
detail.

An incremental initial stress approach or an incremental self-correcting
approach which is able to minimize computational time is used as a numerical
procedure and here the latter approach, which has not been applied materially
nonlinear problems, is briefly explained.

2. MATERIAL IDEALIZATION

Reinforced Concrete is a composite material being made of concrete and steel,
and mechanical properties of each component material are idealized as follows.

2.1 Concrete

Uncracked concrete is assumed as a homogeneous isotropic material, and on the
other hand cracked concrete is considered to be anisotropic and capable of
resisting normal stress parallel to average crack direction.
The uniaxial stress-strain relationship for uncracked concrete is assumed to be
elasto-plastic of tri-linear type including strain-softening with a negative
slope in compression, and elastic up until to the tensile strength and thereafter

concrete changes to a brittle material as shown in Fig.l. In order to
simulate compressive behaviors, the yield criterion for plasticity in compression

is assumed of either the Von-Mises's formula[l] or the Drucker-Prager's
formula[l] and associated flow rule(see Section 3.1),

F A, .0 + A..Ö A, (2.1)1 m 2 J

where a. - <o, + ay + ob>/3 - f s2 + S2 + s* ,/j + ^ + x2/'2. V V a,. x^,
Tyz> Tzx: the stress components in the orthogonal coordinates X, Y and Z ; S^, Sy,
S : the deviatoric stresses of CT_» °v < o and the coefficients * «Ad A, are

defined in Table 1.
7

The fracture criterion of Mohr-Coulomb[l] is applied to tensile failure in order
to take a reduction of tensile strength due to lateral compressive stresses into
consideration,

F =(fc-ft)(om - äsin<f>//3)/(fc+ft) + öcos (j> - fcft/(fC+ft) 0 (2,2)

where " "j" 8in_1[-3^-J3/2a3] With -t/6 £ * <"/6 ; J3 - S)[SySz + 2txyTyzTzx - - SyX2x

- ; fc: the uniaxial compressive strength; and ft : the uniaxial tensile
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Fig.l Uniaxial Stress-Strain
Relationship for Concrete
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Table 1. Coefficients for Yield Criteria
Tfrld Criterion Ai Ax As

Wem — Mise« 0 /T lYOOl

Drucker - Prager 3a 1 K

Fig.3 Assumed Cracking Modes

a - 2»ln8//3(3-sin0) ; K - 6Cco»0//3(3-sln0) ;

Y(k): the critical points of nnlarlal stress on the

trlllnear curve and k * 1, 2 and 3 ; 8: the angle of
friction ; and C: the cohesion.

strength. Fig.2 shows the assumed fracture and yield surfaces in the two-
dimensional principal stress plane. The direction of concrete cracks is
defined to be perpendicular to principal tensile stress in uncracked concrete just
prior to crack formation. In order to be able to pursue behaviors under cyclic

loading excursions, six different cracking modes[2] representing the opening
and closing of cracks are considered in the present study as shown in Fig.3.

2.2 Steel Reinforcement

The reinforcing bar is regarded as one-dimensional continuous medium in which
the area of reinforcing bar distributes uniformly within any concrete element
and therefore it is in uniaxial stress state. The stress-strain relationship
for reinforcing bar is assumed to be elasto-plastic of bi-linear type with the
strain-hardening effect as shown in Fig.4.
The subscripts of 0, E, etc. in the left hand side shall indicate the corresponding

materials, and the subscript s is used for steel and c for concrete is
omitted in this paper.
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3. MATERIAL STIFFNESS FORMULATION

The material stiffness for reinforced concrete is assumed to be obtained by a
linear superposition of component stiffnesses of concrete, reinforcing bar, bond

aggregate interlock and dowel ation to be bescribed below.

3.1 Concrete

The material stiffness for elastic uncracked concrete shall follow Hooke's Law
for plane stress in an isotropic material. The relation between the
incremental stress A{a} and the incremental strain A{e} for palstic uncracked
concrete was derived on the basis of the Theory of Plasticity along with the yield
conditions defined in Eq.(2.1) and associated flow rule[3],

A{o} ([D] [D] )A{e} [D] A{e}
p ep

(3.1)

where [D]e :the elastic matrix for concrete; : the elasto-plastic matrix and
the plastic matrix [D]p for plane stress is defined as follows,

[D],
E2

(1 U2)2 H'+

11

SYM.

12

22

13

23 (3.2)

33y

F E[2A2/9(1- u) + a A A,/3(l- u)ä +{a3 + 2(1- u)J,}A2/4S2a (1-u2)]
1 ml/ m J 2 m

d12 ~ D1D2 d13 ~ D1D3 ' d23 D2D3'

D2 (1+ u)A1/3 + (LiSx+ Sy)A2/2ä

dll ~ D1 ' d22 D2 ' d33 D3 '
(1+ U)Ax/3 + (Sx+ USy)A2/23

D3 (1" U)TxyV2*
where E : the initial Young's modulus ; U : the Poisson's ratio ; H' " AY/Aep.for
the Von-Mises's formula and (1-/3Ô) AT/Aep for the Drucker-Prager ' s formula ;
AY : the increment of uniaxial yield stress ; and AeD : the increment of uniaxial

plastic strain.

Cracked concrete is subjected to the normal stress au parallel to crack directions
and thus the uniaxial stress-strain relation in the U-direction, as indi-
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Fig.5 Idealization for Cracked
Concrete Element

S

Fig.6 Idealization for
Steel Element

cated in Fig.5, is written as follows,

o Ee
u u

with Y(l)<au<ft (3.3)

If the crack direction makes an angle of @cr with the X-axis, the stiffness
matrix in the local coordinates U,V is converted into that in the global coordinates

X,Y by using a appropriate transformation[2],

<°x> " [D]cr{£x} (3.4)

in which

[Dl

T T{a } {a a x } {e } {e e y } and
x x y xy x x y xy/ 4 2 2 3 N

cos 0 cos 0 sin 0 cos 0 sin0er er er er cr
sin

SYM.

cos0 sin 0
cr cr

2 2
cos 0 sin 0

cr cr

(3.5)

The stiffness formulation for cracked concrete in the plastic range(öu^Y(k)
where k 1, 2 and 3) is to be done in the same way as the case for elastic
cracked concrete(Y(l) au ft) by using the tangential moduli Etl and Et2 on
the uniaxial stress-strain curve corresponding to the strain induced in the
crack direction instead of E in Eq.(3.5).

3.2 Steel Reinforcement

Since the reinforcing bar is one-dimensional element, a derivation of the elastic
stiffness matrix for reinforcing bar inclined by an angle of s0 with the X-

axis is similar to the case of cracked concrete. The stress-strain relation
for reinforcing bar in the X-direction, as indicated in Fig.6, is written as
follows by assuming the compatibility of deformation,

a_ p-. Ee-
s x rx s x

p- A-/A
x sx

with - a <" a~ y asy2isxN,sy
(3.7)

(3.6)

where sE : the Young's modulus of steel ; sAx : the area of one bar reinforced
in the X -direction ; A : the cross sectional area of concrete between reinforcing

bars ; and hereafter the subscript s shall indicate steel.
The stiffness matrix of Eq.(3.6) in the global coordinates X,Y takes the following

form[2],
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in which

[D]
s e

(a }
X

p-. Erx s

[D] (e }
s e x (3.8)

2 2
cos 0sin £

s s

sin^ 0

SYM.

cos asm ö
s s

cos 0sin3 0
s s
2 2

cos 0sin £
s s

(3.9)

The stiffness formulation for reinforcing bar in the plastic range is to be done
in the same way as the case for reinforcing bar in the elastic range by using
the tangential Young's modulus sEst on the stress-strain curve corresponding to
the strain instead of SE in Eq.(3.9).

3.3 Bond between Concrete and Steel Reinforcement

It has been already known that bond between concrete and reinforcing bar after
crack formation gives some resistance to concrete(tension stiffening effect) and

its resistance gradually deteriorates with an increase in number of cracks, that
is, an increase of strain as shown in Fig.7[4 and 5].
Reffering to experimental results on tensile bond tests[4 and 5],bond effect was
replaced by the equivalent stress which indicates the nominal concrete stress,
without idealizing it into the discrete element such as the linkage element, and
the equivalent stress due to bond is modelled as shown in Fig.8.
It is assumed that the equivalent stress under monotonie loading is represented
by the 3rd orders of polynomial function,

-ff< 0

with
x,eq

0 < 0_
2b. x,eq 2b t

X (e_ - £„_ )/(e

+ ajX + a2X2 + a3X3)

<f^ e: < e
er \ <e-

cr Bu

x -i Bu
and (3.10)

where ,eq tjie equivalent stress (kg/cm^) of concrete in the reinforcing direction
X and the subscript eq indicates an equivalence to the stress G, T, etc.;

ex (°r sex): the average strain of concrete(or reinforcing bar) in the X-direc-
the cracking strain ; £gu: the strain at which bond over the elementtion ; £

length disappears; and the coefficients aQ,
-0.906 respectively.

«2 and a3 are 1.0, -2.748, 2.654 and

u 10

;o.a

0.6
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Average Strain Relation
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Furthermore, the hysteresis for unloading from an arbitrary point A on the curve
of Eq.(3.10) was assumed on the basis of a line AC connecting a point A(Oa ,Ea)
and a point C(ßft 0) on the zero-strain axis as follows,

.for region AB (ab < a->eq < a&

a_
X, eq

E (e_- e )+ a
eq x a a

E aE
qe

a (a + f )/Eeat a
(3.11)

where Eeq: the equivalent Young's modulus(kg/cm and the equivalent stress
CT^ of the point B is set equal to an average of 0^ and ü

.for region BC (ß.ft < aS)6q < ab>

CT_ E .£_ + ß.f
x,eq eq x t

e, (ßf,. - CT )/2aE + e
b t a a

E (a - ßf )/2e,
eq a t b

ß - 0.5
(3.12)

Nextly, the hysteresis for reloading from a point C or C, where C is an
arbitrary point in the compression range, takes either a path(C-> D -»A) before the
closing of cracks or a path(C'-* 0-*-A) after the closing of cracks,

•for regi°n CD (ßft <°->eq <ad

a_ E e_ + ßf
x,eq eq x t E a.E

eq
(3.13)

where the equivalent stress CTd of a point D is set equal to an average of CTa and
CTc-

.for region DA (o, / o_ / a6 d A x,eq \ a

CT_ E (£_ - E + CT

x,eq eq x a a

for region OA 0 C a- <? a
x,eq X a

E (CT - ßf / 2e,
eq a t b (3.14)

CT_ E £_
x,eq eq x

E CT / E
eq a a

(3.15)

The equivalent stress °x,eqdefined in the above is converted into the stresses
a;,eq,0y,eq,Txy,eq' :*-n t'ie ort^ogonal coordinates X,Y as follows,

/ \ r
2 9 \ / N

a cos 0 sin 0 -2cos 0sin 0 G_
x,eq s s s s x,eq

J <7 sin^ 0
2 Qcos 0 2cos 0sin 0

< 0 > (3.16)
1 y.eq * — s s s s

cos 0sin 0 -cos 0sin 0
2 n 2 Q 0a cos 0- sin 0

xy,eq s s s s s s

\ / \ / \ /
3.4 Equivalent Shear Stiffness due to Aggregate Interlock

In order to evaluate the shear stress induced along cracked surfaces of concrete
due to aggregate interlock after crack formation, Paulay et al.[6] conducted the
test on aggregate interlock whose variable factors were concrete strength and
crack width, and proposed the shear stress-relative displacement relation.
However, since their predicting equation gives a rather high evaluation, it is
modified to the following,

Tuv eql=(°"141/W "1,0) (i*526/^ -7.365) (5g -0.0436W) (3.17)

where the shear stress acting along cracked surfaces of concrete(kg/cm^) ;
W : the crack width(cm) ; 6S : the relative displacement across cracked surfaces
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Fig.9 Assumed Shear Strain for Cracked Concrete
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(cm) ; and the subscript s in the right hand side indicates slip.
The strain of cracked concrete Yuv is considered to be a sum of the elastic
shear strain and the shear strain due to the relative displacement as shown in
Fig.9,

y T /G + 6 /e
uv uv s (3.18)

where G : the elastic shear modulus (kg/cm^) ; xuv ' the elastic shear stress in
the local coordinates U,V(kg/cm2) ; and e : the crack spacing(cm).
Assuming that the first term in Eq.(3.18) can be negligible as compared with the
second term, then Eq.(3.18) can be reduced to,

Y„ ,/ with Yyl^|Yuvl<YBl (3.19)

Substituting Eq.(3.19) into Eq.(3.17) and arranging it, then the following
equivalent shear stress-strain relation is derived (see Fig.10),

Tuv,eql Geql^Yuv |YylP Y 0.0436W/eyi
Geql (0.141/W - 1.0)(1.526|F" - 7.365)e

(3.20)

where Geql " 0 for "Yyl£Yuv <Yyl ; Tuv,eql : the equivalent shear stress(kg/cm^) ;

Geql : the equivalent shear stiffness(kg/cm^) ; and Yyl: the shear strain at
which aggregate interlock becomes effective.
The limit shear strain at which aggregate interlock disappears is assumed as
follows on the basis of the experimental result[6],
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YB1 (0.01799 + 4.1857W)/e (3.21)

The equivalent shear stiffness of cracked concrete becomes maximum when crack
just occurs and is roughly equal to 0.1 E.
Now, the equivalent shear stress in the local coordinates^,V defined in the
above is converted into the stresses {o -, a„ -, t in the global coor-
dinates X,Y as follows,

\
x.eql

y.eqla

^
xy.eql

/ 2pcos 6

cr

sin

cos

\-2cos0 sin0cr cr
2cos0 sin0cr cr

/ \

uv.eql^

(3.23)

cos0 sin0 -cos© sin0 cos 0 -sin 0
cr cr cr cr cr cr\ /

Fig.11 shows the reduction of shear modulus due to cracking which is evaluated
from Eq.(3.20) and those which have been used by different investigators[7], and
a discrepancy among them is considerable, ranging from ablout 40 to 3 percents
for very wide cracks. Fig.12 shows a comparison between the equivalent shear
stress-strain relation calculated from Eq.(3.20) and that observed by the experiment

(6] for several crack widths and constant concrete strength.

3.5 Equivalent Shear Stiffness due to Dowel Action

Dulacscka[8] conducted the dowel test whose variable factors were concrete strength

and diameter and angle of reinforcing bar, and he proposed the relative
displacement-dowel force relation,

-6
6 A (358T /d/T x 10

s y c

A (T/T )ytan[(T/T (tt/2) ]

(3.24)

(3.25)

T 0.2D CT

y s y
{^?sin + pf /0.03 CT - psin 0 }scr c sy scr (3.26)

p - l - (.o/8oy) Ty : the dowel strength of one reinforcing bar(kg) ; Twhere jthe dowel force(kg) ; sct : the steel stress(kg/cm^) ; sOy : the yield stress of
steel(kg/cm2) ; D : the diameter of reinforcing bar(cm); and s^cr : the angle
between the axis perpendicular to the crack direction and the reinforcing bar.

A in Eq.(3.25) is a function of the non-dimensional dowel force T/Ty and gives
the curve as shown in Fig.13. This curve is approximated by the elasto-
palstic relation,

.for elastic case T/T a.A
y

(3.27)

T/Ty

10

0B

06

04 //
02

00cn*
Fig.13 Non-Dimensionized Dowel

Force Curve Fig.14 Idealization for Dowel Force
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.for plastic case ;

T/Ty 1.0 (3.27)

where a indicates the elastic
slope and is set equal to 0.2.

In the next place, in order to
evaluate the equivalent shear
stiffness due to dowel action,
the dowel force is replaced by
the equivalent shear stress
as shown in Fig.14,

T =p_Tcos 9 /A (3.28)uv,eq2 x s er s

Geq2/G
0.06

Fig.15 Equivalent Shear Stiffness due to
Dowel Action

Substituting Eqs.(3.19), (3.27)
and (3.28) into Eq.(3.24) and arranging it, then the following equivalent shear
stress-strain relation is obtained,

.for elastic case (lYuvKv >

1 S G Y
uv,eq2 eq2 uv

eq2

.for plastic case (Iy

(a.D/F.e.p-c

(Tuv,eq2|

(V r 358T;

y c

uvl z* ^v2

p_.T cos

x 10/358 A

(3.29)

- / A
s er sx y

x 10~6/ct.Dyf~
(3.30)

A transformation of the equivalent ^îear stress u»,eq2in the U,V-coordinate
system to that ^°x>eq2' °y,eq2' Txy,eq2^ x>Y-coor(îinate system is to be done
in the same way as Eq.(3.23). *

The relation between ratios Geq2'G of equivalent
shear stiffnesses Geq2 of Eq.(3.29) to the elastic shear stiffness G and

angles s9cr of reinforcing bars is plotted in Fig.15 for several steel ratios,
and it is found that an effect of dowel action is relatively small.

4. CRACK SPACING AND CRACK WIDTH

It is necessary for evaluating aggregate interlock and dowel action described
in the previous section and also checking up the opening and closing of cracks
in cyclic analysis to determine crack spacing and width.
Morita et al.[9] found from their own experiment that there was a linear
relationship between average minmum crack spacing emiri an<^ ratios D/p of bar
diameters D to steel ratios p. Thus, assuming that when steel yields average
crack spacing eav becomes emin, the equation predicting is proposed,

e- 0.1476 + 0.19.D/P- + 0.0023/ e- (4.1)
X f 3.V X SX

where eS,«v indicates average crack spacing in the reinforcing direction X, and
note that this is a nominal crack spacing for any one of cracked concrete
element.

Fig.16 shows a comparison between crack spacings of the experiment[10, 11 and
12] and those calculated from Eq.(4.1) for sevearl ratios D/p, and they have
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some scatters at low stress levels but they fairely agree to each other with an
increase of steel stresses.
Fig.17 shows plots of experimental crack spacings[9, 11, 12 and 13] against
calculated values by Eq.(4.1) and it can be seen that although a discrepancy between

them exists for big crack spacings, they coincide as crack spacings become
smaller.

In the next place, a derivation of crack width based upon the conventional bond
theory is presented. The slip increment dS over the interval dX is generally
defined as a difference between elongations of concrete and reinforcing bar, and
assuming that concrete strain after crack formation is negligible as compared
with steel strain, then the slip is approximately expressed as follows,

S(x) =J* ge(x)dx (4.2)

The maximum slip is obtained from Eq.(4.2) as follows, provided that distributions
of steel strain and slip over crack spacing e are given as shown in Fig.18,
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re/2

J 0
e(x)dx (4.3)

Therefore, crack width W is defined as a function of maximum slip Smax and steel
strain s£max at the cracking part,

W 2.S (1 + £
max s max (4.4)

However, it is hard to evaluate Smax since strain distribution of reinforcing
bar along its length is unknown, so the average strain aE; defined in Section
3.3 is adopted in this paper. But since strain at the cracking part is
included in this average strain, it needs to redefine the net average strain
excluding that strain,

e-' e_ - W-( e - e_ )/esx sx x s max s x -- (4.5)

Thus, Smax is derived by using Eq.(4.5) instead of se(x) in Eq.(4.3) as follows,

(4.6)

An introduction of Eq.(4.6) into Eq.(4.4) results in the following crack width,

S e. e_/2 - W-( e - e_ )/2max s x x s max s x

where

W- e. e_(l + e )/{l + (1 + e e - e-)} (4.7)x sx s max s max s max s x
e e_ + a_ /p_. E

s max sx x,eq x s

Fig.19 shows plots of experimental crack widths observed in the tensile test
(black circles)[13] and the flexural test of beams[ll and 12] against calculated
values by Eq.(4.7).

Although the proposed equations for crack spacing and width give an evaluation
on each reinforcing direction, it is useful from an analytical point of view to
define crack spacings and widths normal to crack directions.
Consider the general case in which concrete is reinforced in the orthogonal
directions X,Y.
Letting es,av' ey,av' "x an®' Wy average crack spacings and crack widths evaluated
by Eq.(4.1) and (4.7), then the average crack spacing eav perpendicular to the
crack direction shall be either smaller one between the following two equations
(see Fig.20),

Fig.20 Representation of Crack
Spacing

Fig.21 Representation of Crack
Width
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e e_ cos 6 or e e_ sin 0 (4.8)av x,av s er av y,av s er
and crack width normal to the crack direction is given as follows(see Fig.21),

W W.cos(0 - 0
s er (4.9)

W / W- + W? 6 tan 1(w_/w_)
V x y ' y ' x'

5. NUMERICAL PROCEDURE

5.1 Finite Element

In order to improve accuracy and reduce number of degrees of freedom, the
composite element with four nodes and eight degrees of freedom is developed from
four constant strain quadrilaterals with nine nodes and eighteen degrees of
freedom through the conventional condensation process as shown in Fig. 22 and we
refer this to as the Super Element[14].

5.2 Solution Procedure

An incremental initial stress approach or an incremental self-correcting
approach is used to solve governing nonlinear equations. However, the latter
approach is suitable from a viewpoint of a stability and a computational time
when cyclic behaviors are to be followed.
Now, the incremental self-correcting approach proposed by Stricklin et al.[15]
in which a nonlinear analysis is performed by using the initial stiffness all
over the computaional process without iterations is briefly described.
According to this approach, the incremental deflection A{5} is calculated from
the following equations for materially nonlinear problems,

A{6} [KQ]-1 (AP{P) + A{Qp) + AP.Z {f} (5.1)

(f} -[K0]{6} + P{P} + {Qp} (5.2)

where {f}: the force in unbalance induced by the deflection {6} which does not
satisfy equilibrium ; [Kg] : the initial stiffness ; {Q } : the fictitious load
due to material nonlinearities ; P : the load parameter''; {?} : the normalized
load vector ; Z : the correcting factor ; and APZ is conventionally set equal
to 1.2.
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