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Software Engineering Aspects of Flexible Structural Analysis Systems

Des aspects "software" pour des systèmes flexibles d'analyse des structures

Software-Aspekte von flexiblen Konstruktionsrechensystemen
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Research engineer
IBBC-TNO, Software-engineering dpt.
Rijswijk, Holland

GER M.A. KÜSTERS
Research engineer
IBBC-TNO, Software-engineering dpt.
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SUMMARY
This paper stresses the need for and presents a flexible computer system for structural analysis.
Especially in the field of Research and Development modifications should be easily to deal with.
Guidelines for the implementation of such a flexible system include: Use a highly modular
program architecture, separate logical and physical data structures and separate the control
structure from the rest of the system. Two examples, related to non-linear FEM-analysis, are
given to demonstrate that this approach, indeed, leads to a flexible system.

RÉSUMÉ
Dans cette publication l'importance et la réalisation du développement des systèmes flexibles
pour l'analyse structurelle sont accentuées. Surtout dans un domaine de Recherche et
Développement il est avantageux que les modifications peuvent être traitées facilement.
Comment assurer le "software" à jour et vivant dans un tel domaine? La réponse donnée dans
ce rapport est triple: appliquez une architecture de programme d'une conception bien modulaire,
séparez des structures de data logiques et physiques, séparez la structure contrôlée du reste du
système. On donne deux exemples, concernant la méthode des éléments finis, qui démontrent
que cette méthode résulte dans un système flexible.

ZUSAMMENFASSUNG
In dieser Abhandlung werden die Bedeutung und die Realisierung der Entwicklung flexibler
Konstruktionsrechensysteme betont. Besonders auf dem Gebiet der Forschung und Entwicklung
müssen Veränderungen berücksichtigt werden können. Die Frage ist wie man die "software"
lebendig und neuzeitlich halten kann unter solchen Umständen. Die Antwort in diesem Berichte
bezieht sich auf drie Hinsichten: verwende eine weit in Modulen entwickelte Programmarchitektur,

trenne logische und physische Datastrukturen und trenne das Steuerungssystem von
den übrigen Systemen. Zwei Anwendungsbeispiele in Bezug auf die nicht-lineare Finite-
Elemente-Analyse werden dargestellt um zu erläutern dass diese Methode zu einem flexiblen
Systeme führt.
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1.0 INTRODUCTION

1.1 Environment Of Use

The aspects of software engineering described in this paper are very
much related to R&D-user environments in general and that of the
authors in particular.
The latter is the Software Engineering Dept. of a R&D institute in
the field of Structural Analysis and Material Behaviour. As computer
simulation nowadays is an essential part of this research the support
of an engineering analysis system based on the finite element method
FEM is necessary..

1.2 Requirements

As research is, by nature, related to non-standard problems the system
should be well suited for modification and extension in order to
achieve easy adaptation to the non-standard problems on hand. This
requirement is called Flexibi1itv.
The need for flexibility not only stems from R&D in material- and
structural behaviour but also from developments in numerical analysis
< new methods software engineering languages, operating systems >

and hardware memory sizes, mini- and micro-computers >.

Flexibility guards the integrity and consistency of the system.
Without that maintenance costs and unreliability will frustrate its
use.

With respect to the D of R&D an important requirement for software
systems is Portabi1itv C13, because of the fact that results of
researcn should be available on different hardware configurations,
both for customers and in-house use.

Seme additional requirements for application software in general and
R&D-software in particular are Ef ficiencv - i.e. a minor load for the
hardware - and User-friend 1vness - i.e. a minor load for the user -
Some ten years ago we had to decide, considering the above-mentioned
requirements, either to use one < or more of the existing and
commercial available FEM-software systems or to develop our own
system. Mainly because of the fact that the existing systems were not
flexible enough we decided to develop our own FEM-software package C

called DIANA for Displacement method ANA 1vser In this paper we
describe some Software Engineering problems, mainly with respect to
the flexibility requirement, and how these were solved during the
development of DIANA.

2
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2-0 IMPLEMENTATION LANGUAGE

The first problem is the choice of the programming language. For
DIANA FORTRAN-IV was chosen as the system implementation language
mainly because of the general availability of compilers and
programmers for this language. Unfortunately this language is not very
suitable for the development of flexible software systems. The main
lack's are:t

o Not well suited for realisation of a modular systems
architecture

a Poor data-management facilities
So special care had to be taken about these short-commings. Some
aspects related to it will now be described.

3.0 SYSTEMS ARCHITECTURE

A modular architecture is very important for large software systems.
Modularity means that specific functions in the system, for instance
the solution of the system of equations, are performed in specific
parts of the program, called modules. Each module "M" has a clearly
defined function and further-more a communication 'interface' "i" to
other modules of the system for exchange of data. This architecture
is shown in fig. 1.

It is clear that the implementation of the performance of a module may
be changed as long as the communication interfaces remain unaltered.It is possible, for instance, to change the solution method for the
system of equations, without changing the other modules. This is the
first step towards flexibility.

3
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Problems with the architecture as shown in fig. 1 may arise when the
number of modules increases. Mhen each module of the system has its
own- interface to the other modules it is very difficult to connect new
modules to the system. Many new interfaces have to be defined in that
case.

A solution of this problem is to define one interface for the whole
system and to connect all the modules to this interface. The
interface separates the data from the modules of the system as shown
in fig. 2.

Figure 2

The data separated in this way may be called a database. The system
modules communicate with the database via the interface, which may be
considered as a database management system.

In DIANA we followed the approach as indicated in fig. 2. Me will
now describe the architecture of the DIANA system in more detail.

3.1 Modules

From the Users point of view the system is divided into Modu1 es. Each
Module performs a specific type of analysis. For instance:

Module SOLVE for the solution of the system of equations.

Module NONLIN for Physical and Geometrical non-linear
analysis.

Module SHOCK for dynamic analysis using direct time-integration

The end-user activates a certain Module by a special command, followed
by problem oriented Module-commands.
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3.2 Segments

From the system's point of view Modules are built up from what are
called Segments. Segments perform a specific function in a Module,
for instance Segment DECOMP in Module SOLVE for decomposition of the
system of equations. Each Module contains a special Segment for
interpretation of the commands which are specific for that Module.
For reasons of flexibility each Segment is linked independently from
all other Segments and is in fact a stand-alone program for the
computer.

In Fortran-terms a Segment consists of a Main-program and a number of
Subroutines and Functions These routines are functionally
collected in two groups:

1. Routines to perform a task specific for the Segment.

2. More general routines, to perform tasks which may be
applicable in various Segments. These routines are assembled
in Service Libraries, which are specified by the programmer
during the Link-process of each Segment. For instance
Service Libraries do exist for:

Oata-management
Matrix end vector multiplication
Text manipulation.

The architecture described garantees a highly flexible software tool
for R&D in the field of FEM-analysis. The standard versions of the
Segments may be used as a tool-kit for FEM-programmers. However, they
may adapt the system to their own needs by creating experimental
versions of one or more Segments, without the need to Link the whole
DIANA-system. A special command can be supplied, specifying the
alternative version-name of the Segment. This feature is extremely
usefull during development and implementation of new applications and
theories in FEM-analysis.

Unfortunately some disadvantages are inherent to the concept of
independently Linked Segments:

1. A large number of Segments have to be controled, i.e. to be
loaded in the computer for execution in a specific sequence.
This may need a large number of machine-dependent Job-Control
statements, whereas special control structures as LOOPS and
JUMPS may be even impossible on some machines.

2. Segments can only communicate via background storage. This
may cause a large amount of data in the database which is
very intensively accessed during the calculations. So
special care has to be taken about the data management, both
logical for reasons of flexibility and physical C for
reasons of efficiency

In the next two sections we will describe how these two problems were

S



468 SOFTWARE ASPECTS OF FLEXIBLE ANALYSIS SYSTEMS

solved during the development of the DIANA-system.

4.0 CONTROL STRUCTURE

Two main aspects are related to the control of a DIANA-job:

1. The end-user likes to control the system by means of
commands, related the problem he wants to solve C user-
-commands

2. The OXANA-system can only control the loading and execution
of the Segments control-commands

In some cases a conflict occurs between these two aspects. For
instance, using the Module NONLXN to execute the next 5 loadsteps in a
non-linear analysis the user would give a command like:

EXECUTE 5 LOAD STEPS

while the control of the Segments would be something like:
LOOP 5 TIMES
"LOAD SEGMENT INISTEP OF MODULE NONLIN"
"LOAD SEGMENT OF MODULE SOLVE"
"LOAD SEGMENT

END LOOP

In this case the user-command has to be interpreted and expanded into
several control-commands. Me now describe how this process works in
the DIANA-system.

4.1 User Commands

The user activates the DIANA control-system by a single machine
dependent Job-Control statement, like:

«RUN DIANA for VAX/VMS, or:
SSDIANA for HARRIS/Vu 1 can, etc.

Next he supplies a module command indicating the Module he is going to
use :

NONLIN for the Module NONLIN.

The DIANA contre 1-system now activates the command interpreter Segment
of the appropriate Module. This interpretor scans the module
dependent user-commands including parameters etc. that follow the
module command, for instance:

6
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EXECUTE 5 LOAD STEPS
SIZE 1.2<5> "Five equal sized staps of 1.2"
PERFORM NEWTON-RAPHSON MI=10 "Max. 10 equilib. iterations"

Commands are interpreted and checked on correct syntax until the next
module command or a special 'end' command:

END

If no errors are detected the interpreter generates the necessary
control-commands.

A.2 Control Commands

The generated control-commands are stored in the database. These
commands exists of a list C the command-1 ist containing the names
of the DIANA Segments to be loaded for execution. Special commands
are generated if it is necessary to execute the Segments conditionally

JUMP or more than once LOOP, END LOOP Some examples will be

When all user-commands are interpreted and all control-commands
generated, the first Segment of the command-list is loaded for execution
via a machine dependent Fortran-call.

7
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After the execution of each Segment the DIANA control-system is
activated to find out which is the next Segment to be executed. A special
control-command END indicates the end of the command-list. The
Control structure of the DIANA system is indicated in fig. 3.

The next section deals with data communication between Segments.

S.Q DATA MANAGEMENT

For a number of reasons much attention had to be paid to the organisation

of the data management during the development of the 0IANA-
-systems

o Complicated analysis of complex structures needs large
amounts of data.

o Segments can only communicate via background storage Disc-
-Files >.

o The Fortran-IV language only gives a standard for sequential-
-access. Direct-access is often available, but is,
especially in case of bufferd I/O, not portable.

o The Fortra'n-IV language does not provide for dynamic memory
al location.

Both portable and flexible data management can be realized using a
"Database Management System". Unfortunately those systems generally
are designed for administrative applications. Logical data-structures
may be build for various kinds of access, but the physical organization

of data in background memory is not tailored for minimal acces-
time.

For applications in an Engineering environment like DIANA the physical
structure of the data in the database has to be designed for "High-
-volume I/O", i.e. minimal access-time is more important than minimal
data-transport.
In DIANA therefore a severe distinction has been made between physical
and logical data structures. The first are handeled by a dedicated
service library, called FILOS for File Organisation System C63
Although developed for DIANA, FILOS may also be used in other
application software. It consists of a set of Fortran-callable routines to
perform the following tasks:

o Data transport from foreground memory to background storage:
Data records may be accessed directly or sequentially, by
name or by number.
All data may reside on one physical file, the database or
FILOS-file.

S
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Organisation of data on the FILOS-file dedicated to minimal
access-time. This is achieved by:

Buffering of Data-records, if appropriate.
Multiple buffering including a LRU-swapping algorithm.

o Dynamic memory allocation.
Necessary Foreground memory is allocated at run-time, dependent

on the size of the problem and the type of analysis.
F1L0S acts as a machine independent, consistent interface to a physical

data structure for Engineering applications. Logical data structures

for dedicated applications may be given a physical representation
using FILOS as a tool-kit.

In DIANA, for instance, logical data structures are designed for:
a Element data.

Data records are accessed by name C STRESS, STRAIN etc.
for each element in the FEM-model. Data is organized in
several levels element, integration point etc. and in
several generations Father-Son etc.

o Material descriptions.
Each material is described by a set of named data records.

o Node coordinates.

The logical data structures are very important for the flexibility of
the OXANA-system. Each Segment may access, without major
modifications, all the data stored by any other Segment of any other Module.

6.0 SOME APPLICATIONS

In this section we will demonstrate how the features of the DXANA-
-system described in the previous sections are used to implement
different types of analysis methods.

6.1 Equilibrium Iteration Schemes

In this example we will show how the flexibility of the system is used
to make different iteration procedures available in physical non-
-linear calculations. We will describe three different iteration
schemes C23, C53:

1. Constant stiffness matrix method, no updating of the stiff¬
ness matrix

9
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2. Modified Newton-Raphson, before each new loadstep the stiff¬
ness will be updated.

3. Normal Newton-Raphson, before each iteration the stiffness
matrix is updated.

To perform a non-linear analysis with plasticity using the constant
stiffness matrix method the user has to supply the following commands:

»NONLIN
INITIALIZE

ANALYSIS PHYSICAL GEOMETRICAL
OPTIONS PLASTICITY CREEP

END INITIALIZE
EXECUTE nstep LOAD STEPS

PERFORM CONSTANT MI=miter
ANALYSIS PHYSICAL
USE PLASTICITY
SIZE r <nstep)

END EXECUTE
ENO

Where :
miter: maximum number of iterations per loadstep.
nstep: number of loadsteps to be performed,
r : size of loadstep increments.

The interpreter Segment generates the following command-list to
perform a non-linear analysis with plasticity using the constant
stiffness matrix method:

NONLIN INITIA
LOOP nstep

NONLIN LOAD
SOLVE SUBSTI
NONLIN PHYSNL
LOOP miter

SOLVE SUBSTI
NONLIN PHYSNL

END LOOP
END LOOP

To perform a non-linear analysis with plasticity using the Modified
Newton-Raphson iteration method the user has to change the perform
command in:

PERFORM MODIFIED NEWTON RAPHSON MI=miter

The interpretor Segment will generate the same command-list as
previous but with some segments added at the beginning of the
loadstep:

"Initialize data for non-lin. analysis"
"Load-step loop"
"Set up incremental load vector"
"Calculate incremental displacements"
"Determine internal load vector"
"Equilibrium iteration loop"

10
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LOOP nstep
NONLIN LOAD
NONLIN TANGST
SOLVE ASSEMB
SOLVE DECOMP
SOLVE SUBSTI
NONLIN PHYSNL
LOOP miter

SOLVE SUBSTI
NONLIN PHYSNL

END LOOP
END LOOP

The same segments added in the inner loop will result in the normal
Newton-Raphson iteration procedure:

LOOP nstep
NONLIN LOAD
NONLIN TANGST
SOLVE ASSEMB
SOLVE DECOMP
SOLVE SUBSTI
NONLIN PHYSNL
LOOP miter

NONLIN TANGST
SOLVE ASSEMB
SOLVE DECOMP
SOLVE SUBSTI
NONLIN PHYSNL

' LOOP
END LOOP

The example showed the flexibility of the system: by simply adding
some Segments to the command-list different analysis methods became
available, without the need to modify any of the used Segments.

"Form new stiffness matrix"
"Assemble system of equations"
"Decompose system of equations"

6.2 Dynamic Analysis

In this example we will show how non-linear material behaviour can be
included in a dynamic analysis using an implicit time integration
method.

To perform a dynamic analysis, with implicit time integration the
following equilibrium equations have to be solved C33, C43 :

t+At.. t+At. t t+At t
M * U + C* U + K * U P-F -Cl>

Where :

11
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M mass matrix
C damping matrix

t
K tangent stiffness matrix at time t which includes the

linear and non-linear material effects, and/or geometrical
non-linear effects.

t+At
P externally applied forces at time t+At

t
F nodal point forces vector equivalent to the stresses of

the elements at time t.
t+At..

U - nodal point accelerations at time t+At

t+At.
U nodal point velocities at time t+At

t.
U nodal point accelerations at time t
U displacement increment from time t to time t+At

Solving equation -Cl> with the implicit Newmark Beta step by step
integration procedure the following steps may be distinguished:

Initial calculations:
(I) Initialize:

0 0. 0..
U ; U and U

Calculate the constants a0 to alO for Newmark Beta.

(II) Form effective coefficient matrix Ke:

Ke= K+a*M+a»C
0 1

In linear analysis:

(III) Triangularize effective coefficient matrix Ke assemble and
decompose

For each time step:



F.C. DE WITTE - G.M.A. KÜSTERS 475

(IV) Form effective load vector:

t + At t+At t t. t..
R P + M*(a*U + a»U + a»U) +

0 2 3

t t. t..
+ C*(a*U + a*U + a*U)

1 4 5

(V) Solve for displacement increments:

t+At t+At t+At t
Ke* U Ri U U-U

(VI) Calculate new accelerations, velocities and displacements:

t+At.. t. t..
U a*U + a* U + a * U

6 7 S

t+At. t. t.. t+At..
U U + a * U + a * U

9 10

t + At t
U U + U

To include non-linear material behaviour in the analysis the following
steps are necessary per time step:

(III) t
Form new stiffness matrix K.

(IV) Form effective coefficient matrix Ke:

t
Ke K + a*M + a*C

0 1

(V) Assemble and decompose effective coefficient matrix.
(VI) Form effective load vector:

t+At t*At t. t..
R P + M * a*U + a*U) +

2 3

t. t.. t
+ C*(a*U + a*U) - F

4 5

13
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(VII) Solve for displacement increments:

t+At
Ke * U R

(VIII) If required, iterate for dynamic equilibrium:
(a) Initialize displacements U and inner iteration number i:

(0)
U U ; i=0

(b) i=i+l
(c) Calculate (i-l)st approximation to accelerations, veloci¬

ties, and displacements:

t+At..(i-1) (i-1) t. t..
U a U -a*U-a*U0 2 3

t+At.(i-1) (i-1) t. t..
U a * U - a * U - a U

1 4 5

t + At i-1) (i-1) t
U U + U

(d) Calculate (i-l)st effective out-of-balance loads:

t+At (i-1) t+At t+At..(i-1)
R P-M* U +

t+At.(i-1) t+At (i-1)
- C * U - F

(e) Solve for i-th correction to displacement increments:

(i) t+At (i-1)
K * AU R

(f) Calculate new displacement increments:

(i) (i-1) (i)
U U + AU

(g) Check for convergence, if not return to (b) for next
iteration, otherwise continue:

(i)
U U

14
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(IX) Calculate new accelerations, velocities and displacements:

t+&t.. t. t..
U a*U + a* U + a* U

6 7 8

t+At. t. t.. t+Ät..
U U + a » U + a U

9 10

t+Ät t
u =» u + u

To perform a dynamic analysis with linear elastic material behaviour
the user has to supply the following commands:

SHOCK
INITIALIZE dtime

ANALYSIS NEMMARK alfa beta
END INITIALIZE
EXECUTE nstep TIME STEPS

PERFORM LINEAR
END EXECUTE

END

Where :
dtime: time increment,
alfa : constant for Newmark Beta,
beta : constant for Newmark Beta,
nstep: number of time steps to perform.

The interpretor Segment generates the following command-list to
perform a dynamic analysis with linear elastic material behaviour for
nstep time steps < the number in brackets indicate the previously
mentioned part of the integration procedure ):

SHOCK INITIA (I)
SHOCK EFCOEF (II)
SOLVE ASSEMB (III)
SOLVE DECOMP (III)
LOOP nstep

SHOCK EFFLOD (IV)
SOLVE SUBSTI (V)
SHOCK VELACC (VI)

END LOOP

To perform a dynamic analysis with ncn-linear materia1 behaviour
and/or geometrical non-linear affects the execute command block has to
be changed in:
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EXECUTE nstep TIME STEPS
PERFORM NEWTON RAPHSON MI=miter
ANALYSIS PHYSICAL GEOMETRICAL
USE PLASTICITY

ENO

The interpretor Segment generates the fallowing command-list to
perform a dynamic analysis with non-linear material behaviour and/or
geometrical non-linear effects for nstep time steps!

SHOCK INITIA
LOOP nstep

NONLIN TANGST
SHOCK EFCOEF
SOLVE ASSEMB
SOLVE OECOMP
SHOCK EFFLOO
SOLVE SUBSTI
NONLIN PHYSNL
LOOP miter

SHOCK OOBFOR
SOLVE SUBSTI
NONLIN PHYSNL

END LOOP
SHOCK VELACC

END LOOP

(I)
(III)
(IV)
(V)
(V)
(VI)
(VII,Villa)
(VI) F-term for i+1
(VHIb)
(VIIIo,d)
(Ville,f,g)
(VHId) F-term for i+i or next time step.

(IX)

In this example we see once more the flexibility of the system. The
only new Segment to be programmed in order to make non-linear material
behaviour available, is the Segment OOBFOR in Module SHOCK. Whereas
the Segment PHYSNL of Module NONLIN may simply be added as it is.

7.0 CONCLUSIONS

For application software, especially when used in a R&D environment
where all kinds of technological developments take place, chance is
the major factor to deal with. To keep the software alive and up-to-
-date Flexibility is the most important requirement. Therefore three
considerations have to be kept in mind during the development of
application software:

1. Use a highly modular program architecture. This facilitates
the maintenance of a consistent set of software, avoiding the
danger of rigidity.

2. Separate the logical and fvsical data structures. This leads
to both flexible data management and efficient inter-modular
data communication.

3. Design a special control structure. This gives a flexible
control over the execution sequences of segments from various
modules. Different analysis methods may be implemented
simply by an assembly of control-commands.

16
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That these considerations indeed lead to flexibility, is demonstrated
by two examples, taken from the DIANA FEM-software system:

o The implementation of different iteration schemes in non—
-linear analysis.

o The inclusion of non-linear material behaviour in a dynamic
analysis.
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