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Ultimate Strength of Reinforced Concrete Members under Combined Loading

La résistance à la rupture d'éléments en béton armé sous charges combinées.

Traglast von Stahlbetonbauteilen unter kombinierten Belastung

RYOICHI SHOHARA BEN KATO
Research Engineer Prof. Dr.-Eng.
Shimuzu Construction Co., Ltd. University of Tokyo
Tokyo, Japan Tokyo, Japan

SUMMARY
The ultimate strength of reinforced concrete members is analyzed based on the concept of a
diagonal compression field. In this analysis, the interaction among bending moment, axial force
and shear force is evaluated using a simple mathematical model. This theory is very simple but
can explain the resisting mechanisms of reinforced concrete beam-columns and of precast
concrete connections by a unified theory. The theoretical predictions obtained here are
compared with the test results of many beam-column specimens and with those of push-off
specimens; a satisfactory agreement was found.

RÉSUMÉ
La résistance à la rupture d'éléments en béton armé est analysée sur base du principe de
champs de compression diagonale. Dans cette étude, l'interaction entre moments de flexion,
effort axial et effort de cisaillement est évaluée par un modèle mathématique simple. Bien que
simple, cette théorie est capable d'expliquer conjointement les mécanismes de liaisons entre
poutres et colonnes en béton armé et entre éléments préfabriqués. Les prédictions théoriques
obtenues ici sont comparées aux résultats expérimentaux de jonctions poutres-colonnes et de
joints entre éléments préfabriqués.

ZUSAMMENFASSUNG
Die Traglast von Stahlbetonbauteilen ist mithilfe des Konzepts des Diagonaldruckfeldes
berechnet. Kombinationen von Biegemoment, Normalkraft und Querkraft wurden mit einem
einfachen mathematischen Modell behandelt.
Ortbeton- und Fertigteilkonstruktionen können damit behandelt werden. Befriedigende
Übereinstimmung zwischen Theorie und Versuch wurde gefunden.
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1. INTRODUCTION

In the conventional evaluation of the ultimate strength of beam-columns subject to combined axial
thrust, bending moment and shear, the moment capacity is evaluated considering the interaction
with axial force firstly, and then the shear force is calculated from the moment diagram at
ultimate state depending on the end condition of the members, and this shear force is compared with
the maximum shear capacity of the members which is evaluated on the basis of failure modes of
the member. In this procedure of estimating shear capacity, different mechanisms of shear transfer

through a section are assumed corresponding to the observed failure modes such as diagonal
shear failures and shear bond failure, where the interaction of the shear with axial force and/or
beinding stress is not taken into account. Since the observation of ultimate strength and failure
mode in shear is made on the limited number of test specimens and thus of the limited varieties
of parameters, there is a vulnerability of overlooking other possible modes of failure unless the
assessment should be made on the basis of a comprehensive resisting mechanism of the member
against axial force, bending moment and shear force.

Herein, a structural model is developed on the basis of the compression field concept. And the

ultimate strengths of various types of reinforced concrete members such as beam-columns, beams

and precast concrete connections are analyzed in the unified theoretical approach, taking the full
interaction among performances of shear, bending and axial force into account.

The theoretical predictions obtained herein are compared with the test results consisting of many
beam-column specimens and push-off specimens to show a satisfactory agreement each other.

2. ANALYSIS

The ultimate load carrying capacities of reinforced concrete members are analyzed. In this structural

model, the equilibrium is secured through the entire member and the stresses in any constituent

elements do not exceed their ultimate stresses, but the compatibility of strains and deformation

is not necessarily satisfied. Therefore the lower bound solution will be obtained from this
analysis. The stress-strain relationship of steel is assumed to be elastic-perfectly plastic ignoring
the effect of strain-hardening. As for that of concrete, it is assumed that the concrete has no
resistance against tension and that it can develop some extent of plastic deformation keeping its
maximum stress against compression.

2.1. Ultimate Strength of Reinforced Concrete Beam-column Subject to Anti-symmetrical Bending

In this paragraph the ultimate loading capacity of a reinforced concrete beam-column subject to
anti-symmetrical bending at its ends under constant axial force is analyzed.

A reinforced concrete beam-column in this model is fictitiously divided into two systems, namely
web reinforcement and the diagonal compression field system, and the consisting materials are

allocated into these systems without overlapping.

The loading condition and the dimensions of various parts of the reinforced concrete column to
be analyzed are shown in Fig.l, where the symbols are;
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N constant axial force
M bending moment
Q shearing force
8 length of the member
D depth of the section
b width of the section
rd distance between the center of gravities of

reinforcing bars at each side

rjvM

QV|>M

N

— Q

\\LA J
rd

Fig.l Reinforced Concrete Member
and Loading Condition

2.1.1. Bending Moment and Shear Force Carried by the Web Reinforcement System

A kind of truss mechanism consisting of web reinforcement, main reinforcement and concrete
which resists compression force are assumed as a load carrying mechanism. The concrete is divided
into virtual discreet elements with their inclinations <p 45°,
their stresses Fc, and imaginary width of the concrete (3b in *N
equilibrium with the stresses of the reinforcements. wM

Assuming the stress of main reinforcing bars at each end of
the member T aTy when the web reinforcing bars have yielded,

the following equations are derived from the equilibrium
of the system. Where Ty ra ray is the yield strength of the

reinforcing bars at one side of the section.

wQ Pwwffyb-rd

WM aTyrd

vN WQ

(1)

(2)

(3)

Pw-wgyb-g
2TV

2Pwwgy (O^a, (3^1

where;

ra total sectional area of main reinforcing bars

allocated on either side of the section
with respect to the bending axis

wa sectional area of a set of web reinforcing bars

wQ

aTy

—aTy'

wQ -

-aTy

zz ctTy

"wM

Tig. 2 Equilibrium of TJeb

Reinforcement System
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Pw web reinforcement ratio

X pitch of web reinforcing bars

ray yield point of main reinforcement

wcry yield point of web reinforcement
Fc maximum compressive stress of concrete

Putting a 1 in the above equations, it can be observed that the yielding of web reinforcement
and that of main reinforcement will take place simultaneously when the condition that

_
2ra-roy

^ b£*YV<7y

is satisfied. And it will be seen that the moment capacity of this system will be saturated at this
state, and does not increase further even if one provides more amount of web reinforcement than
that defined by the critical value of Pw.

In general, the main reinforcements have reserve strength of (l-a)Ty before yielding.

In Fig.3(a), dashed lines which define the

fictitious diagonal compression member d

are drawn from the corners of the opposite
column ends with a inclination 0 which is

the function of tM and tN, and the width
of the horizontal intersection of this diagonal

member is X D-2 tan0.

2.1.2. Bending Moment and Shear Force Carried by the Compression Field

At this step of the analysis, the materials in the member which can be utilized as load carrying
elements are (l-a)ra of the main reinforcement and the concrete. Compression field which con
sists of these materials are assumed as shown Fig.3(a), where c corresponds a steel chord member

consisting of (l-a)ra, and d is a fictitious compressive diagonal member made of concrete.

tM

Denoting the compressive stress in this diagonal

member ac, the compressive force in
this member Nc can be written as

Nc ac b'Xcos0

(D-2 tan0)b'accos0 (4)

tM

c \

~nr

/
//

1 '
- ///'//

/

k
Ad

X
D

lCku ILL

7TT -77/
' tN+ 2S

tN+2S

lLL-~

TTTT

where b (l-p)b is fictitious width ot
diagonal compression field.

The equilibrium of the axial force, the bending

moment and the shear at each end of the
member can be written as follows.

tN + 2S Nc-cos0 (5)

tN

(a) (b)
Fig.3 Compression Field Model Subject

to Anti-symmetrical Bending
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£-tan0-Nc-cos0 Nc-fi-sin0
tM 2 2 ^
tQ Nc-sin0 (7)

Where tN=N-wN is the axial force carried by this compression field system and is positive for
compression, tM is the bending moment at each end of the member and is positive for clockwise
direction, tQ is the shear force, and the cords forces S are positive for tension. Substituting Eq.(4)
into Eq.(5), the inclination of the diagonal compression field tan# is found to be

X b'D-ffc f / 4 2S + tN 2S+tN
tan0 2 2S + tN (~b7D^) 1

~"b7D^) "

where X Î/D, and substituting Eqs.(4) and (8) into Eq.(6), the end moment tM is found to be

_ b'D-<rcXfi f /, 4 2S + tN 2S + tN ]M- ~4— (9)

Eq.(9) shows that tM increases when ac increases, and tM becomes maximum when ac becomes

its maximum value Fc, and if 2S + tN< > tM becomes maximum when the chords forces S

reach their yield value S0, namely

S S0 (l-a)Ty
N0

Region I tN <N1, Nt =-y-2S.

Substituting Fc into Eq.(9) for ac, and S0 for S, the maximum bending moment at column ends
is found to be

N0xe / 4 2So + tN 2So+tN
tM —jVl + ^C-N^- )(1- )-l\. (10)

Where; N0=b DFC maximum compressive capacity of the concrete section used in compression
field system. And the corresponding shear force tQ is

)- 1 • (11)

Looking into the effect of the axial force tN on the moment capacity through Eq.(10), it can be

seen that tM takes its maximum when tN reaches Nj =(N0/2)-2Sq, and until tN reaches this
critical value of tM increases with the increase of tN. Substituting N, (N0/2)-2S0 into Eqs.
(10) and (11) for tN, the bending moment and shear force under this critical axial force are found
to be

1

tM, TN0E (VX^Tl - X (12)

tQi 2"N0 (vX^TT- X) (13)

And the inclination of the diagonal at this state is
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tan03 VX2 + 1 - X (14)

When the axial force is not larger than this critical value Nt, both steels and concrete develop
their full capacity at the ultimate state, and this mode of failure can be defined as the flexural
failure in a broad sense.

No
Region II. N, <tN <N2 N2 + 2S0

According to Eq.(10), the bending moment reaches the maximum value at the critical axial force

N,, and then decreases for the larger axial force, and correspondingly the inclination 0 starts to
decrease as can be seen from Eq.(8). However this is not the only way of excurtion. As Eq.(8)
and (9) are the function of (2S + N) and not the independent function of S or N, both tM and 0

can remain unchanged for the axial force which is larger than Nj if S decreases and goes back into
the elastic region. And since the member should develop its maximum resistance against given
external forces according to the lower bound theorem, this behavior must be the actual one. N-S

relationship for this transitive region can be written as

N0
2S + tN 2S0+ tN =~Y (15)

From this equation, it can be seen that S becomes zero at the axial force N0/2, and the chord
stress will change its sign into compression when the axial force exceeds this value, and finally the
chords will yield by compression when the axial force reaches

No
N2 =~2 + 2S0 (16)

Thus it can be concluded that, for the region of N, <tN <N2, the ultimate strength of the member

is governed by the compressive failure of the concrete diagonal, while the chord members
remain elastic. For the range of this axial force, tM,, tQi and 0! keep constant values, and they
are given by Eqs.(12), (13) and (14) respectively. This mode of failure can be defined as the
shear failure.

Region III. N2^tN^N3, N3 N0+2S0

Since the only difference of equilibrium conditions between Region I and Region III is that S0 in
the former becomes -S0 in the latter, tM and tQ for Region III can be obtained by replacing S0

in Eqs( 10) and (11) by -S0 as

,M - i NOM[/ l + l} (17)

tQ=^f ,±Nol|ylt^(ifp)(i_iMsa)_1| (18)

Eq.(17) shows that tM decreases with increasing value of tN. As the extreme, tM becomes zero
when the axial force reaches the following value

N3 No + 2S0 (19)
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N3 is the sum of the axial yield force of concrete and that of steel chord parts. The failure mode

in this region can also be defined as the flexural failure.

The case for a 1

This case corresponds to the situation of S=0 in the preceding section. Since the description for
the Region I in the preceding section is independent of the value of S or S0, the moment and

shear capacities for this region can be obtained by introducing So 0 into Eqs.(10) and (11) as

The critical axial force which makes the moment maximum also can be found by placing So=0
in the expression of Nj as

The maximum values of tM and tQ for this critical axial force are independent of the value of S0

and are given by Eqs.(12) and (13) of the preceding section.

When S 0, from Eqs.(20) and (21), it can be seen that it is impossible to keep tM and tQ
unchanged for the increasing value of tN. Therefore, the Region II does not exist, namely the shear

failure does not occur in this case. And therefore, Eqs.(20) and (21) are valid even for the larger
axial force than N/, and eventually tM becomes zero when the axial force reaches N3'=N0.

2.1.3. Total Capacity

The total bending capacity of a member is obtained by summing up those of web reinforcement

system (section 2.1.1.) and of compression field (section 2.1.2.). The result is summerized in the

following;

(20)

(21)

M - wM + 4 N0X8 +

WM a ra ray rd, a (Pw ay-b£)/(2ra-rc7y)^1

tN N - wN) wN wQ

N0
Region II. N2<tN<N2, N2=—2~+2S0.

4 2S0 + tN 2S0 + tN
(22)

M WM + -j- N0£ (V X2 + 1 - X (23)
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Region III. N2 < tN < N3, N3 N0 + 2S0

M WM + \ N0Xfi (24)

2.2. Ultimate Strength of Reinforced Concrete Beam-column Subject to Simple Beam Type

Considerable number of specimens have been tested under simple beam type loading, and according

to these experimental results'the strength of a simple-beam type specimen differs considerably
from that of the specimen subject to anti-symmetrical bending. For these reasons, the ultimate
strength of a reinforced concrete beam-column subject to simple-beam type loading is analyzed
here. Of cource, equations obtained here can directly be applied to symple-beam or cantilever
type structures.

To begin with, characteristics of these two loading systems are discussed qualitatively referring to
Fig.4.

As for the specimen subject to anti-symmetrical bending, the imaginary diagonal compression
field could touch point A to carry larger shear force. On the other hand, as for a simple beam

type specimen, it is impossible the diagonal compression field to touch the point A unless sufficient

main reinforcing bars are provided to counterbalance the bending moment produced by the

compression stress of the diagonal member, because at point A the boundary condition of bending

moment is M 0.

On this reason, if the lengths of the members and other dimensions are equal, ultimate shear

strength of the specimen subject to anti-symmetrical bending is larger than that of the specimen
subject to simple-beam type loading unless main reinforcing bars are not sufficiently provided to
the specimen.

Loading

N N

N IS N

(a) Beam-column under Anti- (b) Beam-column under Simple
symmetrical Bending Beam Type Loading

(c) Simple Beam Type Specimen
with Same Parameter M/QD
to Fig.4(a)

Fig.4 Predicted Inclinations of the Diagonal Compression Fields Corresponding to the
Various Loading Systems



% R. SHOHARA- B. KATO 709

Figs.4(a) and (c) show the differences of models under the same condition of the parameter M/QD.
Under this condition a simple beam type specimen carry larger shear than that of the specimen
subject to anti-symmetrical bending with equal dimensions, because the compression field of the
former can be drawn nearer to the edge of the section at point M 0 corresponding to the amount
of the main reinforcing bars, while that of the latter always remains at the center of the section.

2.2.1. Bending Moment and Shear Force Carried by Web Reinforcement System

According to the same method descrived in section 2.1.1., the ultimate loading capacity of a web
reinforcement system is deduced with the same equations (1), (2) and (3), though under this loading

condition a Pw wöy b£/Ty. Because the relationship WM £WQ exists while in section 2.1.1.
WM f "wQ/2.

2.2.2. Bending Moment and Shear Force Carried by the Compression Field

Based on the boundary condition M 0 at point A and the equilibrium of forces, referring to Fig.
5(a), the bending moment at point B can be derived as follows.

[ / (tN + S + S')N0 + t(S-S')N0 - (tN + S + S')2
tM XN0-fi |V 1 + äNÖ? -1} (25>

and the corresponding shear force across the section is

tQ tM/fi -

where; y =jà/D

According to the lower bound theorem, chord forces S and S' which maximize the moment tM
should be obtained. The derived equations are as follows.

Region I tN< y1 N0-2S0 S — So, S'= So

Region II N0- 2S0<tN<^N0 S So, g 2~ ^0 — S0 ~ tN

Region III
l^y ^ 1+7
—f N0<tN< -f N0 s So, S'= -S0

Region IV
1+7 1+7

N0<tN< —y N0 + 2S0 c/a II "I4 No + Sq - tN, S — -So

Region V
1+7
-y1 N0 + 2S0<tN s -So, S - -So

As the compression field can not protrude beyond member width, following condition must be
satisfied.

tN2-[N0-2(S+S')] tN-(S + S')N0 + (S-S')7N0+ (S~? )2
+ (S + S')2<0 (26)

A

where; \'= f/rd

If this condition is not satisfied, a model where the compression field touches point A is supposed
as shown in Fig.5(b). Satisfying the boundary condition and the equilibrium of forces of this
model, the bending moment at point B tM is derived as follows.
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JJJ1

Fig.5 Equilibrium of Compression Field Model Subject to Simple Beam Type

Loading

tM N°-2
;

+tat"^2g (l-xtanfl) (27)

The inclination of the diagonal compression field tan0 which maximize tM can be obtained by the

following equations.

^ N0
Region VI tN ^ [ 1 + X' VX2 + 1 - X ] - 2S0

„ Np(X'-X) / 4(N0XX'+2S0+tN)(N0-2So-tN) 1

tan ~ 2(N0XX,+ 2S0+tN)|V1
+

N02 (X-X')2
+ 1 {28)

Region VII ^ [ 1+X' (VX2 + 1 - X) ] - 2S0<tN<^ [ 1-X'(\/X2 +1 -X)] +2S0

tanö V X2 +1 - X

Region VIII tN^ ^T~[ 1 - X'(\/X2 + 1 -X)]+2S0

(29)

tanö
N0(X'+X)

2(N0XX'+2S0-tN)
4(N0XX'+2So-tN)(N0+2S0-tN)

i-J i - rrrrrmtö + l H30)
Nq2 (X+X')2

Loading capacities on these regions are obtained substituting above descrived values for tan0 into
Eq.(27).

In region VII the ultimate strength of the member is governed by the compressive failure of the
concrete diagonal, while the chord members remain elastic. This mode of failure can be difined
as the shear failure. For the range of axial force in region VII tM and tQ keep constant values as

follows.
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N0-2
tM —J- (VX2 + 1 -X) (31)

N0
tQ -y (n/X2 + 1 - X) (32)

This Tegion corresponds to region II in section 2.1.2.

2.2.4. Example

M - N interactions and Q - N interactions of reinforced concrete beam-columns with the section
as shown in Fig.6(a) are shown in Figs.6(b) and (c) respectively evaluated according to the
foregoing analysis.

According to this analysis, as parameter 2/D increases, the ultimate end moment M increases and
"shear failure" region where moment capacity keep a constant value for the change of axial force
N decreases. Referring to Fig.6(c), it can be understood that the ultimate shear capacity of the
specimen subject to anti-symmetrical bending is larger than that subject to simple beam type loading

with equal values of X(2/D).

Full Plastic Moment on Bending Theory

(a) Sample Section (b) M - N Interaction Curve (c) Q - N Interaction Curve

Fig.6 Example

2.3. Ultimate Strength of a Reinforced Concrete Member Subject to Shear and Axial Force
without Bending

Mattock et.al.'2' investigated the shear transfer strength of push-off specimens shown in Fig.7
supposing the shear transfer mechanism of precast concrete connections. The shear strength of
such a reinforced concrete member subject to shear and axial force without bending is analyzed
here making use of the analogical concept of diagonal compression field model for a beam-column
descrived in section 2.1.2.
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The specimen shown in Fig.7(a) corresponds to the beam-column shown in Fig.3 making the
length of it sufficiently small. X - X' axis in Fig.7 corresponds to the longitidinal axis of
the beam-column shown in Fig.3. The main reinforcing bars in Fig.3 correspond to the
shear reinforcing bars shown in Fig.7.

The equations (11), (13) and (18) can be transformed
into (33), (34) and (35) substituting N0=bD Fc, tN
bDa0, tQ t"ubD, and 2S0 Ps-oy-bD and also replacing

X 8/D by 0. Where;

a0 : mean value of compressive stress on the shear

plane

ru mean value of ultimate shear stress on the
shear plane

Ps : shear reinforcement ratio
Oy : yield point of reinforcement

Eqs.(33), (34) and (35) are thus derived equations to
calculate the ultimate shear strength and the corresponding
inclination of the diagonal for reinforced concrete member

subject to shear and axial force without bending.

Rollers

Region I Oq— 2 ~ ps'°y

ru (Psay + a0F PsCTy + aQ

tanô
Psay + o0

Fc / Fc
Region II - Ps-ay<a0^^"+ Ps'fy

Fc
Tu - 2

tanô 1

Fc
Region III o0> + Ps-ty

i"u ("Ps-Cy + aoF

/ F7~~
tanô

-PS0y + Oq - 1

-PS'<7y + Oq - 1

Push-off Specimen Modified Push-off
Specimen

Fig.7 Loading Systems

(33)

(34)

(35)

As shown in Fig.3 main reinforcing bars of the beam-column are located at each side of the

section, while in the specimen shown in Fig.7 reinforcing bars are uniformly distributed. Yet, the
strength is not affected with the locations of reinforcements as can be understood in Eq.(9). For
this reason the substitution 2So= Ps-Oy-bD is capable.

As mentioned in section 2.1.2. reinforcements yield by tension in region I, by compression in
region III while they remain elastic in region II.
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3. EXPERIMENTAL VERIFICATIONS

3.1. Strength of Reinforced Concrete Beam-
columns

The prediction on this analysis are compared
with experimental results of 877 beam-column
specimens tested recently in Japan'1'

The experimental results of the specimens subject

to anti-symmetrical bending in region II
are compared with the prediction in Fig. 8. As
the vertical axis of Fig.8 shows the strength of
the diagonal compression field, the modified
experimental value Qe' is computed by sub-
structing the value WQ calculated with Eq.(l)
from the experimental value Qe. The experimental

results agree satisfactory with the
predicted tendency that the shear strength
increases, as the paramater fi/D decrease.

All the specimens in region II are reported as

shear failure from the experimentalists, though
all the reported shear failure specimens are not
in region II, but also scattered in the neighbourhood

of region II. Main reason of this fact is

supposed that they call it shear failure even if
main reinforcing bars have yielded.

Table 1 Comparison between Culculated and
Experimental values

Beam-columns subject to Anti-symmetrical
Bending '

1 Shear Failure Specimens

Beam(112) Column(57)

m (f/m m <t/m

Writers 0.941 0.155 1.057 0.178

Eq.(36) 1.083 0.165 0.994 0.199

Eq. (37) 0.975 0.165 0.949 0.160

2 Flexure Failure Specimens

Beam(35) Column(231)

m r/m m Ofm

Writers 1.149 0.121 1.096 0.118

Eq.(38) 1.099 0.131 1.008 0.104

3 Bond Failure Specimens (32)
m r/m

Writers 0.938 0.099

Eq.(36)

Eq.(38)

0.862

0.857

0.145

0.113

m ; mean value
o/m ; coefficien

Simple Beam Type Specimens

1 Shear Failure Specimens

Beam(45) Column(119)

m or/m m C/m

Writers 0.858 0.150 1.069 0.133

Eq.(36) 0.944 0.160 0.840 0.137

Eq.(37) 0.850 0.160 0.860 0.110

2 Flexure Failure Specimens

Beam(94) Column(152)

m O/m m 0-/m

Writers 1.178 0.146 1.179 0.128

Eq. (38) 1.202 0.183 1.081 0.152

The ratios of experimental values Qe to
theoretical values Qc are shown in Fig.9 ~ Fig. 14

as to all the beam-column specimens, with the

parameters £/D and Fc- In table 1, mean values

m and coefficients of variation a/m concerning
Qe/Qc are shown. Also in table 1 these values

of empirical equations (36) and (37) for shear

failure specimens, and Eq.(38) for flexure failure

specimens are shown. These equations are

commonly used in Japan'3'.

Qu —
0.23kukp (Fc+180)

ho/d + 0.23

Qu

+ 2.7 V Pww"y } • bj

0.23kukp (Fc+180)

(36)

ho/d + 0.23
+ 0.1 Oq

2-7/PwwOy • bj (37)

o«
Sdfc

I Eq.13

Qe : Qe - wQ

Qe : Experimental Result
• Column
° Beam

Fig.8 Comparison between Tests and Theory
on Specimens Subject to Anti-symmetrical
Bending in Region 31
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My — 0.8j"ä*r(7yD

Where;
ku, kp -

h0
d

J

+ 0.5ao-bD2(l ~4£~)
r c

(38)

coefficients depending on
the size of section and

tensile reinforcement ratio
respectively
shear span
distance from extreme
compression fiber to centroid
of tension reinforcement
distance between the
centroid of compression and

tension stress

<u 8
Co it

$ I«tili
»A • *

Ir
A Shear Failure Column

Shear Failure Beam
* Bond Failure Specimen

t^)'00 i'oo 2I00 aloo Too 5!00 '
6!00

1
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Fig.9 Shear and Bond Failure Specimens
Subject to Anti-symmetrical Bending

In this section a shear failure specimen
is defined as the specimen reported as

shear failure from the experimentalist
and of which ultimate strength does

not reach its ultimate flexure strength
calculated by Eq.(38).

Seeing the above mentioned comparisons

between experimental and
theoretical values following facts are
evident.

1 This analysis predicts the ultimate
strength of shear failure specimens

with equal accuracy as those of the

empirical equations (36) and (37),
and predicts the ultimate strength
of flexure failure specimen a little
conservatively, however coefficients
of variation a/m of this analysis

for Qe/Qc are almost equal with
those of Eq.(38).

2) This analysis predicts the ultimate
strength of the specimens subject
to anti-symmetrical bending and

simple beam type loading with
almost equal accuracy. Therefore the

modelings on this theory as to the
characteristics of each loading
system? are supposed to be appropriate.

o

a) cc

t

A Shear Failure Column
^ Shear Failure Beam
% Bond Failure Specimen

FC

Fig.10 Shear and Bond Failure Specimens
Subject to Anti-symmetrical Bending

Fig.11 llexure Failure Fpecinenn
Anti-symmetrical Bending
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3) The strength of shear failure beams
in experiments are generally a little
smaller than that of the theoretical
one.

4) Though the diagonal compression
field is supposed to be formed only
in a "short" beam-column intuitively,

this theory predicts the ultimate
strength fairly well without affected

with the change of the
parameter 2/D.

5) The accuracy of the theory is not
also affected with parameter Fc,
though it is often considered that
the shear strength is the function
ofx/Fc and not Fc.

6) Though this analysis over-estimates
the resistance of a shear bond failure

specimen a little, coefficient of
variation a/m for Qe/Qc is small,
small.

8
c£moTos olio ôTïs öläö 025 öläö ö7ü öüö ö1«

FC

Fig.13 Shear Failure Specimens Subject to
Simple Beam Type Loading
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Fig.14 llexure i1 allure seitens uVject
to Symple Beam Type Loading
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Fig.12 Shear Failure Specimens Subject to
Simple beam type Loading
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3.2. Ultimate Strength of Reinforced
Concrete Member Subject to
Shear and Axial Force without
Bending

The Experimental results tested using
the loading apparatus shown in Fig.7
and writers' prediction by Eq.33 are

shown in Fig. 15.

Marks o • show the test results by
Mattock et.al.'2'and marks A show the

test results by Aoyagi^4' et. al.

Though the theoretical prediction by
Eq.33 show a fairly good correlation
to the test results, it overestimates the
resistance perhaps due to the fact that
the plastic stress can not be sufficiently

redistributed in such an extremely
short length of specimen. A reduction
factor of 0.78 may be applied to Eq.
33 to obtain the modified semi-empirical

formula which is shown by dashed

line in Fig. 15.

(K -t-Fs-Oy
Fe

Fig.15 Comparison Between Test Results and
Calculated Values

4. CONCLUSION

The ultimate strength of reinforced concrete members was analyzed based on the concept of
compression field. In this analysis, the interaction among bending moment, axial force and shear

force was evaluated using a simple mathematical model. Though proposed theory is simple, it can

explain the test results of reinforced concrete beam-columns and precast concrete connections
fairly well on a unified theory.
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