Software engineering aspects of flexible
structural analysis systems

Autor(en): De Witte, Frits C. / Kusters, Ger M.A.

Objekttyp: Article

Zeitschrift: IABSE reports of the working commissions = Rapports des
commissions de travail AIPC = IVBH Berichte der
Arbeitskommissionen

Band (Jahr): 34 (1981)

PDF erstellt am: 11.09.2024

Persistenter Link: https://doi.org/10.5169/seals-26908

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.

Die auf der Plattform e-periodica vero6ffentlichten Dokumente stehen fir nicht-kommerzielle Zwecke in
Lehre und Forschung sowie fiir die private Nutzung frei zur Verfiigung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot kbnnen zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veroffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverstandnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewabhr fir Vollstandigkeit oder Richtigkeit. Es wird keine Haftung
Ubernommen fiir Schaden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch fur Inhalte Dritter, die tUber dieses Angebot
zuganglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zirich, Ramistrasse 101, 8092 Zirich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-26908

463

Software Engineering Aspects of Flexible Structural Analysis Systems
Des aspects "software” pour des systémes flexibles d’'analyse des structures

Software-Aspekte von flexiblen Konstruktionsrechensystemen

FRITS C. DEWITTE GER M.A. KUSTERS

Research engineer Research engineer

IBBC-TNO, Software-engineering dpt. IBBC-TNO, Software-engineering dpt.
Rijswijk, Holland ‘ Riiswijk, Holland

SUMMARY

This paper stresses the need for and presents a flexible computer system for structural analysis.
Especially in the field of Research and Development modifications should be easily to deal with.
Guidelines for the implementation of such a flexible system include: Use a highly modular
program architecture, separate logical and physical data structures and separate the control
structure from the rest of the system. Two examples, retated to non-linear FEM-analysis, are
given to demonstrate that this approach, indeed, leads to a flexible system.

RESUME

Dans cette publication I'importance et la réalisation du développement des systemes flexibles
pour I'analyse structurelle sont accentuées. Surtout dans un domaine de Recherche et
Développement ii est avantageux que les modifications peuvent étre traitées facilement.
Comment assurer le "software” a jour et vivant dans un tel domaine? La réponse donnée dans
ce rapport est triple: appliquez une architecture de programme d’'une conception bien modulaire,
séparez des structures de data logiques et physiques, séparez la structure controlée du reste du
systéme. On donne deux exemples, concernant la méthode des éléments finis, qui démontrent
que cette méthode résulte dans un systeme flexible.

ZUSAMMENFASSUNG

In dieser Abhandlung werden die Bedeutung und die Realisierung der Entwicklung flexibler
Konstruktionsrechensysteme betont. Besonders auf dem Gebiet der Forschung und Entwicklung
mussen Verdanderungen bericksichtigt werden kénnen. Die Frage ist wie man die "software”
lebendig und neuzeitlich halten kann unter solchen Umstdnden. Die Antwort in diesem Berichte
bezieht sich auf drie Hinsichten: verwende eine weit in Modulen entwickelte Programm-
architektur, trenne logische und physische Datastrukturen und trenne das Steuerungssystem von
den Ubrigen Systemen. Zwei Anwendungsbeispiele in Bezug auf die nicht-lineare Finite-
Elemente-Analyse werden dargestellt um zu erlautern dass diese Methode zu einem flexiblen
Systeme tihrt.

464 SOFTWARE ASPECTS OF FLEXIBLE ANALYSIS SYSTEMS

1.0 IMTROOUCTION
1«1 Environment 0f Use

The agpects of software engineering described in this paper are very
much related to R&D-user environments in general and that of the

authgrs in particular.

The latter is the Software Engineering Dept. of a R&D institute in
the field of Structural Analysis and Material Behaviour. As computer
simulation nowadays is an essential part of this research the support
of an engineering analysis system based an the finite element method (
FEM) is necessary..

4.2 Requirements

As research is, by nature, related to non-standard problems the systam
should be well suited for modification and extension in order teo
achieve easy adaptation to the non—-standard problems on hand. This
requirement is called Flexibility.

The need for flexibility not only stems from R&D in material- and
structural bpehaviogur but also from developments in numerical analysis
{ new methods)}, scftware engineering (languages, coperating systems)
and hardware (memary sizes, mini- and micro-camputers).

Flexibility guards the integrity and consistency of the system.
Without that. maintenance costs and unreliability will frustrate its

use.

With respect to the D of R&D an important requirement for software
systems is Portability €11, because ocf the fact that results of
research should be available on different hardware configurations,
both for customers and in-hcuse use.

Some additional requirements for application software in general and
R&D-software in particular are Efficiency - i.e. a miner locad for the

hardware - and User-friendlyness - i.ae, a minor load for the user - .

Some ten years ago we had toc decide, considering the above-mentioned
requirements, either to wuse one {(or more } of the existing and
commercial available FEM-gsoftware systeams or to develop our aown
system, Mainly because of the fact that the existing systems were not
flexible enough we decided to develop our own FEM-software package (¢
called DIANA for Dlsplacement method ANAlyser). 1In this paper we
describe some Scftware Engineering problems, mainly with respect &0
the (flexibility requirement, and how these were soplved during the de-
velopment of DIAMA.

q‘ F.C. DE WITTE - G M.A. KUSTERS 465

2.0 IMPLEMENTATION LANGUAGE

The first problem is the choice of the programming language. For
DIANA FORTRAN-IV was chosen as the system implementation language
mainly because of the general availability of compilers and pro-
qrammers for this language. Unfortunately this language is not very
suitable for the develocpment of flexible software systams. The main
}ack‘s are:

o‘ Not well suited for realisation of a modular systems
architecture

a Poor data-management facilities

So special care had to be taken abaut these shart-commings. Same
aspects related to it will now be describad.

3.0 SYSTEMS ARCHITECTURE

A modular architecture is very important for large software systams.
Modularity means that specific functions in the system, for instance
the solution of the system of equations, are performed in specific
parts of the preogram, called modules. Each module "M" has a clearly
defined function and further-more a communication ‘intecface’ "i* to
other madules o¢f the system for exchange of data. This architecture

is shown in fig. 1.

Figure 1

It is clear that the implementatien of the performance of a module may
be c¢hanged as long as the communication interfaces remain unaltered.
It is possible, for instance, to change the solution methed for the
system of equations, without changing the other modules. This is the
first step towards flexibility.

A

466 SOFTWARE ASPECTS OF FLEXIBLE ANALYSIS SYSTEMS

Problems with the architecture as shown in fig. 1 may arise when the
number of modules increases. When each module of the system has its
own interface to the other modules it is very difficult to connect new
modules to the system. Many new interfaces have to be defined in that

case.

A solution of this problem is to define one interface for the whole
system and to connect all the modules to this interface. The
interface separates the data {rom the modules of the system as shown

in fig. 2.

The data separated in this way may be called a database. The system
modules communicate with the database via the interface, which may be
considered as a database management system.

In DIAMA we follcwed the approach as indicated in fig. 2. We will
now describe the architecture of the DIANA system in more detail.

T.g Modules

From the Users point of view the system is divided into Mgdulss. Each
Module pecforms a specific type of analysis. FRor instance:

. Module SOLVE for the solution of the system of eguations.

. Module MOMLIN for Physical and Geometrical non-=linear ana-
- lysis.

. Module SHOCK for dynamic analysis using direet time-inte-
gration,

The end=-user activates a certain Module by a special command, followed
by problem oriented Module-commands.

5‘ F.C. DE WITTE - G.M.A. KUSTERS 467

3.2 Segments

Frcm the system’s paint of view Modulss are built up frocm what are

called GCegments. Segments perform a specific function in a Module,
for instance Segment DECOMP in Mecdule SOLVE for decampaosition of the
system of equations. Each Module contains a special Segment for

intarpretation of the commands which are specific f{or that Module.
For reasons of flexibility each Segment is linked independently fram
all other Segments and is in fact a stand-alone program f{or the

computer.

In Fortran—terms a Segment consists of a Main-program and a number of
Subroutines (and Funetions). These routines are functicnally
collected in two groups:

1. Routines to perform a task specific for the Segment.

2. More general routines, to perfaorm ¢tasks which may be
applicable in various Segments. These routines are assembled
in Service Libraries, which are specified by ¢the preogrammer
during ¢the Link—-process of each Segnent. For instance
Service Libraries do exist for:

. Data-management
« Matrix end vector multiplication
« Text manipulation.

The architecture described garantees a highly flexible software tool
for R& in the field of FEM-analysis. The standard versions of the
Segments may be used as a tgol-kit for FEM-programmers. However, they
may adapt the system to their own needs by creating experimental
versions of one or more Segments, without the need to Link the whole
DIaNA-system. A special command can be supplied, specifying the
alternative version~name of the Segment. This feature is extremely
usefull during develcopment and implementation of new applications and
theecries in FEM-analysis.

Unfortunately some disadvantages are inherent to the concapt of inde-
pendently Linked Segments:

1. A large number of Segments have to be controled, i.e. to be
loaded in the computer for execution in a specific sequence.
This may need a large number of machine-dependent Job=-Control
statements, whereas special control structures as LOCPS and
JUMPS may be even impossible on some machines.

2. Segments can only communicate via hbackground storage. This
may cause a large amount of data in the database which is
very intensively accessed during the calculations. So

special care has to be taken about the data management, beoth
logical (for reasons of flexibility > and physical ¢ for
reasons of efiiciency) .

In the next two sections we will describe how these two problems were

468 SOFTWARE ASPECTS OF FLEXIBLE ANALYSIS SYSTEMS

solved during the development of the DIANA-system.

4.0 CONTROL STRUCTURE
Two main aspects are related to the control of a DIANA-jab:

1. The end-user likes ¢to control the system by means of
commands, related the problem he wants to solve (user~
~commands).

2. The DlANA-system can only control the lcading and execution
of the Segments (caontrol-commands).

In some cases a conflict occurs between these two aspects. Fer
instance, using the Module NONLIN to execute the next 5 loadsteps in a
noen—-linear analysis the user would give a command like:

EXECUTE 5 LOAD STEPS
while the control of the Segments would be samething like:

LOOP 5 TIMES |
"LOAD SEGMENT INISTEP OF MODULE NONLIN®
“LOAD SEGMENT OF MODULE SOLVE"
“_0AD SEGMENT

END LQOOP
In this case the user—-command has to be intarpreted and expanded into

several control-commands. We now describe how this process warks in
the DIANA-system.

4.1 User Commands

The user activates the DIANA control-system by a single (machine
dependent) Job=Cantrol statement, like:

SRUN DIANA for VAX/VMS, or:
$3DIANA for HARRIS/Vulcan, =te.

Next he supplies a module command indicating the Madule he is going to
use:

*NONLIN for the Module NONLIN.

The DIAMA control-system now activates the command intsrpretcor Segment
af the appropriate Module. This interpretor scans the :module
dependent userc-commands including parameters ete. that follow the
module command, for instance:

F.C. DE WITTE - G.M.A. KUSTERS 469

EXECUTE 5 LOAD STEPS
SIZE 1.2(5) "Five equal sized staps of t.2"
PERFORM NEWTON=-RAPHSON MI=10 "Max. 10 eguilib. iterations"

Commands are interpreted and checked on correct syntax until the next
module command or a special ’‘end’ command:

*END

1f no errors are detected the interpretor generates the necessary
control-commands.

4,2 Control Commands

The generated control-commands are stored in the database. These
commands exists o©of a list (the gcommand=list ?, containing the names
of the DIANA Segments toc be loaded for axecution. Special commands

are generated if it is necessary to execute the Segments conditionally
(JUMP) or more than once (LOCP, END LOOP). Some examples will be
given later on.

FIGURE 3. DIANA Control structure and Data
flow.

When all user-commands are interpreted and all contrel-commands gene-
rated, the first Segment of the command-~list is loaded for execution
via a (machine dependent) Fortran-call.

470. SOFTWARE ASPECTS OF FLEXIBLE ANALYS!IS SYSTEMS

After the execution of each Seqment the DIANA control-system is acti-
vated to find out which is the next Segment to be executed. A special
control-command (END) indicates the end of the command-list. The
Control structure of the DIANA system is indicated in fig. 3.

The next section deals with data communication betwesn Segments.

5.0 DATA MANAGEMENT

For a number of reasons much attention had to be paid to the organi-
gsation aqf the data management during the develaopment of the DIANA-
-system:

o Complicated analysis of complex structures needs large
amounts of data.

o0 Segments can only communicate via background storage (Disec~-
-Files).

o The Fortran-lV language only gives a standard for sequential-~-
-aCCEesSS. Direct—-access is oftem available, but is, espe-
cially in case of bufferd I1/0, not portable.

e The Fortran—~IV language does not provide for dynamic memory
allacation.

Both portable and flexible data management can be realized using a
“Database Management System”. Unfortunately those systems generally
are designed for administrative applications. Logical data-structures
may be Bbuild for various kinds cf access, but the physical arganiza-
tion of data in background memory is not tailored for minimal acces-~
time.

For applications in an Engineering environment like DIANA the physical
structure of the data in the database has to be designed for “High-
-volume I/0", i.e. minimal accgess-time is more important than minimal
data-transport.

In DIANA therefore a severe distinction has been made between physical
and logical data structures. The first are handeled by a dedicated
service library, called EILOS for Elle Grganisation System C&3 . Al=-
though developed for DIANA, FILOS may also be used in other appli-
cation scftware. 1t consists of a set of Fortran-callable routines to
pecform the following tasks:

o Data transport firom foreground memeory to background storage:
. Data records may be accessed directly or sequentially, by
name or by number.
. All data may resid2 on one physical file, the database or
FILOS—-{ila,

F.C. DE WITTE ~ G.M.A. KUSTERS 471

@ Organisatien of data on the FILOS-file dedicated to minimal
acgess~time. This is achieved by:
. Buffering of Data-records, if appropriate.
. Multiple buffering including a LRU-swapping algorithn.

o Dynamic memory allocation.
Nacessary Foreground memory is allocated at run-time, depen-
dent an the size of the problem and the type of analysis.

FILOS acts as a machine independent, consistent interface to a physi-
cal data structure for Engineering applications., Logical data struc-
tures for dedicated applications may be given a physical represen—
tation using FILOS as a tool-kit.

In D1ANA, for instance, logical data structures are designed for:

o Element data.]
Data records are accessed by name (STRESS, STRAIN etec.)
for each element in the FEM-model. Oata is arganized in
saeveral levels (element, integration peint etc. p) and in
several generations (Father-Son etc.).

o Material descriptions.
Each material is described by a set of named data records.

6 Node conordinates.

The logical data structures are very important for the flexibility of
the OIANA-systen. Each Segment may access, without major modifi-
caticns, all the data stored by any aother Segment of any other Module,

4.0 SCME APPLICATIONS

In this section we will demonstrate how the features of the DIANA-
~-system described in the previous sections are used to implement
different types of analysis methods.

6.1 Equilibrium lteration Schemes

In this example we will show how the flexibility of the system is used
to make different iteration procedures available in physical non-
~linear calculations. We will desecribe three different iteration
schemes [21, [57:

1. Constant stiffness matrix method, no updating of the stiff-~
ness matrix.

472 SOFTWARE ASPECTS OF FLEXIBLE ANALYSIS SYSTEMS

2., Modified Newton—-Raphson, before each new loadstep the stifi-
ness will be updated.

3. Normal Newton-Raphson, before each iteration the stiffness
matrix is updated.

To perform a non—linear analysis with plasticity wusing the constant
gtiffness matrix method the user has to supply the following commands:

*MONL IN
INITIALIZE
ANALYSIS PHYSICAL GEOMETRICAL
OPTIONS PLASTICITY CREEP
END INITIALIZE
EXECUTE nstep LOAD STEPS
PERFORM CONSTANT MI=miter
ANALYS1IS PHYSICAL
USE PLASTICITY
: SIZE r (nstep)
END EXECUTE
*END

Where:
miter: maximum number of iterations per loadstap.

nstep: number of lcadsteps to be performed.
© :t size of loadstep increments.

The interpretor Segment generates the following caommand-list to per-
form a non-linear analysis with plasticity wusing <the constant
stiffness matrix method:

NONLIN INITIA *Initialize data for non-lin. analysis”
L.OQOP nstep “"Load-stap loap"
NONLIN LQOAD “Set up incremental load vectar®
SOLVE SUBSTI “Calculate incremental displacements"”
NONLIN PHYSNL *Determine internal load vector”
LOOP miter *Equilibrium iteration lcap”

SOLVE SUBSTI
MONLIN PHYSNL
END LOQP
END LOOP

To perform a non-linear analysis with plasticity wusing the Modiiied
NMewtgn-Raphsan iteration method the wuser has to change the perform
command in:

PERFORM MODIFIED NEWTON RAPHEON MI=miter

The interpretar Segment will generate the same ccmmand-list as
previous but with some segments added at the beginning of the
loadstep:

10

F.C. DE WITTE - G.M.A. KUSTERS 473

LOOP nstep
NONLIN LOAD
NONLIN TANGST “Form new stiffness matrix”
SOLVE ASSEMB "Agssemble system of equations®
SOLVE DECOMP "Decompose system of squations”

SQLVE SUBSTI
NONLIN PHYSNL
LOCP miter
S0LVE SUBSTI
MONLIN PHYSNL
END LOOP
END LOOP

The same segments added in the inner loop will result in the normal
Mewton-Raphson iteration procedure:

LOOP nstep
NCNLIN LOAD
NONLIN TANGST
SOLVE ASSEMB
S0LVE DECOMP
SOLVE SUBSTI
NONLIN PHYSNL
LOOP miter
NONL IN TANGST
SOLVE ASSEMB
SOLVE DECOMP
SOLVE SUBSTI
NONLIN PHYSNL
END LOOP
END LOOP

The example showed the flexibility of the system: by simply adding
some Segments to the command-list different analysis methods became
available, without the need to modify any of the used Segments.

4.2 Dynamic Analysis

In this example we will show how non—-linear material hehaviour can be
included in a dynamic analysis using an implicit time integration
method.

To perform a dynamiec anmalysis, with implicit ¢ime integration the
following equilibrium eguations have to be scolved C3J, C&1:

t+at.. t+at. t t+at t
Mox uUu + C = U+ K * U = P - F {1

Where:

11

474 SOFTWARE ASPECTS OF FLEXIBLE ANALYSIS SYSTEMS

M = mass matrix

C = damping matrix
t

K = tangent stiffness matrix at time t which includes the

linear and non-linear material effects, and/or geometri-
cal non-linear effects.

L+At
P = externally applied forces at time t+at
t
F = nodal peoint forees vector equivalent to the stresses of
the elements at time t.
t+at..
U = nodal point accelerations at time t+At
t+at.
U-= nodal point velocities at time t+4t
t-‘

U = nodal point accelerations at time ¢
U = displacement increment from time t to time t+At

Solving equation {1} with the implicit Newmark Beta step by step
integration procedure the following steps may be distinguished:

Initial calculations:
(13 Initialize:

D 0. Qll
U 3 U and U

falculate the constants a0 to al10 for Newmark Beta.
(II) Form effective coefficient matrix Ke:

Ke = K+ a M + a % C
0 1

In linear analysis:

{111} Triangularize effective coefficient matrix Ke (assemble and
decompose). -

For each time step:

12

F.C. DE WITTE - G.M.A. KUSTERS 475

(IV)

(V2

(V13

Form effective load vector:

E+AL t+At t t. tea
R = P+ M * ¢ a* U+ a* U+ a#= U +
0 2 3
t t. t..
+ C ® (a» U+ a* U+ a % U
1 4 5

Solve for displzacement increments:

t+At t+at t+at t
Ke * Uy = R 3 U= u - U

Calculate new accelerations, velocities and displacements:

t+AtII tl t-l

U=a#» U+ a» U+ a=x U
& 7 -}

t+AL. t. t.. t+At ..

U= U+ a » U + a = U
? 10

t+AL t

Uus= U=+ u

To include ngn-linear material behaviour in the analysis the following
steps are necessary per time step:

(III1)

(1Y)

(V1)

t
Form new stiffness matrix K.

Form effective coefficient mabtrix Ke:
t
Ke = K+ a * M+ a » (
a] 1

Assemble and decompose effective coefficient matrix.

Ferm effective load vector:

t+at taat t. . tom e
R = P+ M = a * U+ a» U+
2 3
t. | ST t
+ C* (a* U+ a=*=1U) - F
4 -]

13

476 SOFTWARE ASPECTS OF FLEXIBLE ANALYSIS SYSTEMS

(VII) Solve for displacement increments:

t+AL
Ke * U = R

(VII1}Y If required, iterate for dynamic equilibrium:
(a’ Initialize displacements U and inner iteration number i:

g1}
u = U ; i=0

(b i=i+1

(¢) Caleulate (i-1)st approximation to accelerations, veloci-
ties, and displacements:

t+At. . Ci-1 (i~1) £ t..
U = a * U - a*» - a=* U
u] 2 3
t+Aat . (i-1D (i=-1) A taa
] = a * U - a * U -a * U
1 4 5
t+At (i-1> (i-1) ¢t
g = U + U

(d> Calculate (i-1)st effective cut-of-balance loads:

t+at (i-1) t+At t+At. . (i-1)
R = P - M =» U +
t+AL. (i-1) t+At (i-1)
- C * u - F

{(e) Solve for i-th correction to displacement increments:

(i) t+at (i-1)
K % AU = R

(f> Calculate new displacement increments:

(i {i-1) (i3
u = U + AU

(g3l Check for convergence, if net return to (b)) for next
itecation, otherwise continue:

14

F.C. DE WITTE - G.M.A. KUSTERS . 477

(IX> Calculate new accelerations, velocities and displacements:

t*At.' tl tll
(1] a *» U+ a = U + a = U
& 7 a

t+At. t. t.. t+At..
U= U+ a»y + a =+ u
b4 10

t+AL t

To perform a dynamic analysis with linear elastic material behaviour
the user has to supply the following commands:

*SHOCK
INITIALIZE dtime
ANALYSIS NEWMARK alfa beta
END INITIALIZE
EXECUTE nstep TIME STEPRS
PERFCORM LINEAR
EMD EXECUTE
*END

Where:

dtime: time increment.

alfa : constant {or Mewmark Beta.
beta : constant for Newmark Beta.
nstep: number of time steps to perform.

The interpretor Segment generates the following command-list to per-
form a dynamic analysis with linear slastic material behaviour for
nstep time steps (the numbar in brackets indicate the previously men-
tioned part of the integratiaon procedure):

SHOCK INITIA (1)
SHOCK EFCOEF (I
SOLVE ASSEMB (111>
SOLVE DECOMP (IIL)
LOOP nstep

SHOCK EFFLOD IV

SOLVE SUBSTI (W)

SHOCK VELACC (VI
END LOOP

To perform a dynamic analysis with ngn=linear material behavigur

and/or geometrical non-linear effects the execute command block has to
be changed in:

¥y
(1]

478 SOFTWARE ASPECTS OF FLEXIBLE ANALYSIS SYSTEMS

EXECUTE nstep TIME STEPS
PERFORM NEWTON RAPHSON MI=miter
ANALYSIS PHYSICAL GEOMETRICAL
USE PLASTICITY

END

The interpretor Segment generates the following command=-list ta per-
form a dynamic analysis with non=-linear material behaviour and/or

geometrical non«linear effects for nstep time steps:

SHOCK INITIA I
LOOP nstep
MONLIN TANGST (I1D
SHOCK EFCOQEF IV
SCLVE ASSEMB V)
SOLVE DECOMP (V)
SHOCK EFFLOD (Vi)
SOLVE SUBSTI (V1l,vIilla>
NONLIN PHYSNL (V1) F-term for i+l .
LOOF miter (VIIIb)

SHOCK _OO0OBFOR (V1ligc,d)
SOLVE SUBSTIL (Ville,f,q)
NONLIN PHYSNL (VIIId) F~term for i+1i or next time step.

END LOOP
SHOCK VELACC (IX)
END LOOCP
In this example we see cnce more the flexibility of the systam. The

only new Segment to be grogrammed in order to make non-linear material
behaviour available, is the Segment COBFOR in Module SHOCK. Whereas
the Segment PHYSNL of Module NONLIN may simply be added as it is.

7.0 CONCLUSIONS

For application software, especially when used in a R&D enviraonment
where all kinds of technaological developments take place, ghange is
the major factor to deal with. To keep the software alive and up-to-
~date Flexibility is the most important requirement. Therefaore three
considerations have to be kept in mind during the develocpment of
application software:

1. Use a highly modular orggqram architecturs. This facilitates
the maintenance 0f a cgonsistent set of software, avoiding the

danger of rigidity.

2. Separate the logical and fvsical data structures. This lesads
to both flexible data management and efficient inter-modular
data communication.

3. Design a special gontrol structure. This gives a flexible
control over the execution sequences of segments from variaus
modules. Different analysis methods may be implemented

simply by an assembly of control-commands.

16

A Y

F.C. DE WITTE - G.M.A. KUSTERS 479

That these congidepations indeed lead to flexibility, is demonstrated
by two examples, taken from the DIANA FEM-software system:

Q

The implementaticn of different iteration schemes in non-
~linear analysis.

The inclusion of non-linear material behaviour in a dynamic
analysis.

3.0 REFERENCES

£13

£213

£33

C43

LE1

£61

van Beinum, Gerlach E.; Tolman, Frits P. and de Witte,
Frits C.: “Portability Aspects of DIANA, A large Engineering
Analysis System", Proc. 4th EASIT-Conference on ‘Problems
and experiences with quality assurance and portability of
software’, Luxembourg, 12-13 May 1980.

Zienkiewicz, 0.C.: “The Finite Element Method", Mc. Graw—
-Hill, London, 1977.

Bathe, Klaus-Jurgen and Wilson, Edward L.: "Numerical
Methods in Finite Element Analysis“, Prentice-Hall, Englewood
Cliffs, New Jersay, 1976.

Bathe, Klaus-Jurgen: "Static and Dynamic Geometric and mate—
rial Nonlinear Analysis using Adina"™, MIT Cambridge Massachu-
satts, May 1976.

Kusters, Ger M.A.: "Non-linear material behaviour of rein-
forced concrete using the Finite Element Method™, TNO-IBBC
report nr. BI-77-346/07.1.22110, March 1977 (in Dutch).

"File Organisation System - FIL0S, Users Manual, versiaon
1.2%, TNO-IBBC, 1981.

17

Leere Seite
Blank page
Page vide

	Software engineering aspects of flexible structural analysis systems

